Properties

Label 2-80-1.1-c21-0-14
Degree $2$
Conductor $80$
Sign $1$
Analytic cond. $223.581$
Root an. cond. $14.9526$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.74e3·3-s + 9.76e6·5-s + 1.17e9·7-s − 1.04e10·9-s + 1.43e11·11-s − 7.93e11·13-s − 2.68e10·15-s − 1.36e13·17-s − 1.04e13·19-s − 3.21e12·21-s + 1.69e14·23-s + 9.53e13·25-s + 5.74e13·27-s + 3.64e15·29-s − 3.42e15·31-s − 3.94e14·33-s + 1.14e16·35-s + 1.89e14·37-s + 2.17e15·39-s + 2.67e16·41-s + 1.93e17·43-s − 1.02e17·45-s + 3.18e16·47-s + 8.13e17·49-s + 3.73e16·51-s + 1.37e18·53-s + 1.40e18·55-s + ⋯
L(s)  = 1  − 0.0268·3-s + 0.447·5-s + 1.56·7-s − 0.999·9-s + 1.66·11-s − 1.59·13-s − 0.0120·15-s − 1.63·17-s − 0.391·19-s − 0.0420·21-s + 0.851·23-s + 0.199·25-s + 0.0536·27-s + 1.60·29-s − 0.750·31-s − 0.0447·33-s + 0.700·35-s + 0.00648·37-s + 0.0428·39-s + 0.311·41-s + 1.36·43-s − 0.446·45-s + 0.0884·47-s + 1.45·49-s + 0.0439·51-s + 1.07·53-s + 0.746·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(223.581\)
Root analytic conductor: \(14.9526\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 80,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(2.853817850\)
\(L(\frac12)\) \(\approx\) \(2.853817850\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 9.76e6T \)
good3 \( 1 + 2.74e3T + 1.04e10T^{2} \)
7 \( 1 - 1.17e9T + 5.58e17T^{2} \)
11 \( 1 - 1.43e11T + 7.40e21T^{2} \)
13 \( 1 + 7.93e11T + 2.47e23T^{2} \)
17 \( 1 + 1.36e13T + 6.90e25T^{2} \)
19 \( 1 + 1.04e13T + 7.14e26T^{2} \)
23 \( 1 - 1.69e14T + 3.94e28T^{2} \)
29 \( 1 - 3.64e15T + 5.13e30T^{2} \)
31 \( 1 + 3.42e15T + 2.08e31T^{2} \)
37 \( 1 - 1.89e14T + 8.55e32T^{2} \)
41 \( 1 - 2.67e16T + 7.38e33T^{2} \)
43 \( 1 - 1.93e17T + 2.00e34T^{2} \)
47 \( 1 - 3.18e16T + 1.30e35T^{2} \)
53 \( 1 - 1.37e18T + 1.62e36T^{2} \)
59 \( 1 + 1.02e18T + 1.54e37T^{2} \)
61 \( 1 + 8.67e18T + 3.10e37T^{2} \)
67 \( 1 - 6.74e17T + 2.22e38T^{2} \)
71 \( 1 - 3.43e18T + 7.52e38T^{2} \)
73 \( 1 + 2.16e19T + 1.34e39T^{2} \)
79 \( 1 - 6.59e19T + 7.08e39T^{2} \)
83 \( 1 - 1.85e20T + 1.99e40T^{2} \)
89 \( 1 + 4.78e20T + 8.65e40T^{2} \)
97 \( 1 - 7.66e19T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73986821369585412605002784911, −9.202079912746426207741504255844, −8.639803432561938417541508856267, −7.31062992050076163710202785736, −6.26719586197965773881670030871, −4.99375760369858286337274243559, −4.32557820089285080233769860053, −2.61814630150373097909495036921, −1.83600705210246784708580831569, −0.69665729252466933950838290408, 0.69665729252466933950838290408, 1.83600705210246784708580831569, 2.61814630150373097909495036921, 4.32557820089285080233769860053, 4.99375760369858286337274243559, 6.26719586197965773881670030871, 7.31062992050076163710202785736, 8.639803432561938417541508856267, 9.202079912746426207741504255844, 10.73986821369585412605002784911

Graph of the $Z$-function along the critical line