Properties

Label 756.2.i.b.37.7
Level $756$
Weight $2$
Character 756.37
Analytic conductor $6.037$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(37,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.7
Root \(-0.674693 + 1.59524i\) of defining polynomial
Character \(\chi\) \(=\) 756.37
Dual form 756.2.i.b.613.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.07260 + 3.58985i) q^{5} +(2.19013 + 1.48437i) q^{7} +(0.434429 - 0.752453i) q^{11} +(2.86231 - 4.95766i) q^{13} +(1.44613 + 2.50478i) q^{17} +(-2.00703 + 3.47627i) q^{19} +(-2.91488 - 5.04873i) q^{23} +(-6.09133 + 10.5505i) q^{25} +(0.900417 + 1.55957i) q^{29} -2.96091 q^{31} +(-0.789399 + 10.9387i) q^{35} +(-2.64925 + 4.58864i) q^{37} +(5.89325 - 10.2074i) q^{41} +(-2.00703 - 3.47627i) q^{43} -2.34436 q^{47} +(2.59331 + 6.50190i) q^{49} +(1.09116 + 1.88995i) q^{53} +3.60159 q^{55} +3.05430 q^{59} +5.63318 q^{61} +23.7297 q^{65} -2.51078 q^{67} +1.09143 q^{71} +(0.723285 + 1.25277i) q^{73} +(2.06837 - 1.00312i) q^{77} -2.12928 q^{79} +(-2.18784 - 3.78946i) q^{83} +(-5.99451 + 10.3828i) q^{85} +(-5.83373 + 10.1043i) q^{89} +(13.6278 - 6.60919i) q^{91} -16.6391 q^{95} +(-3.98779 - 6.90706i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} + 6 q^{7} - 2 q^{11} + 2 q^{13} - 2 q^{17} + 7 q^{19} - 11 q^{23} - 9 q^{25} - q^{29} + 2 q^{31} + 19 q^{35} + 10 q^{37} + 33 q^{41} + 7 q^{43} - 6 q^{47} - 4 q^{49} + 15 q^{53} - 28 q^{55}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.07260 + 3.58985i 0.926894 + 1.60543i 0.788486 + 0.615053i \(0.210865\pi\)
0.138409 + 0.990375i \(0.455801\pi\)
\(6\) 0 0
\(7\) 2.19013 + 1.48437i 0.827790 + 0.561038i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.434429 0.752453i 0.130985 0.226873i −0.793071 0.609129i \(-0.791519\pi\)
0.924057 + 0.382256i \(0.124853\pi\)
\(12\) 0 0
\(13\) 2.86231 4.95766i 0.793861 1.37501i −0.129698 0.991554i \(-0.541401\pi\)
0.923560 0.383455i \(-0.125266\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.44613 + 2.50478i 0.350739 + 0.607498i 0.986379 0.164488i \(-0.0525971\pi\)
−0.635640 + 0.771986i \(0.719264\pi\)
\(18\) 0 0
\(19\) −2.00703 + 3.47627i −0.460444 + 0.797512i −0.998983 0.0450884i \(-0.985643\pi\)
0.538539 + 0.842600i \(0.318976\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.91488 5.04873i −0.607795 1.05273i −0.991603 0.129319i \(-0.958721\pi\)
0.383808 0.923413i \(-0.374613\pi\)
\(24\) 0 0
\(25\) −6.09133 + 10.5505i −1.21827 + 2.11010i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.900417 + 1.55957i 0.167203 + 0.289604i 0.937435 0.348159i \(-0.113193\pi\)
−0.770232 + 0.637763i \(0.779860\pi\)
\(30\) 0 0
\(31\) −2.96091 −0.531795 −0.265898 0.964001i \(-0.585668\pi\)
−0.265898 + 0.964001i \(0.585668\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.789399 + 10.9387i −0.133433 + 1.84898i
\(36\) 0 0
\(37\) −2.64925 + 4.58864i −0.435535 + 0.754368i −0.997339 0.0729017i \(-0.976774\pi\)
0.561804 + 0.827270i \(0.310107\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.89325 10.2074i 0.920371 1.59413i 0.121528 0.992588i \(-0.461220\pi\)
0.798842 0.601541i \(-0.205446\pi\)
\(42\) 0 0
\(43\) −2.00703 3.47627i −0.306069 0.530127i 0.671430 0.741068i \(-0.265680\pi\)
−0.977499 + 0.210941i \(0.932347\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.34436 −0.341961 −0.170980 0.985274i \(-0.554693\pi\)
−0.170980 + 0.985274i \(0.554693\pi\)
\(48\) 0 0
\(49\) 2.59331 + 6.50190i 0.370472 + 0.928844i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.09116 + 1.88995i 0.149883 + 0.259605i 0.931184 0.364549i \(-0.118777\pi\)
−0.781301 + 0.624154i \(0.785444\pi\)
\(54\) 0 0
\(55\) 3.60159 0.485638
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.05430 0.397636 0.198818 0.980036i \(-0.436290\pi\)
0.198818 + 0.980036i \(0.436290\pi\)
\(60\) 0 0
\(61\) 5.63318 0.721255 0.360628 0.932710i \(-0.382563\pi\)
0.360628 + 0.932710i \(0.382563\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 23.7297 2.94330
\(66\) 0 0
\(67\) −2.51078 −0.306740 −0.153370 0.988169i \(-0.549013\pi\)
−0.153370 + 0.988169i \(0.549013\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.09143 0.129529 0.0647647 0.997901i \(-0.479370\pi\)
0.0647647 + 0.997901i \(0.479370\pi\)
\(72\) 0 0
\(73\) 0.723285 + 1.25277i 0.0846541 + 0.146625i 0.905244 0.424893i \(-0.139688\pi\)
−0.820590 + 0.571518i \(0.806355\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.06837 1.00312i 0.235713 0.114316i
\(78\) 0 0
\(79\) −2.12928 −0.239563 −0.119781 0.992800i \(-0.538219\pi\)
−0.119781 + 0.992800i \(0.538219\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.18784 3.78946i −0.240147 0.415947i 0.720609 0.693342i \(-0.243862\pi\)
−0.960756 + 0.277395i \(0.910529\pi\)
\(84\) 0 0
\(85\) −5.99451 + 10.3828i −0.650196 + 1.12617i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.83373 + 10.1043i −0.618374 + 1.07105i 0.371409 + 0.928469i \(0.378875\pi\)
