Properties

Label 81.8.a.b
Level $81$
Weight $8$
Character orbit 81.a
Self dual yes
Analytic conductor $25.303$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 342x^{2} - 352x + 2512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 4) q^{2} + (\beta_{2} - 5 \beta_1 + 59) q^{4} + ( - \beta_{3} + \beta_{2} - 7 \beta_1 + 50) q^{5} + (3 \beta_{3} + \beta_{2} - 23 \beta_1 + 207) q^{7} + ( - 2 \beta_{3} + 11 \beta_{2} + \cdots + 653) q^{8}+ \cdots + (7420 \beta_{3} - 8680 \beta_{2} + \cdots + 3832980) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 15 q^{2} + 229 q^{4} + 192 q^{5} + 800 q^{7} + 2505 q^{8} + 5469 q^{10} - 5016 q^{11} - 2200 q^{13} + 19452 q^{14} + 40849 q^{16} - 19620 q^{17} + 11240 q^{19} + 96951 q^{20} - 41280 q^{22} + 154560 q^{23}+ \cdots + 15771015 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 342x^{2} - 352x + 2512 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3\nu - 171 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 328\nu - 268 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3\beta _1 + 171 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + \beta_{2} + 331\beta _1 + 439 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.3080
2.25154
−3.35947
−17.2001
−15.3080 0 106.336 −53.3856 0 243.109 331.630 0 817.229
1.2 1.74846 0 −124.943 361.634 0 −1517.71 −442.261 0 632.303
1.3 7.35947 0 −73.8382 −468.472 0 1311.69 −1485.42 0 −3447.70
1.4 21.2001 0 321.445 352.223 0 762.913 4101.05 0 7467.17
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.8.a.b yes 4
3.b odd 2 1 81.8.a.a 4
9.c even 3 2 81.8.c.i 8
9.d odd 6 2 81.8.c.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.8.a.a 4 3.b odd 2 1
81.8.a.b yes 4 1.a even 1 1 trivial
81.8.c.i 8 9.c even 3 2
81.8.c.j 8 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 15T_{2}^{3} - 258T_{2}^{2} + 2880T_{2} - 4176 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(81))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 15 T^{3} + \cdots - 4176 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 3185622225 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 369228406016 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 362906493428736 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 709887768510599 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 35\!\cdots\!89 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 59\!\cdots\!96 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 52\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 28\!\cdots\!89 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 75\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 15\!\cdots\!49 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 69\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 17\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 25\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 94\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 10\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 27\!\cdots\!21 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 25\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 18\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 12\!\cdots\!89 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 40\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 10\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 34\!\cdots\!79 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 34\!\cdots\!24 \) Copy content Toggle raw display
show more
show less