Properties

Label 80.22
Level 80
Weight 22
Dimension 2066
Nonzero newspaces 7
Sturm bound 8448
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) = \( 22 \)
Nonzero newspaces: \( 7 \)
Sturm bound: \(8448\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(80))\).

Total New Old
Modular forms 4088 2092 1996
Cusp forms 3976 2066 1910
Eisenstein series 112 26 86

Trace form

\( 2066 q - 4 q^{2} + 118094 q^{3} - 3208664 q^{4} + 10391772 q^{5} + 285521808 q^{6} + 572793242 q^{7} + 10875501584 q^{8} - 72487634760 q^{9} + 101897120748 q^{10} - 46375414624 q^{11} - 733022876176 q^{12}+ \cdots - 58\!\cdots\!64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(80))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
80.22.a \(\chi_{80}(1, \cdot)\) 80.22.a.a 1 1
80.22.a.b 2
80.22.a.c 2
80.22.a.d 2
80.22.a.e 3
80.22.a.f 3
80.22.a.g 4
80.22.a.h 4
80.22.a.i 5
80.22.a.j 5
80.22.a.k 5
80.22.a.l 6
80.22.c \(\chi_{80}(49, \cdot)\) 80.22.c.a 10 1
80.22.c.b 10
80.22.c.c 10
80.22.c.d 32
80.22.d \(\chi_{80}(41, \cdot)\) None 0 1
80.22.f \(\chi_{80}(9, \cdot)\) None 0 1
80.22.j \(\chi_{80}(43, \cdot)\) n/a 500 2
80.22.l \(\chi_{80}(21, \cdot)\) n/a 336 2
80.22.n \(\chi_{80}(47, \cdot)\) n/a 126 2
80.22.o \(\chi_{80}(7, \cdot)\) None 0 2
80.22.q \(\chi_{80}(29, \cdot)\) n/a 500 2
80.22.s \(\chi_{80}(3, \cdot)\) n/a 500 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)