−0.989783 + 0.142585i \(0.954459\pi\)
\(90\) 0 0
\(91\) 13.6278 6.60919i 1.42858 0.692831i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.6391 −1.70713
\(96\) 0 0
\(97\) −3.98779 6.90706i −0.404899 0.701306i 0.589411 0.807834i \(-0.299360\pi\)
−0.994310 + 0.106528i \(0.966027\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.88185 + 3.25946i −0.187251 + 0.324329i −0.944333 0.328992i \(-0.893291\pi\)
0.757082 + 0.653320i \(0.226624\pi\)
\(102\) 0 0
\(103\) −5.42778 9.40119i −0.534815 0.926327i −0.999172 0.0406786i \(-0.987048\pi\)
0.464357 0.885648i \(-0.346285\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.82343 8.35442i 0.466298 0.807653i −0.532961 0.846140i \(-0.678921\pi\)
0.999259 + 0.0384875i \(0.0122540\pi\)
\(108\) 0 0
\(109\) −5.86131 10.1521i −0.561412 0.972394i −0.997374 0.0724288i \(-0.976925\pi\)
0.435962 0.899965i \(-0.356408\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.88981 + 5.00530i −0.271851 + 0.470859i −0.969336 0.245740i \(-0.920969\pi\)
0.697485 + 0.716599i \(0.254302\pi\)
\(114\) 0 0
\(115\) 12.0828 20.9280i 1.12672 1.95154i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.550795 + 7.63237i −0.0504913 + 0.699659i
\(120\) 0 0
\(121\) 5.12254 + 8.87250i 0.465686 + 0.806591i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −29.7736 −2.66303
\(126\) 0 0
\(127\) 6.47468 0.574535 0.287268 0.957850i \(-0.407253\pi\)
0.287268 + 0.957850i \(0.407253\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.86514 15.3549i −0.774551 1.34156i −0.935046 0.354525i \(-0.884643\pi\)
0.160495 0.987037i \(-0.448691\pi\)
\(132\) 0 0
\(133\) −9.55571 + 4.63431i −0.828585 + 0.401846i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.36116 2.35760i 0.116292 0.201423i −0.802004 0.597319i \(-0.796233\pi\)
0.918295 + 0.395896i \(0.129566\pi\)
\(138\) 0 0
\(139\) 8.65431 14.9897i 0.734049 1.27141i −0.221090 0.975253i \(-0.570962\pi\)
0.955139 0.296157i \(-0.0957051\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.48694 4.30751i −0.207968 0.360212i
\(144\) 0 0
\(145\) −3.73241 + 6.46472i −0.309959 + 0.536865i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.42343 5.92955i −0.280458 0.485767i 0.691040 0.722817i \(-0.257153\pi\)
−0.971498 + 0.237049i \(0.923820\pi\)
\(150\) 0 0
\(151\) −4.64083 + 8.03816i −0.377666 + 0.654136i −0.990722 0.135903i \(-0.956606\pi\)
0.613057 + 0.790039i \(0.289940\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.13678 10.6292i −0.492918 0.853759i
\(156\) 0 0
\(157\) 13.6768 1.09153 0.545764 0.837939i \(-0.316240\pi\)
0.545764 + 0.837939i \(0.316240\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.11020 15.3841i 0.0874963 1.21244i
\(162\) 0 0
\(163\) −1.65003 + 2.85793i −0.129240 + 0.223850i −0.923382 0.383882i \(-0.874587\pi\)
0.794142 + 0.607732i \(0.207920\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.96228 + 10.3270i −0.461375 + 0.799125i −0.999030 0.0440399i \(-0.985977\pi\)
0.537655 + 0.843165i \(0.319310\pi\)
\(168\) 0 0
\(169\) −9.88562 17.1224i −0.760432 1.31711i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.63389 0.732451 0.366225 0.930526i \(-0.380650\pi\)
0.366225 + 0.930526i \(0.380650\pi\)
\(174\) 0 0
\(175\) −29.0016 + 14.0651i −2.19231 + 1.06322i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.5285 + 19.9680i 0.861682 + 1.49248i 0.870304 + 0.492515i \(0.163922\pi\)
−0.00862183 + 0.999963i \(0.502744\pi\)
\(180\) 0 0
\(181\) −11.8325 −0.879504 −0.439752 0.898119i \(-0.644934\pi\)
−0.439752 + 0.898119i \(0.644934\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −21.9634 −1.61478
\(186\) 0 0
\(187\) 2.51297 0.183767
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.28508 0.454772 0.227386 0.973805i \(-0.426982\pi\)
0.227386 + 0.973805i \(0.426982\pi\)
\(192\) 0 0
\(193\) 13.7312 0.988392 0.494196 0.869351i \(-0.335463\pi\)
0.494196 + 0.869351i \(0.335463\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.161495 0.0115061 0.00575303 0.999983i \(-0.498169\pi\)
0.00575303 + 0.999983i \(0.498169\pi\)
\(198\) 0 0
\(199\) −12.4140 21.5016i −0.880003 1.52421i −0.851336 0.524621i \(-0.824207\pi\)
−0.0286672 0.999589i \(-0.509126\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.342945 + 4.75220i −0.0240700 + 0.333539i
\(204\) 0 0
\(205\) 48.8573 3.41235
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.74382 + 3.02039i 0.120623 + 0.208925i
\(210\) 0 0
\(211\) 9.44607 16.3611i 0.650295 1.12634i −0.332757 0.943013i \(-0.607979\pi\)
0.983051 0.183331i \(-0.0586879\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.31953 14.4098i 0.567387 0.982743i
\(216\) 0 0
\(217\) −6.48477 4.39508i −0.440215 0.298357i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.5571 1.11375
\(222\) 0 0
\(223\) 7.04717 + 12.2061i 0.471914 + 0.817378i 0.999484 0.0321333i \(-0.0102301\pi\)
