Defining parameters
| Level: | \( N \) | = | \( 80 = 2^{4} \cdot 5 \) |
| Weight: | \( k \) | = | \( 22 \) |
| Nonzero newspaces: | \( 7 \) | ||
| Sturm bound: | \(8448\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(80))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 4088 | 2092 | 1996 |
| Cusp forms | 3976 | 2066 | 1910 |
| Eisenstein series | 112 | 26 | 86 |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(80))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 80.22.a | \(\chi_{80}(1, \cdot)\) | 80.22.a.a | 1 | 1 |
| 80.22.a.b | 2 | |||
| 80.22.a.c | 2 | |||
| 80.22.a.d | 2 | |||
| 80.22.a.e | 3 | |||
| 80.22.a.f | 3 | |||
| 80.22.a.g | 4 | |||
| 80.22.a.h | 4 | |||
| 80.22.a.i | 5 | |||
| 80.22.a.j | 5 | |||
| 80.22.a.k | 5 | |||
| 80.22.a.l | 6 | |||
| 80.22.c | \(\chi_{80}(49, \cdot)\) | 80.22.c.a | 10 | 1 |
| 80.22.c.b | 10 | |||
| 80.22.c.c | 10 | |||
| 80.22.c.d | 32 | |||
| 80.22.d | \(\chi_{80}(41, \cdot)\) | None | 0 | 1 |
| 80.22.f | \(\chi_{80}(9, \cdot)\) | None | 0 | 1 |
| 80.22.j | \(\chi_{80}(43, \cdot)\) | n/a | 500 | 2 |
| 80.22.l | \(\chi_{80}(21, \cdot)\) | n/a | 336 | 2 |
| 80.22.n | \(\chi_{80}(47, \cdot)\) | n/a | 126 | 2 |
| 80.22.o | \(\chi_{80}(7, \cdot)\) | None | 0 | 2 |
| 80.22.q | \(\chi_{80}(29, \cdot)\) | n/a | 500 | 2 |
| 80.22.s | \(\chi_{80}(3, \cdot)\) | n/a | 500 | 2 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)