Properties

Label 2-80-1.1-c21-0-9
Degree $2$
Conductor $80$
Sign $1$
Analytic cond. $223.581$
Root an. cond. $14.9526$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.50e4·3-s + 9.76e6·5-s − 7.62e8·7-s − 8.43e9·9-s + 5.05e10·11-s − 5.84e11·13-s + 4.39e11·15-s + 1.51e13·17-s − 1.45e12·19-s − 3.43e13·21-s − 2.85e14·23-s + 9.53e13·25-s − 8.50e14·27-s − 2.16e15·29-s + 4.84e15·31-s + 2.27e15·33-s − 7.44e15·35-s − 1.27e16·37-s − 2.63e16·39-s − 9.07e16·41-s − 1.68e17·43-s − 8.23e16·45-s + 6.66e17·47-s + 2.27e16·49-s + 6.80e17·51-s + 1.01e18·53-s + 4.93e17·55-s + ⋯
L(s)  = 1  + 0.440·3-s + 0.447·5-s − 1.02·7-s − 0.806·9-s + 0.587·11-s − 1.17·13-s + 0.196·15-s + 1.81·17-s − 0.0545·19-s − 0.449·21-s − 1.43·23-s + 0.199·25-s − 0.795·27-s − 0.956·29-s + 1.06·31-s + 0.258·33-s − 0.456·35-s − 0.435·37-s − 0.518·39-s − 1.05·41-s − 1.18·43-s − 0.360·45-s + 1.84·47-s + 0.0407·49-s + 0.800·51-s + 0.793·53-s + 0.262·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(223.581\)
Root analytic conductor: \(14.9526\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 80,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(1.772877574\)
\(L(\frac12)\) \(\approx\) \(1.772877574\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 9.76e6T \)
good3 \( 1 - 4.50e4T + 1.04e10T^{2} \)
7 \( 1 + 7.62e8T + 5.58e17T^{2} \)
11 \( 1 - 5.05e10T + 7.40e21T^{2} \)
13 \( 1 + 5.84e11T + 2.47e23T^{2} \)
17 \( 1 - 1.51e13T + 6.90e25T^{2} \)
19 \( 1 + 1.45e12T + 7.14e26T^{2} \)
23 \( 1 + 2.85e14T + 3.94e28T^{2} \)
29 \( 1 + 2.16e15T + 5.13e30T^{2} \)
31 \( 1 - 4.84e15T + 2.08e31T^{2} \)
37 \( 1 + 1.27e16T + 8.55e32T^{2} \)
41 \( 1 + 9.07e16T + 7.38e33T^{2} \)
43 \( 1 + 1.68e17T + 2.00e34T^{2} \)
47 \( 1 - 6.66e17T + 1.30e35T^{2} \)
53 \( 1 - 1.01e18T + 1.62e36T^{2} \)
59 \( 1 + 2.57e18T + 1.54e37T^{2} \)
61 \( 1 - 6.48e18T + 3.10e37T^{2} \)
67 \( 1 + 1.88e19T + 2.22e38T^{2} \)
71 \( 1 - 3.24e19T + 7.52e38T^{2} \)
73 \( 1 - 5.64e19T + 1.34e39T^{2} \)
79 \( 1 - 2.38e19T + 7.08e39T^{2} \)
83 \( 1 + 2.16e20T + 1.99e40T^{2} \)
89 \( 1 + 4.23e20T + 8.65e40T^{2} \)
97 \( 1 - 1.24e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07691026926515609779361500054, −9.673798050738312680552209340879, −8.487131272171996628119452946679, −7.37466704246149978674767543670, −6.18729549529693712964522610994, −5.33938525777415631899233953864, −3.75171853311346750008231722498, −2.93127143920594110063648703756, −1.91841928842008465558939136957, −0.51071961930440963974894538350, 0.51071961930440963974894538350, 1.91841928842008465558939136957, 2.93127143920594110063648703756, 3.75171853311346750008231722498, 5.33938525777415631899233953864, 6.18729549529693712964522610994, 7.37466704246149978674767543670, 8.487131272171996628119452946679, 9.673798050738312680552209340879, 10.07691026926515609779361500054

Graph of the $Z$-function along the critical line