−0.527570 + 0.849512i \(0.676897\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.9891 22.4978i 0.862118 1.49323i −0.00776306 0.999970i \(-0.502471\pi\)
0.869881 0.493262i \(-0.164196\pi\)
\(228\) 0 0
\(229\) −12.4579 21.5777i −0.823239 1.42589i −0.903258 0.429098i \(-0.858831\pi\)
0.0800190 0.996793i \(-0.474502\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.05923 5.29874i 0.200417 0.347132i −0.748246 0.663421i \(-0.769104\pi\)
0.948663 + 0.316289i \(0.102437\pi\)
\(234\) 0 0
\(235\) −4.85893 8.41591i −0.316961 0.548993i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.71988 13.3712i 0.499357 0.864912i −0.500643 0.865654i \(-0.666903\pi\)
1.00000 0.000742080i \(0.000236211\pi\)
\(240\) 0 0
\(241\) −4.92259 + 8.52617i −0.317092 + 0.549219i −0.979880 0.199588i \(-0.936040\pi\)
0.662788 + 0.748807i \(0.269373\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −17.9660 + 22.7854i −1.14780 + 1.45571i
\(246\) 0 0
\(247\) 11.4895 + 19.9003i 0.731057 + 1.26623i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −26.8843 −1.69692 −0.848461 0.529258i \(-0.822470\pi\)
−0.848461 + 0.529258i \(0.822470\pi\)
\(252\) 0 0
\(253\) −5.06524 −0.318449
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.50636 + 9.53729i 0.343477 + 0.594920i 0.985076 0.172121i \(-0.0550619\pi\)
−0.641599 + 0.767040i \(0.721729\pi\)
\(258\) 0 0
\(259\) −12.6134 + 6.11724i −0.783761 + 0.380107i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.65547 + 6.33146i −0.225406 + 0.390415i −0.956441 0.291925i \(-0.905704\pi\)
0.731035 + 0.682340i \(0.239038\pi\)
\(264\) 0 0
\(265\) −4.52309 + 7.83423i −0.277851 + 0.481253i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.08048 + 3.60349i 0.126849 + 0.219709i 0.922454 0.386107i \(-0.126180\pi\)
−0.795605 + 0.605815i \(0.792847\pi\)
\(270\) 0 0
\(271\) −4.18300 + 7.24516i −0.254099 + 0.440112i −0.964650 0.263533i \(-0.915112\pi\)
0.710551 + 0.703645i \(0.248446\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.29250 + 9.16689i 0.319150 + 0.552784i
\(276\) 0 0
\(277\) 1.39928 2.42362i 0.0840745 0.145621i −0.820922 0.571040i \(-0.806540\pi\)
0.904996 + 0.425419i \(0.139873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.44314 + 9.42779i 0.324710 + 0.562415i 0.981454 0.191699i \(-0.0613998\pi\)
−0.656743 + 0.754114i \(0.728067\pi\)
\(282\) 0 0
\(283\) −2.02424 −0.120328 −0.0601642 0.998188i \(-0.519162\pi\)
−0.0601642 + 0.998188i \(0.519162\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 28.0585 13.6078i 1.65624 0.803241i
\(288\) 0 0
\(289\) 4.31739 7.47794i 0.253964 0.439879i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.65448 16.7220i 0.564021 0.976912i −0.433120 0.901336i \(-0.642587\pi\)
0.997140 0.0755757i \(-0.0240795\pi\)
\(294\) 0 0
\(295\) 6.33035 + 10.9645i 0.368567 + 0.638377i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −33.3732 −1.93002
\(300\) 0 0
\(301\) 0.764425 10.5926i 0.0440607 0.610550i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11.6753 + 20.2223i 0.668527 + 1.15792i
\(306\) 0 0
\(307\) −13.1378 −0.749813 −0.374907 0.927063i \(-0.622325\pi\)
−0.374907 + 0.927063i \(0.622325\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.5321 0.767336 0.383668 0.923471i \(-0.374661\pi\)
0.383668 + 0.923471i \(0.374661\pi\)
\(312\) 0 0
\(313\) −25.2000 −1.42439 −0.712194 0.701983i \(-0.752298\pi\)
−0.712194 + 0.701983i \(0.752298\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.2978 0.690711 0.345356 0.938472i \(-0.387758\pi\)
0.345356 + 0.938472i \(0.387758\pi\)
\(318\) 0 0
\(319\) 1.56467 0.0876047
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −11.6097 −0.645982
\(324\) 0 0
\(325\) 34.8705 + 60.3975i 1.93427 + 3.35025i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.13445 3.47990i −0.283072 0.191853i
\(330\) 0 0
\(331\) −19.9257 −1.09522 −0.547608 0.836735i \(-0.684461\pi\)
−0.547608 + 0.836735i \(0.684461\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.20383 9.01330i −0.284316 0.492449i
\(336\) 0 0
\(337\) −0.966380 + 1.67382i −0.0526421 + 0.0911788i −0.891146 0.453717i \(-0.850098\pi\)
0.838504 + 0.544896i \(0.183431\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.28631 + 2.22795i −0.0696574 + 0.120650i
\(342\) 0 0
\(343\) −3.97155 + 18.0894i −0.214444 + 0.976736i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.9648 −0.910720 −0.455360 0.890307i \(-0.650489\pi\)
−0.455360 + 0.890307i \(0.650489\pi\)
\(348\) 0 0
\(349\) −6.25767 10.8386i −0.334966 0.580177i 0.648513 0.761204i \(-0.275391\pi\)
−0.983478 + 0.181027i \(0.942058\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.1929 28.0468i 0.861859 1.49278i −0.00827416 0.999966i \(-0.502634\pi\)
0.870133 0.492817i \(-0.164033\pi\)
\(354\) 0 0
\(355\) 2.26211 + 3.91808i 0.120060 + 0.207950i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.98559 + 15.5635i −0.474242 + 0.821410i −0.999565 0.0294922i \(-0.990611\pi\)
