Properties

Label 81.8.a.d
Level $81$
Weight $8$
Character orbit 81.a
Self dual yes
Analytic conductor $25.303$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,8,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3031870642\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 156x^{4} + 388x^{3} + 5992x^{2} - 18174x + 6597 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{9} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{5} + 73) q^{4} + (\beta_{4} + 2 \beta_{2} - 12 \beta_1) q^{5} + ( - 4 \beta_{5} + \beta_{3} - 322) q^{7} + ( - 7 \beta_{4} - 15 \beta_{2} + 50 \beta_1) q^{8} + ( - 33 \beta_{5} - 11 \beta_{3} - 2487) q^{10}+ \cdots + ( - 19336 \beta_{4} + \cdots - 58635 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 438 q^{4} - 1932 q^{7} - 14922 q^{10} - 11886 q^{13} + 7314 q^{16} - 67164 q^{19} - 23364 q^{22} + 42324 q^{25} - 693348 q^{28} - 470832 q^{31} - 1834866 q^{34} - 1026258 q^{37} - 3091374 q^{40} - 1502268 q^{43}+ \cdots + 26307948 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 156x^{4} + 388x^{3} + 5992x^{2} - 18174x + 6597 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 3\nu^{5} - 70\nu^{4} - 123\nu^{3} + 6438\nu^{2} - 10453\nu - 43878 ) / 2385 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -102\nu^{5} - 5\nu^{4} + 11337\nu^{3} - 4242\nu^{2} - 262313\nu + 239727 ) / 4770 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 3\nu^{3} - 78\nu^{2} - 221\nu + 273 ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{5} + 5\nu^{4} + 1489\nu^{3} - 1694\nu^{2} - 77841\nu + 129789 ) / 530 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{4} + 6\nu^{3} + 69\nu^{2} - 526\nu + 780 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{5} + 3\beta_{4} - 2\beta_{3} - \beta_{2} + \beta _1 + 36 ) / 108 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -10\beta_{5} - 3\beta_{4} + 8\beta_{3} + 13\beta_{2} + 203\beta _1 + 5688 ) / 108 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -70\beta_{5} + 123\beta_{4} - 61\beta_{3} - 35\beta_{2} + 143\beta _1 - 1980 ) / 54 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -802\beta_{5} - 309\beta_{4} + 872\beta_{3} + 1003\beta_{2} + 15197\beta _1 + 434016 ) / 108 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -9962\beta_{5} + 19767\beta_{4} - 8792\beta_{3} - 10849\beta_{2} + 20029\beta _1 - 536724 ) / 108 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.423455
2.63779
−9.24450
8.93436
8.08899
−8.84010
−19.7742 0 263.020 473.605 0 −1026.85 −2669.91 0 −9365.17
1.2 −13.3832 0 51.1095 −73.4090 0 −484.171 1029.04 0 982.446
1.3 −5.73332 0 −95.1290 −160.767 0 545.019 1279.27 0 921.729
1.4 5.73332 0 −95.1290 160.767 0 545.019 −1279.27 0 921.729
1.5 13.3832 0 51.1095 73.4090 0 −484.171 −1029.04 0 982.446
1.6 19.7742 0 263.020 −473.605 0 −1026.85 2669.91 0 −9365.17
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.8.a.d 6
3.b odd 2 1 inner 81.8.a.d 6
9.c even 3 2 81.8.c.k 12
9.d odd 6 2 81.8.c.k 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.8.a.d 6 1.a even 1 1 trivial
81.8.a.d 6 3.b odd 2 1 inner
81.8.c.k 12 9.c even 3 2
81.8.c.k 12 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 603T_{2}^{4} + 88776T_{2}^{2} - 2302128 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(81))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 603 T^{4} + \cdots - 2302128 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 31241071051875 \) Copy content Toggle raw display
$7$ \( (T^{3} + 966 T^{2} + \cdots - 270966824)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 44\!\cdots\!08 \) Copy content Toggle raw display
$13$ \( (T^{3} + 5943 T^{2} + \cdots - 66238651043)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 10\!\cdots\!87 \) Copy content Toggle raw display
$19$ \( (T^{3} + \cdots - 91889736662600)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 18\!\cdots\!32 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 35\!\cdots\!87 \) Copy content Toggle raw display
$31$ \( (T^{3} + \cdots - 244699463601152)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + \cdots - 22\!\cdots\!69)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 31\!\cdots\!52 \) Copy content Toggle raw display
$43$ \( (T^{3} + \cdots - 43\!\cdots\!00)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 44\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 12\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots - 61\!\cdots\!13)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + \cdots + 14\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 88\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( (T^{3} + \cdots - 63\!\cdots\!81)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 12\!\cdots\!28)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 22\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 12\!\cdots\!03 \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots + 65\!\cdots\!36)^{2} \) Copy content Toggle raw display
show more
show less