Properties

Label 80.22.a.l
Level $80$
Weight $22$
Character orbit 80.a
Self dual yes
Analytic conductor $223.582$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,22,Mod(1,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.1"); S:= CuspForms(chi, 22); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 22, names="a")
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-38172] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(223.581875430\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 272724629 x^{4} - 165202445971 x^{3} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{48}\cdot 3^{8}\cdot 5^{5}\cdot 7^{2}\cdot 17 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 6362) q^{3} + 9765625 q^{5} + (\beta_{2} + 931 \beta_1 + 229325190) q^{7} + (\beta_{3} + 4 \beta_{2} + \cdots + 2670904053) q^{9} + (\beta_{4} - 2 \beta_{3} + \cdots - 4987725912) q^{11}+ \cdots + ( - 2110499412 \beta_{5} + \cdots - 38\!\cdots\!40) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 38172 q^{3} + 58593750 q^{5} + 1375951140 q^{7} + 16025424318 q^{9} - 29926355472 q^{11} - 79466556732 q^{13} - 372773437500 q^{15} + 11048948347836 q^{17} + 23547216115128 q^{19} - 81845512240224 q^{21}+ \cdots - 22\!\cdots\!40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 272724629 x^{4} - 165202445971 x^{3} + \cdots + 13\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 12\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 20164153 \nu^{5} - 55325457126 \nu^{4} + \cdots + 19\!\cdots\!00 ) / 13\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 20164153 \nu^{5} + 55325457126 \nu^{4} + \cdots - 64\!\cdots\!00 ) / 34\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 2864534941 \nu^{5} + 15292996183422 \nu^{4} + \cdots + 10\!\cdots\!00 ) / 13\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 6920440171 \nu^{5} + 32300329522482 \nu^{4} + \cdots - 32\!\cdots\!00 ) / 69\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 2 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 4\beta_{2} + 10921\beta _1 + 13090782216 ) / 144 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 1480\beta_{5} - 5301\beta_{4} - 44990\beta_{3} + 82863\beta_{2} + 24039774226\beta _1 + 142970547398688 ) / 1728 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 1597202 \beta_{5} + 2372121 \beta_{4} + 610820429 \beta_{3} + 3876602781 \beta_{2} + \cdots + 65\!\cdots\!08 ) / 432 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 391529827496 \beta_{5} - 1313544817179 \beta_{4} - 11957422056250 \beta_{3} + 46250854196481 \beta_{2} + \cdots - 39\!\cdots\!52 ) / 1728 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
13795.7
10204.9
−301.154
−4283.24
−5013.03
−14402.1
0 −171908. 0 9.76562e6 0 1.29638e9 0 1.90919e10 0
1.2 0 −128819. 0 9.76562e6 0 −8.24479e8 0 6.13398e9 0
1.3 0 −2746.15 0 9.76562e6 0 1.17139e9 0 −1.04528e10 0
1.4 0 45038.9 0 9.76562e6 0 −7.62427e8 0 −8.43185e9 0
1.5 0 53796.4 0 9.76562e6 0 8.92551e7 0 −7.56630e9 0
1.6 0 166466. 0 9.76562e6 0 4.05836e8 0 1.72505e10 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.22.a.l 6
4.b odd 2 1 40.22.a.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.22.a.d 6 4.b odd 2 1
80.22.a.l 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 38172 T_{3}^{5} - 38665220976 T_{3}^{4} - 708468627183552 T_{3}^{3} + \cdots - 24\!\cdots\!00 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(80))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$5$ \( (T - 9765625)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 34\!\cdots\!56 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 30\!\cdots\!16 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 16\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 33\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 21\!\cdots\!24 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 44\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 80\!\cdots\!84 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 99\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 11\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 60\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 17\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 14\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 43\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 51\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 10\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 31\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 55\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 69\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 21\!\cdots\!96 \) Copy content Toggle raw display
show more
show less