0.525323 + 0.850903i \(0.323944\pi\)
\(360\) 0 0
\(361\) 1.44368 + 2.50052i 0.0759830 + 0.131606i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.99816 + 5.19297i −0.156931 + 0.271812i
\(366\) 0 0
\(367\) −4.08420 + 7.07404i −0.213194 + 0.369262i −0.952712 0.303874i \(-0.901720\pi\)
0.739519 + 0.673136i \(0.235053\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.415596 + 5.75892i −0.0215767 + 0.298988i
\(372\) 0 0
\(373\) 2.58080 + 4.47008i 0.133629 + 0.231452i 0.925073 0.379790i \(-0.124004\pi\)
−0.791444 + 0.611242i \(0.790670\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.3091 0.530945
\(378\) 0 0
\(379\) 21.0017 1.07878 0.539392 0.842055i \(-0.318654\pi\)
0.539392 + 0.842055i \(0.318654\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.7794 + 25.5988i 0.755194 + 1.30804i 0.945278 + 0.326267i \(0.105791\pi\)
−0.190083 + 0.981768i \(0.560876\pi\)
\(384\) 0 0
\(385\) 7.88794 + 5.34608i 0.402006 + 0.272462i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.26895 + 14.3222i −0.419252 + 0.726166i −0.995864 0.0908518i \(-0.971041\pi\)
0.576612 + 0.817018i \(0.304374\pi\)
\(390\) 0 0
\(391\) 8.43063 14.6023i 0.426355 0.738469i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.41315 7.64379i −0.222049 0.384601i
\(396\) 0 0
\(397\) 15.4394 26.7418i 0.774881 1.34213i −0.159980 0.987120i \(-0.551143\pi\)
0.934861 0.355014i \(-0.115524\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.31614 + 9.20782i 0.265475 + 0.459817i 0.967688 0.252150i \(-0.0811378\pi\)
−0.702213 + 0.711967i \(0.747804\pi\)
\(402\) 0 0
\(403\) −8.47504 + 14.6792i −0.422172 + 0.731223i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.30183 + 3.98688i 0.114097 + 0.197622i
\(408\) 0 0
\(409\) −14.7956 −0.731598 −0.365799 0.930694i \(-0.619204\pi\)
−0.365799 + 0.930694i \(0.619204\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.68931 + 4.53371i 0.329159 + 0.223089i
\(414\) 0 0
\(415\) 9.06904 15.7080i 0.445182 0.771078i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.56134 2.70432i 0.0762765 0.132115i −0.825364 0.564601i \(-0.809030\pi\)
0.901641 + 0.432486i \(0.142363\pi\)
\(420\) 0 0
\(421\) −0.644580 1.11645i −0.0314149 0.0544122i 0.849891 0.526959i \(-0.176668\pi\)
−0.881305 + 0.472547i \(0.843335\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −35.2355 −1.70917
\(426\) 0 0
\(427\) 12.3374 + 8.36171i 0.597048 + 0.404652i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.5916 + 20.0773i 0.558350 + 0.967090i 0.997634 + 0.0687421i \(0.0218986\pi\)
−0.439285 + 0.898348i \(0.644768\pi\)
\(432\) 0 0
\(433\) 35.6437 1.71293 0.856464 0.516207i \(-0.172657\pi\)
0.856464 + 0.516207i \(0.172657\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 23.4010 1.11942
\(438\) 0 0
\(439\) 16.0124 0.764230 0.382115 0.924115i \(-0.375196\pi\)
0.382115 + 0.924115i \(0.375196\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.3556 −0.682054 −0.341027 0.940054i \(-0.610775\pi\)
−0.341027 + 0.940054i \(0.610775\pi\)
\(444\) 0 0
\(445\) −48.3639 −2.29267
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.72475 −0.270168 −0.135084 0.990834i \(-0.543130\pi\)
−0.135084 + 0.990834i \(0.543130\pi\)
\(450\) 0 0
\(451\) −5.12040 8.86879i −0.241110 0.417615i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 51.9710 + 35.2235i 2.43644 + 1.65131i
\(456\) 0 0
\(457\) 14.6635 0.685930 0.342965 0.939348i \(-0.388569\pi\)
0.342965 + 0.939348i \(0.388569\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.9720 + 22.4681i 0.604164 + 1.04644i 0.992183 + 0.124792i \(0.0398263\pi\)
−0.388018 + 0.921652i \(0.626840\pi\)
\(462\) 0 0
\(463\) −6.46277 + 11.1939i −0.300351 + 0.520223i −0.976215 0.216803i \(-0.930437\pi\)
0.675865 + 0.737026i \(0.263770\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.3104 28.2504i 0.754755 1.30727i −0.190741 0.981640i \(-0.561089\pi\)
0.945496 0.325633i \(-0.105577\pi\)
\(468\) 0 0
\(469\) −5.49892 3.72692i −0.253916 0.172093i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.48765 −0.160362
\(474\) 0 0
\(475\) −24.4509 42.3503i −1.12189 1.94316i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.6739 + 21.9518i −0.579084 + 1.00300i 0.416500 + 0.909136i \(0.363256\pi\)
−0.995585 + 0.0938679i \(0.970077\pi\)
\(480\) 0 0
\(481\) 15.1660 + 26.2682i 0.691509 + 1.19773i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.5302 28.6311i 0.750597 1.30007i
\(486\) 0 0
\(487\) 17.7383 + 30.7236i 0.803799 + 1.39222i 0.917099 + 0.398660i \(0.130525\pi\)
−0.113299 + 0.993561i \(0.536142\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13.2554 + 22.9590i −0.598208 + 1.03613i 0.394877 + 0.918734i \(0.370787\pi\)
−0.993085 + 0.117393i \(0.962546\pi\)
\(492\) 0 0
\(493\) −2.60425 + 4.51069i −0.117289 + 0.203151i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.39038 + 1.62009i 0.107223 + 0.0726710i
