Properties

Label 81.8.a
Level $81$
Weight $8$
Character orbit 81.a
Rep. character $\chi_{81}(1,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $5$
Sturm bound $72$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(72\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(81))\).

Total New Old
Modular forms 69 30 39
Cusp forms 57 26 31
Eisenstein series 12 4 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(14\)
\(-\)\(12\)

Trace form

\( 26 q + 1538 q^{4} - 164 q^{7} + O(q^{10}) \) \( 26 q + 1538 q^{4} - 164 q^{7} - 3732 q^{10} - 12590 q^{13} + 113846 q^{16} - 20252 q^{19} - 35922 q^{22} + 362144 q^{25} + 109888 q^{28} + 413704 q^{31} - 293418 q^{34} + 536686 q^{37} + 223080 q^{40} + 198988 q^{43} + 2364348 q^{46} + 1330410 q^{49} - 4962932 q^{52} - 4534908 q^{55} + 5260956 q^{58} + 5425414 q^{61} + 10053530 q^{64} - 8062172 q^{67} + 18206736 q^{70} - 11800694 q^{73} - 19986806 q^{76} - 12047348 q^{79} - 15469026 q^{82} + 26755794 q^{85} - 12761106 q^{88} + 11322596 q^{91} - 12439200 q^{94} + 15267256 q^{97} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(81))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
81.8.a.a 81.a 1.a $4$ $25.303$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 81.8.a.a \(-15\) \(0\) \(-192\) \(800\) $+$ $\mathrm{SU}(2)$ \(q+(-4+\beta _{1})q^{2}+(59-5\beta _{1}+\beta _{2})q^{4}+\cdots\)
81.8.a.b 81.a 1.a $4$ $25.303$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 81.8.a.a \(15\) \(0\) \(192\) \(800\) $+$ $\mathrm{SU}(2)$ \(q+(4-\beta _{1})q^{2}+(59-5\beta _{1}+\beta _{2})q^{4}+\cdots\)
81.8.a.c 81.a 1.a $6$ $25.303$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 9.8.c.a \(-9\) \(0\) \(-180\) \(84\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(52-3\beta _{1}-\beta _{2})q^{4}+\cdots\)
81.8.a.d 81.a 1.a $6$ $25.303$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 81.8.a.d \(0\) \(0\) \(0\) \(-1932\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(73+\beta _{5})q^{4}+(-12\beta _{1}+2\beta _{2}+\cdots)q^{5}+\cdots\)
81.8.a.e 81.a 1.a $6$ $25.303$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 9.8.c.a \(9\) \(0\) \(180\) \(84\) $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(52-3\beta _{1}-\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(81))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(81)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)