L(s) = 1 | + 2.37·2-s + 3.63·4-s + (−0.794 + 1.37i)5-s + (2.03 − 1.68i)7-s + 3.87·8-s + (−1.88 + 3.26i)10-s + (1.64 − 2.84i)11-s + (3.29 + 1.46i)13-s + (4.83 − 4.00i)14-s + 1.92·16-s − 5.95·17-s + (3.57 + 6.19i)19-s + (−2.88 + 4.99i)20-s + (3.89 − 6.74i)22-s + 5.54·23-s + ⋯ |
L(s) = 1 | + 1.67·2-s + 1.81·4-s + (−0.355 + 0.615i)5-s + (0.770 − 0.637i)7-s + 1.36·8-s + (−0.596 + 1.03i)10-s + (0.494 − 0.857i)11-s + (0.913 + 0.406i)13-s + (1.29 − 1.06i)14-s + 0.480·16-s − 1.44·17-s + (0.820 + 1.42i)19-s + (−0.645 + 1.11i)20-s + (0.830 − 1.43i)22-s + 1.15·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0804i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0804i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.12036 + 0.165923i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.12036 + 0.165923i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-2.03 + 1.68i)T \) |
| 13 | \( 1 + (-3.29 - 1.46i)T \) |
good | 2 | \( 1 - 2.37T + 2T^{2} \) |
| 5 | \( 1 + (0.794 - 1.37i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.64 + 2.84i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 5.95T + 17T^{2} \) |
| 19 | \( 1 + (-3.57 - 6.19i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 5.54T + 23T^{2} \) |
| 29 | \( 1 + (3.68 + 6.37i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.24 + 7.35i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.55T + 37T^{2} \) |
| 41 | \( 1 + (-1.54 - 2.67i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.36 - 9.29i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.29 - 7.43i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.97 + 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 1.21T + 59T^{2} \) |
| 61 | \( 1 + (0.319 + 0.552i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.682 - 1.18i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.19 - 2.06i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.535i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.41 + 12.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 10.1T + 83T^{2} \) |
| 89 | \( 1 + 8.27T + 89T^{2} \) |
| 97 | \( 1 + (-0.831 + 1.44i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94024422685154371044231412396, −9.479667674466911029782802640644, −8.289382402271389081613196288984, −7.36126474182576297018777148593, −6.49616317837187590779510349374, −5.81702397885572328575426380917, −4.66574588875861005665232860766, −3.86635601116571611968670884476, −3.21349636813256234180988771268, −1.68981430077833210592431191317,
1.67434053565807964066770734774, 2.94009038359837833266995492888, 4.05363973424649301338830863816, 5.00279241478983861927193000252, 5.25202951694077160503182184409, 6.67470713816623561078194499464, 7.19836969217119936330602734643, 8.757188360983016710727757158757, 8.988875383151744934155282834164, 10.83227175121531334785618320165