\(498\) 0 0
\(499\) 3.00130 + 5.19841i 0.134357 + 0.232713i 0.925352 0.379110i \(-0.123770\pi\)
−0.790995 + 0.611823i \(0.790437\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.9460 1.02311 0.511556 0.859250i \(-0.329069\pi\)
0.511556 + 0.859250i \(0.329069\pi\)
\(504\) 0 0
\(505\) −15.6013 −0.694248
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.9348 + 25.8679i 0.661975 + 1.14657i 0.980096 + 0.198524i \(0.0636147\pi\)
−0.318121 + 0.948050i \(0.603052\pi\)
\(510\) 0 0
\(511\) −0.275480 + 3.81734i −0.0121865 + 0.168869i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 22.4992 38.9698i 0.991434 1.71721i
\(516\) 0 0
\(517\) −1.01846 + 1.76402i −0.0447918 + 0.0775817i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15.5980 27.0166i −0.683362 1.18362i −0.973949 0.226769i \(-0.927184\pi\)
0.290587 0.956849i \(-0.406149\pi\)
\(522\) 0 0
\(523\) −3.07911 + 5.33318i −0.134640 + 0.233203i −0.925460 0.378846i \(-0.876321\pi\)
0.790820 + 0.612049i \(0.209654\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.28187 7.41642i −0.186521 0.323064i
\(528\) 0 0
\(529\) −5.49310 + 9.51433i −0.238830 + 0.413666i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −33.7366 58.4335i −1.46129 2.53103i
\(534\) 0 0
\(535\) 39.9881 1.72884
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.01899 + 0.873275i 0.259256 + 0.0376146i
\(540\) 0 0
\(541\) −13.5137 + 23.4064i −0.580999 + 1.00632i 0.414362 + 0.910112i \(0.364005\pi\)
−0.995361 + 0.0962083i \(0.969329\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 24.2963 42.0824i 1.04074 1.80261i
\(546\) 0 0
\(547\) 14.9426 + 25.8814i 0.638900 + 1.10661i 0.985675 + 0.168658i \(0.0539434\pi\)
−0.346775 + 0.937948i \(0.612723\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.22865 −0.307951
\(552\) 0 0
\(553\) −4.66339 3.16064i −0.198308 0.134404i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.6650 18.4722i −0.451889 0.782694i 0.546615 0.837384i \(-0.315916\pi\)
−0.998503 + 0.0546900i \(0.982583\pi\)
\(558\) 0 0
\(559\) −22.9789 −0.971905
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −31.4635 −1.32603 −0.663014 0.748607i \(-0.730723\pi\)
−0.663014 + 0.748607i \(0.730723\pi\)
\(564\) 0 0
\(565\) −23.9577 −1.00791
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −29.3391 −1.22996 −0.614980 0.788543i \(-0.710836\pi\)
−0.614980 + 0.788543i \(0.710836\pi\)
\(570\) 0 0
\(571\) −27.4947 −1.15062 −0.575308 0.817937i \(-0.695118\pi\)
−0.575308 + 0.817937i \(0.695118\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 71.0221 2.96183
\(576\) 0 0
\(577\) −20.2293 35.0381i −0.842156 1.45866i −0.888068 0.459712i \(-0.847953\pi\)
0.0459122 0.998945i \(-0.485381\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.833292 11.5470i 0.0345708 0.479048i
\(582\) 0 0
\(583\) 1.89613 0.0785299
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.6559 + 23.6528i 0.563641 + 0.976255i 0.997175 + 0.0751177i \(0.0239333\pi\)
−0.433533 + 0.901137i \(0.642733\pi\)
\(588\) 0 0
\(589\) 5.94263 10.2929i 0.244862 0.424113i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.2898 + 24.7507i −0.586813 + 1.01639i 0.407833 + 0.913056i \(0.366284\pi\)
−0.994647 + 0.103334i \(0.967049\pi\)
\(594\) 0 0
\(595\) −28.5406 + 13.8416i −1.17005 + 0.567449i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −39.9838 −1.63370 −0.816848 0.576854i \(-0.804280\pi\)
−0.816848 + 0.576854i \(0.804280\pi\)
\(600\) 0 0
\(601\) −12.6948 21.9880i −0.517831 0.896910i −0.999785 0.0207133i \(-0.993406\pi\)
0.481954 0.876196i \(-0.339927\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −21.2340 + 36.7783i −0.863283 + 1.49525i
\(606\) 0 0
\(607\) 18.6469 + 32.2975i 0.756856 + 1.31091i 0.944446 + 0.328666i \(0.106599\pi\)
−0.187590 + 0.982247i \(0.560068\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.71029 + 11.6226i −0.271469 + 0.470199i
\(612\) 0 0
\(613\) −11.7319 20.3203i −0.473848 0.820729i 0.525704 0.850668i \(-0.323802\pi\)
−0.999552 + 0.0299390i \(0.990469\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.56888 + 11.3776i −0.264453 + 0.458047i −0.967420 0.253176i \(-0.918525\pi\)
0.702967 + 0.711223i \(0.251858\pi\)
\(618\) 0 0
\(619\) −10.7776 + 18.6674i −0.433190 + 0.750308i −0.997146 0.0754975i \(-0.975946\pi\)
0.563956 + 0.825805i \(0.309279\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −27.7751 + 13.4703i −1.11279 + 0.539677i
\(624\) 0 0
\(625\) −31.2520 54.1300i −1.25008 2.16520i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.3247 −0.611036
\(630\) 0 0
\(631\) −6.15223 −0.244916 −0.122458 0.992474i \(-0.539078\pi\)
−0.122458 + 0.992474i \(0.539078\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 13.4194 + 23.2431i 0.532533 + 0.922375i
\(636\) 0 0
