Defining parameters
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(81))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 69 | 30 | 39 |
Cusp forms | 57 | 26 | 31 |
Eisenstein series | 12 | 4 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(14\) |
\(-\) | \(12\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(81))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
81.8.a.a | $4$ | $25.303$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-15\) | \(0\) | \(-192\) | \(800\) | $+$ | \(q+(-4+\beta _{1})q^{2}+(59-5\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
81.8.a.b | $4$ | $25.303$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(15\) | \(0\) | \(192\) | \(800\) | $+$ | \(q+(4-\beta _{1})q^{2}+(59-5\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
81.8.a.c | $6$ | $25.303$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-9\) | \(0\) | \(-180\) | \(84\) | $-$ | \(q+(-1+\beta _{1})q^{2}+(52-3\beta _{1}-\beta _{2})q^{4}+\cdots\) | |
81.8.a.d | $6$ | $25.303$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-1932\) | $-$ | \(q+\beta _{1}q^{2}+(73+\beta _{5})q^{4}+(-12\beta _{1}+2\beta _{2}+\cdots)q^{5}+\cdots\) | |
81.8.a.e | $6$ | $25.303$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(9\) | \(0\) | \(180\) | \(84\) | $+$ | \(q+(1-\beta _{1})q^{2}+(52-3\beta _{1}-\beta _{2})q^{4}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(81))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(81)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)