Properties

Label 81.8.a.e
Level $81$
Weight $8$
Character orbit 81.a
Self dual yes
Analytic conductor $25.303$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 401x^{4} - 1212x^{3} + 17752x^{2} + 15108x - 22632 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + ( - \beta_{2} - 3 \beta_1 + 52) q^{4} + ( - \beta_{4} + 30) q^{5} + ( - \beta_{5} - 3 \beta_{4} - \beta_{3} + \cdots + 7) q^{7} + ( - \beta_{5} + \beta_{4} - 2 \beta_{3} + \cdots + 474) q^{8}+ \cdots + ( - 7147 \beta_{5} - 11459 \beta_{4} + \cdots - 8050286) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{2} + 321 q^{4} + 180 q^{5} + 84 q^{7} + 2961 q^{8} + 126 q^{10} + 8460 q^{11} + 1848 q^{13} + 16272 q^{14} + 12417 q^{16} + 15282 q^{17} + 12216 q^{19} + 40788 q^{20} + 35001 q^{22} + 51588 q^{23}+ \cdots - 47916657 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 401x^{4} - 1212x^{3} + 17752x^{2} + 15108x - 22632 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 6641\nu^{5} - 97242\nu^{4} - 2979321\nu^{3} + 31856346\nu^{2} + 298415260\nu - 1031947384 ) / 69200132 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 137781\nu^{5} - 173118\nu^{4} - 53207622\nu^{3} - 105916911\nu^{2} + 2068887384\nu - 436251969 ) / 17300033 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 364490\nu^{5} + 1063461\nu^{4} - 155430825\nu^{3} - 720783666\nu^{2} + 8445696616\nu + 3103806566 ) / 34600066 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 941891 \nu^{5} - 1166304 \nu^{4} + 383121177 \nu^{3} + 1546656714 \nu^{2} - 15736789588 \nu - 20579550384 ) / 69200132 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 491307 \nu^{5} - 1246755 \nu^{4} - 194646384 \nu^{3} - 268379592 \nu^{2} + 10043014260 \nu + 13119275006 ) / 34600066 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + 3\beta_{4} + 2\beta_{3} + \beta_{2} - 25\beta _1 - 14 ) / 108 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -9\beta_{5} + 6\beta_{4} + 5\beta_{3} + 18\beta_{2} + 140\beta _1 + 7290 ) / 54 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 67\beta_{5} + 492\beta_{4} + 251\beta_{3} + 454\beta_{2} - 5362\beta _1 + 29884 ) / 54 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -2937\beta_{5} + 3552\beta_{4} + 3143\beta_{3} + 6990\beta_{2} + 13250\beta _1 + 2261868 ) / 54 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 7757\beta_{5} + 176550\beta_{4} + 89707\beta_{3} + 197216\beta_{2} - 1758704\beta _1 + 20262596 ) / 54 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.85583
−16.1993
−9.27695
20.3986
0.799228
−1.57747
−15.4889 0 111.906 −105.528 0 −1522.84 249.280 0 1634.51
1.2 −14.2319 0 74.5469 290.607 0 1111.88 760.739 0 −4135.89
1.3 −1.07224 0 −126.850 −95.9733 0 378.001 273.261 0 102.906
1.4 6.18840 0 −89.7037 −335.903 0 −884.050 −1347.24 0 −2078.70
1.5 12.1944 0 20.7039 492.052 0 764.622 −1308.41 0 6000.29
1.6 21.4102 0 330.397 −65.2548 0 236.387 4333.37 0 −1397.12
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.8.a.e 6
3.b odd 2 1 81.8.a.c 6
9.c even 3 2 9.8.c.a 12
9.d odd 6 2 27.8.c.a 12
36.f odd 6 2 144.8.i.c 12
36.h even 6 2 432.8.i.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.8.c.a 12 9.c even 3 2
27.8.c.a 12 9.d odd 6 2
81.8.a.c 6 3.b odd 2 1
81.8.a.e 6 1.a even 1 1 trivial
144.8.i.c 12 36.f odd 6 2
432.8.i.c 12 36.h even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 9T_{2}^{5} - 504T_{2}^{4} + 3024T_{2}^{3} + 59184T_{2}^{2} - 296784T_{2} - 381888 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(81))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 9 T^{5} + \cdots - 381888 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 31744053360000 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 10\!\cdots\!48 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 91\!\cdots\!91 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 22\!\cdots\!92 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 16\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 27\!\cdots\!28 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 72\!\cdots\!12 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 15\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 17\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 21\!\cdots\!69 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 52\!\cdots\!63 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 23\!\cdots\!48 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 54\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 86\!\cdots\!83 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 27\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 45\!\cdots\!93 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 81\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 34\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 10\!\cdots\!12 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 24\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 91\!\cdots\!63 \) Copy content Toggle raw display
show more
show less