\(637\) 39.6571 + 5.75372i 1.57127 + 0.227971i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.23682 + 3.87429i −0.0883491 + 0.153025i −0.906813 0.421532i \(-0.861492\pi\)
0.818464 + 0.574557i \(0.194826\pi\)
\(642\) 0 0
\(643\) 8.98009 15.5540i 0.354140 0.613389i −0.632830 0.774291i \(-0.718107\pi\)
0.986970 + 0.160902i \(0.0514402\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.02992 10.4441i −0.237061 0.410601i 0.722809 0.691048i \(-0.242851\pi\)
−0.959870 + 0.280447i \(0.909517\pi\)
\(648\) 0 0
\(649\) 1.32688 2.29822i 0.0520845 0.0902131i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.1366 41.8059i −0.944540 1.63599i −0.756670 0.653797i \(-0.773175\pi\)
−0.187870 0.982194i \(-0.560158\pi\)
\(654\) 0 0
\(655\) 36.7478 63.6490i 1.43585 2.48697i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.5795 25.2525i −0.567937 0.983696i −0.996770 0.0803122i \(-0.974408\pi\)
0.428832 0.903384i \(-0.358925\pi\)
\(660\) 0 0
\(661\) −14.5486 −0.565873 −0.282937 0.959139i \(-0.591309\pi\)
−0.282937 + 0.959139i \(0.591309\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −36.4416 24.6985i −1.41315 0.957766i
\(666\) 0 0
\(667\) 5.24922 9.09192i 0.203251 0.352040i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.44722 4.23871i 0.0944738 0.163633i
\(672\) 0 0
\(673\) 11.6825 + 20.2348i 0.450329 + 0.779993i 0.998406 0.0564349i \(-0.0179733\pi\)
−0.548077 + 0.836428i \(0.684640\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.7175 0.680939 0.340469 0.940256i \(-0.389414\pi\)
0.340469 + 0.940256i \(0.389414\pi\)
\(678\) 0 0
\(679\) 1.51885 21.0467i 0.0582880 0.807698i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.7769 37.7186i −0.833269 1.44326i −0.895432 0.445198i \(-0.853133\pi\)
0.0621637 0.998066i \(-0.480200\pi\)
\(684\) 0 0
\(685\) 11.2846 0.431161
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.4930 0.475945
\(690\) 0 0
\(691\) 23.5344 0.895291 0.447645 0.894211i \(-0.352263\pi\)
0.447645 + 0.894211i \(0.352263\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 71.7476 2.72154
\(696\) 0 0
\(697\) 34.0897 1.29124
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −45.1804 −1.70644 −0.853219 0.521552i \(-0.825353\pi\)
−0.853219 + 0.521552i \(0.825353\pi\)
\(702\) 0 0
\(703\) −10.6343 18.4191i −0.401079 0.694689i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.95973 + 4.34527i −0.336965 + 0.163421i
\(708\) 0 0
\(709\) −27.0127 −1.01448 −0.507242 0.861804i \(-0.669335\pi\)
−0.507242 + 0.861804i \(0.669335\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.63071 + 14.9488i 0.323223 + 0.559838i
\(714\) 0 0
\(715\) 10.3089 17.8555i 0.385529 0.667757i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.2096 19.4156i 0.418048 0.724080i −0.577695 0.816253i \(-0.696048\pi\)
0.995743 + 0.0921724i \(0.0293811\pi\)
\(720\) 0 0
\(721\) 2.06730 28.6466i 0.0769902 1.06686i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −21.9389 −0.814792
\(726\) 0 0
\(727\) 21.9820 + 38.0740i 0.815268 + 1.41208i 0.909136 + 0.416500i \(0.136744\pi\)
−0.0938680 + 0.995585i \(0.529923\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.80486 10.0543i 0.214701 0.371872i
\(732\) 0 0
\(733\) −0.433386 0.750646i −0.0160075 0.0277257i 0.857911 0.513799i \(-0.171762\pi\)
−0.873918 + 0.486073i \(0.838429\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.09075 + 1.88924i −0.0401785 + 0.0695911i
\(738\) 0 0
\(739\) 13.0442 + 22.5932i 0.479838 + 0.831103i 0.999733 0.0231270i \(-0.00736222\pi\)
−0.519895 + 0.854230i \(0.674029\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.5842 + 39.1170i −0.828533 + 1.43506i 0.0706551 + 0.997501i \(0.477491\pi\)
−0.899189 + 0.437561i \(0.855842\pi\)
\(744\) 0 0
\(745\) 14.1908 24.5791i 0.519910 0.900510i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 22.9650 11.1375i 0.839121 0.406955i
\(750\) 0 0
\(751\) 10.2994 + 17.8391i 0.375831 + 0.650958i 0.990451 0.137865i \(-0.0440241\pi\)
−0.614620 + 0.788823i \(0.710691\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −38.4743 −1.40022
\(756\) 0 0
\(757\) −39.0856 −1.42059 −0.710294 0.703905i \(-0.751438\pi\)
−0.710294 + 0.703905i \(0.751438\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.4436 25.0171i −0.523581 0.906868i −0.999623 0.0274459i \(-0.991263\pi\)
0.476043 0.879422i \(-0.342071\pi\)
\(762\) 0 0
\(763\) 2.23242 30.9347i 0.0808191 1.11991i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.74236 15.1422i 0.315668 0.546753i
\(768\) 0 0
\(769\) −11.1407 + 19.2962i −0.401742 + 0.695838i −0.993936 0.109957i \(-0.964929\pi\)
0.592194 + 0.805796i \(0.298262\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21.3593 + 36.9955i 0.768242 + 1.33063i 0.938515 + 0.345238i \(0.112202\pi\)
−0.170273 + 0.985397i \(0.554465\pi\)
\(774\) 0 0
\(775\) 18.0359 31.2391i 0.647868 1.12214i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 23.6558 + 40.9731i 0.847558 + 1.46801i
\(780\) 0 0
\(781\) 0.474151 0.821254i 0.0169665 0.0293868i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 28.3465 + 49.0976i 1.01173 + 1.75237i
\(786\) 0 0
\(787\) −0.286769 −0.0102222 −0.00511110 0.999987i \(-0.501627\pi\)
−0.00511110 + 0.999987i \(0.501627\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.7588 + 6.67270i −0.489205 + 0.237254i
\(792\) 0 0
\(793\) 16.1239 27.9274i 0.572577 0.991732i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.457746 0.792840i 0.0162142 0.0280838i −0.857804 0.513976i \(-0.828172\pi\)
0.874019 + 0.485892i \(0.161505\pi\)
\(798\) 0 0
\(799\) −3.39026 5.87211i −0.119939 0.207740i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.25687 0.0443538
\(804\) 0 0
\(805\) 57.5276 27.8996i 2.02758 0.983333i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14.3721 + 24.8932i 0.505297 + 0.875199i 0.999981 + 0.00612685i \(0.00195025\pi\)
−0.494685 + 0.869073i \(0.664716\pi\)
\(810\) 0 0
\(811\) 14.3005 0.502157 0.251079 0.967967i \(-0.419215\pi\)
0.251079 + 0.967967i \(0.419215\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.6794 −0.479167
\(816\) 0 0
\(817\) 16.1126 0.563710
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −35.6250 −1.24332 −0.621660 0.783287i \(-0.713542\pi\)
−0.621660 + 0.783287i \(0.713542\pi\)
\(822\) 0 0
\(823\) −22.4313 −0.781907 −0.390953 0.920411i \(-0.627855\pi\)
−0.390953 + 0.920411i \(0.627855\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.6728 0.927505 0.463753 0.885965i \(-0.346503\pi\)
0.463753 + 0.885965i \(0.346503\pi\)
\(828\) 0 0
\(829\) −16.0078 27.7263i −0.555973 0.962973i −0.997827 0.0658866i \(-0.979012\pi\)
0.441854 0.897087i \(-0.354321\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12.5356 + 15.8983i −0.434331 + 0.550843i
\(834\) 0 0
\(835\) −49.4297 −1.71058
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.10375 15.7682i −0.314296 0.544377i 0.664991 0.746851i \(-0.268435\pi\)
−0.979288 + 0.202474i \(0.935102\pi\)
\(840\) 0 0
\(841\) 12.8785 22.3062i 0.444086 0.769180i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 40.9778 70.9757i 1.40968 2.44164i
\(846\) 0 0
\(847\) −1.95104 + 27.0356i −0.0670386 + 0.928956i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30.8891 1.05886
\(852\) 0 0
\(853\) 20.9242 + 36.2419i 0.716432 + 1.24090i 0.962404 + 0.271621i \(0.0875596\pi\)
−0.245972 + 0.969277i \(0.579107\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.85704 13.6088i 0.268391 0.464867i −0.700055 0.714089i \(-0.746841\pi\)
0.968447 + 0.249221i \(0.0801746\pi\)
\(858\) 0 0
\(859\) −12.1023 20.9618i −0.412924 0.715206i 0.582284 0.812986i \(-0.302159\pi\)
−0.995208 + 0.0977797i \(0.968826\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.0542 + 45.1272i −0.886896 + 1.53615i −0.0433714 + 0.999059i \(0.513810\pi\)
−0.843525 + 0.537090i \(0.819523\pi\)
\(864\) 0 0
\(865\) 19.9672 + 34.5842i 0.678904 + 1.17590i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.925022 + 1.60219i −0.0313792 + 0.0543504i
\(870\) 0 0
\(871\) −7.18662 + 12.4476i −0.243509 + 0.421770i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −65.2078 44.1949i −2.20443 1.49406i
\(876\) 0 0
\(877\) 6.98841 + 12.1043i 0.235982 + 0.408733i 0.959558 0.281512i \(-0.0908360\pi\)
−0.723576 + 0.690245i \(0.757503\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −28.1210 −0.947421 −0.473710 0.880681i \(-0.657086\pi\)
−0.473710 + 0.880681i \(0.657086\pi\)
\(882\) 0 0
\(883\) −35.1633 −1.18334 −0.591670 0.806180i \(-0.701531\pi\)
−0.591670 + 0.806180i \(0.701531\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.4610 23.3151i −0.451975 0.782844i 0.546533 0.837437i \(-0.315947\pi\)
−0.998509 + 0.0545932i \(0.982614\pi\)
\(888\) 0 0
\(889\) 14.1804 + 9.61081i 0.475594 + 0.322336i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.70520 8.14965i 0.157454 0.272718i
\(894\) 0 0
\(895\) −47.7880 + 82.7713i −1.59738 + 2.76674i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.66605 4.61774i −0.0889179 0.154010i
\(900\) 0 0
\(901\) −3.15594 + 5.46625i −0.105140 + 0.182107i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −24.5241 42.4769i −0.815207 1.41198i
\(906\) 0 0
\(907\) 22.3571 38.7236i 0.742355 1.28580i −0.209065 0.977902i \(-0.567042\pi\)
0.951420 0.307895i \(-0.0996246\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13.7822 + 23.8715i 0.456626 + 0.790899i 0.998780 0.0493800i \(-0.0157246\pi\)
−0.542154 + 0.840279i \(0.682391\pi\)
\(912\) 0 0
\(913\) −3.80185 −0.125823
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.37650 46.7882i 0.111502 1.54508i
\(918\) 0 0
\(919\) −21.3836 + 37.0376i −0.705381 + 1.22176i 0.261173 + 0.965292i \(0.415891\pi\)
−0.966554 + 0.256464i \(0.917442\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.12402 5.41096i 0.102828 0.178104i
\(924\) 0 0
\(925\) −32.2750 55.9019i −1.06119 1.83804i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −47.9497 −1.57318 −0.786589 0.617477i \(-0.788155\pi\)
−0.786589 + 0.617477i \(0.788155\pi\)
\(930\) 0 0
\(931\) −27.8072 4.03446i −0.911346 0.132224i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.20838 + 9.02118i 0.170332 + 0.295024i
\(936\) 0 0
\(937\) 33.9136 1.10791 0.553955 0.832547i \(-0.313118\pi\)
0.553955 + 0.832547i \(0.313118\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8.54790 0.278654 0.139327 0.990246i \(-0.455506\pi\)
0.139327 + 0.990246i \(0.455506\pi\)
\(942\) 0 0
\(943\) −68.7125 −2.23759
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.823127 −0.0267480 −0.0133740 0.999911i \(-0.504257\pi\)
−0.0133740 + 0.999911i \(0.504257\pi\)
\(948\) 0 0
\(949\) 8.28106 0.268815
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 44.6726 1.44709 0.723544 0.690278i \(-0.242512\pi\)
0.723544 + 0.690278i \(0.242512\pi\)
\(954\) 0 0
\(955\) 13.0264 + 22.5625i 0.421526 + 0.730104i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.48065 3.14298i 0.209271 0.101492i
\(960\) 0 0
\(961\) −22.2330 −0.717194
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 28.4592 + 49.2928i 0.916135 + 1.58679i
\(966\) 0 0
\(967\) −18.2289 + 31.5735i −0.586203 + 1.01533i 0.408521 + 0.912749i \(0.366045\pi\)
−0.994724 + 0.102585i \(0.967289\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8.63674 + 14.9593i −0.277166 + 0.480066i −0.970679 0.240378i \(-0.922729\pi\)
0.693513 + 0.720444i \(0.256062\pi\)
\(972\) 0 0
\(973\) 41.2043 19.9832i 1.32095 0.640631i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.03550 −0.289071 −0.144536 0.989500i \(-0.546169\pi\)
−0.144536 + 0.989500i \(0.546169\pi\)
\(978\) 0 0
\(979\) 5.06868 + 8.77921i 0.161996 + 0.280585i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −11.4286 + 19.7950i −0.364517 + 0.631362i −0.988698 0.149918i \(-0.952099\pi\)
0.624182 + 0.781279i \(0.285432\pi\)
\(984\) 0 0
\(985\) 0.334715 + 0.579743i 0.0106649 + 0.0184722i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −11.7005 + 20.2659i −0.372055 + 0.644417i
\(990\) 0 0
\(991\) −4.37884 7.58437i −0.139098 0.240925i 0.788057 0.615602i \(-0.211087\pi\)
−0.927156 + 0.374677i \(0.877754\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 51.4584 89.1285i 1.63134 2.82556i
\(996\) 0 0
\(997\) −3.46535 + 6.00216i −0.109749 + 0.190090i −0.915668 0.401934i \(-0.868338\pi\)
0.805920 + 0.592025i \(0.201671\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.i.b.37.7 14
3.2 odd 2 252.2.i.b.121.7 yes 14
4.3 odd 2 3024.2.q.j.2305.7 14
7.2 even 3 5292.2.j.h.1765.7 14
7.3 odd 6 5292.2.l.i.361.7 14
7.4 even 3 756.2.l.b.361.1 14
7.5 odd 6 5292.2.j.g.1765.1 14
7.6 odd 2 5292.2.i.i.1549.1 14
9.2 odd 6 252.2.l.b.205.3 yes 14
9.4 even 3 2268.2.k.f.1297.7 14
9.5 odd 6 2268.2.k.e.1297.1 14
9.7 even 3 756.2.l.b.289.1 14
12.11 even 2 1008.2.q.j.625.1 14
21.2 odd 6 1764.2.j.g.589.3 14
21.5 even 6 1764.2.j.h.589.5 14
21.11 odd 6 252.2.l.b.193.3 yes 14
21.17 even 6 1764.2.l.i.949.5 14
21.20 even 2 1764.2.i.i.373.1 14
28.11 odd 6 3024.2.t.j.1873.1 14
36.7 odd 6 3024.2.t.j.289.1 14
36.11 even 6 1008.2.t.j.961.5 14
63.2 odd 6 1764.2.j.g.1177.3 14
63.4 even 3 2268.2.k.f.1621.7 14
63.11 odd 6 252.2.i.b.25.7 14
63.16 even 3 5292.2.j.h.3529.7 14
63.20 even 6 1764.2.l.i.961.5 14
63.25 even 3 inner 756.2.i.b.613.7 14
63.32 odd 6 2268.2.k.e.1621.1 14
63.34 odd 6 5292.2.l.i.3313.7 14
63.38 even 6 1764.2.i.i.1537.1 14
63.47 even 6 1764.2.j.h.1177.5 14
63.52 odd 6 5292.2.i.i.2125.1 14
63.61 odd 6 5292.2.j.g.3529.1 14
84.11 even 6 1008.2.t.j.193.5 14
252.11 even 6 1008.2.q.j.529.1 14
252.151 odd 6 3024.2.q.j.2881.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.7 14 63.11 odd 6
252.2.i.b.121.7 yes 14 3.2 odd 2
252.2.l.b.193.3 yes 14 21.11 odd 6
252.2.l.b.205.3 yes 14 9.2 odd 6
756.2.i.b.37.7 14 1.1 even 1 trivial
756.2.i.b.613.7 14 63.25 even 3 inner
756.2.l.b.289.1 14 9.7 even 3
756.2.l.b.361.1 14 7.4 even 3
1008.2.q.j.529.1 14 252.11 even 6
1008.2.q.j.625.1 14 12.11 even 2
1008.2.t.j.193.5 14 84.11 even 6
1008.2.t.j.961.5 14 36.11 even 6
1764.2.i.i.373.1 14 21.20 even 2
1764.2.i.i.1537.1 14 63.38 even 6
1764.2.j.g.589.3 14 21.2 odd 6
1764.2.j.g.1177.3 14 63.2 odd 6
1764.2.j.h.589.5 14 21.5 even 6
1764.2.j.h.1177.5 14 63.47 even 6
1764.2.l.i.949.5 14 21.17 even 6
1764.2.l.i.961.5 14 63.20 even 6
2268.2.k.e.1297.1 14 9.5 odd 6
2268.2.k.e.1621.1 14 63.32 odd 6
2268.2.k.f.1297.7 14 9.4 even 3
2268.2.k.f.1621.7 14 63.4 even 3
3024.2.q.j.2305.7 14 4.3 odd 2
3024.2.q.j.2881.7 14 252.151 odd 6
3024.2.t.j.289.1 14 36.7 odd 6
3024.2.t.j.1873.1 14 28.11 odd 6
5292.2.i.i.1549.1 14 7.6 odd 2
5292.2.i.i.2125.1 14 63.52 odd 6
5292.2.j.g.1765.1 14 7.5 odd 6
5292.2.j.g.3529.1 14 63.61 odd 6
5292.2.j.h.1765.7 14 7.2 even 3
5292.2.j.h.3529.7 14 63.16 even 3
5292.2.l.i.361.7 14 7.3 odd 6
5292.2.l.i.3313.7 14 63.34 odd 6