Properties

Label 1008.2.q.j.625.1
Level $1008$
Weight $2$
Character 1008.625
Analytic conductor $8.049$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(529,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-3,0,-2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.1
Root \(-0.674693 + 1.59524i\) of defining polynomial
Character \(\chi\) \(=\) 1008.625
Dual form 1008.2.q.j.529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71886 - 0.213318i) q^{3} +(-2.07260 - 3.58985i) q^{5} +(-2.19013 - 1.48437i) q^{7} +(2.90899 + 0.733330i) q^{9} +(0.434429 - 0.752453i) q^{11} +(2.86231 - 4.95766i) q^{13} +(2.79674 + 6.61258i) q^{15} +(-1.44613 - 2.50478i) q^{17} +(2.00703 - 3.47627i) q^{19} +(3.44789 + 3.01862i) q^{21} +(-2.91488 - 5.04873i) q^{23} +(-6.09133 + 10.5505i) q^{25} +(-4.84373 - 1.88104i) q^{27} +(-0.900417 - 1.55957i) q^{29} +2.96091 q^{31} +(-0.907237 + 1.20069i) q^{33} +(-0.789399 + 10.9387i) q^{35} +(-2.64925 + 4.58864i) q^{37} +(-5.97748 + 7.91097i) q^{39} +(-5.89325 + 10.2074i) q^{41} +(2.00703 + 3.47627i) q^{43} +(-3.39663 - 11.9627i) q^{45} -2.34436 q^{47} +(2.59331 + 6.50190i) q^{49} +(1.95139 + 4.61386i) q^{51} +(-1.09116 - 1.88995i) q^{53} -3.60159 q^{55} +(-4.19136 + 5.54711i) q^{57} +3.05430 q^{59} +5.63318 q^{61} +(-5.28253 - 5.92410i) q^{63} -23.7297 q^{65} +2.51078 q^{67} +(3.93331 + 9.29988i) q^{69} +1.09143 q^{71} +(0.723285 + 1.25277i) q^{73} +(12.7208 - 16.8355i) q^{75} +(-2.06837 + 1.00312i) q^{77} +2.12928 q^{79} +(7.92445 + 4.26650i) q^{81} +(-2.18784 - 3.78946i) q^{83} +(-5.99451 + 10.3828i) q^{85} +(1.21501 + 2.87276i) q^{87} +(5.83373 - 10.1043i) q^{89} +(-13.6278 + 6.60919i) q^{91} +(-5.08940 - 0.631616i) q^{93} -16.6391 q^{95} +(-3.98779 - 6.90706i) q^{97} +(1.81555 - 1.87030i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 3 q^{3} - 2 q^{5} - 6 q^{7} - 5 q^{9} - 2 q^{11} + 2 q^{13} - 7 q^{15} + 2 q^{17} - 7 q^{19} - 11 q^{21} - 11 q^{23} - 9 q^{25} - 9 q^{27} + q^{29} - 2 q^{31} - 4 q^{33} + 19 q^{35} + 10 q^{37}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71886 0.213318i −0.992387 0.123159i
\(4\) 0 0
\(5\) −2.07260 3.58985i −0.926894 1.60543i −0.788486 0.615053i \(-0.789135\pi\)
−0.138409 0.990375i \(-0.544199\pi\)
\(6\) 0 0
\(7\) −2.19013 1.48437i −0.827790 0.561038i
\(8\) 0 0
\(9\) 2.90899 + 0.733330i 0.969664 + 0.244443i
\(10\) 0 0
\(11\) 0.434429 0.752453i 0.130985 0.226873i −0.793071 0.609129i \(-0.791519\pi\)
0.924057 + 0.382256i \(0.124853\pi\)
\(12\) 0 0
\(13\) 2.86231 4.95766i 0.793861 1.37501i −0.129698 0.991554i \(-0.541401\pi\)
0.923560 0.383455i \(-0.125266\pi\)
\(14\) 0 0
\(15\) 2.79674 + 6.61258i 0.722115 + 1.70736i
\(16\) 0 0
\(17\) −1.44613 2.50478i −0.350739 0.607498i 0.635640 0.771986i \(-0.280736\pi\)
−0.986379 + 0.164488i \(0.947403\pi\)
\(18\) 0 0
\(19\) 2.00703 3.47627i 0.460444 0.797512i −0.538539 0.842600i \(-0.681024\pi\)
0.998983 + 0.0450884i \(0.0143570\pi\)
\(20\) 0 0
\(21\) 3.44789 + 3.01862i 0.752391 + 0.658717i
\(22\) 0 0
\(23\) −2.91488 5.04873i −0.607795 1.05273i −0.991603 0.129319i \(-0.958721\pi\)
0.383808 0.923413i \(-0.374613\pi\)
\(24\) 0 0
\(25\) −6.09133 + 10.5505i −1.21827 + 2.11010i
\(26\) 0 0
\(27\) −4.84373 1.88104i −0.932176 0.362005i
\(28\) 0 0
\(29\) −0.900417 1.55957i −0.167203 0.289604i 0.770232 0.637763i \(-0.220140\pi\)
−0.937435 + 0.348159i \(0.886807\pi\)
\(30\) 0 0
\(31\) 2.96091 0.531795 0.265898 0.964001i \(-0.414332\pi\)
0.265898 + 0.964001i \(0.414332\pi\)
\(32\) 0 0
\(33\) −0.907237 + 1.20069i −0.157930 + 0.209014i
\(34\) 0 0
\(35\) −0.789399 + 10.9387i −0.133433 + 1.84898i
\(36\) 0 0
\(37\) −2.64925 + 4.58864i −0.435535 + 0.754368i −0.997339 0.0729017i \(-0.976774\pi\)
0.561804 + 0.827270i \(0.310107\pi\)
\(38\) 0 0
\(39\) −5.97748 + 7.91097i −0.957163 + 1.26677i
\(40\) 0 0
\(41\) −5.89325 + 10.2074i −0.920371 + 1.59413i −0.121528 + 0.992588i \(0.538780\pi\)
−0.798842 + 0.601541i \(0.794554\pi\)
\(42\) 0 0
\(43\) 2.00703 + 3.47627i 0.306069 + 0.530127i 0.977499 0.210941i \(-0.0676529\pi\)
−0.671430 + 0.741068i \(0.734320\pi\)
\(44\) 0 0
\(45\) −3.39663 11.9627i −0.506340 1.78330i
\(46\) 0 0
\(47\) −2.34436 −0.341961 −0.170980 0.985274i \(-0.554693\pi\)
−0.170980 + 0.985274i \(0.554693\pi\)
\(48\) 0 0
\(49\) 2.59331 + 6.50190i 0.370472 + 0.928844i
\(50\) 0 0
\(51\) 1.95139 + 4.61386i 0.273250 + 0.646070i
\(52\) 0 0
\(53\) −1.09116 1.88995i −0.149883 0.259605i 0.781301 0.624154i \(-0.214556\pi\)
−0.931184 + 0.364549i \(0.881223\pi\)
\(54\) 0 0
\(55\) −3.60159 −0.485638
\(56\) 0 0
\(57\) −4.19136 + 5.54711i −0.555159 + 0.734733i
\(58\) 0 0
\(59\) 3.05430 0.397636 0.198818 0.980036i \(-0.436290\pi\)
0.198818 + 0.980036i \(0.436290\pi\)
\(60\) 0 0
\(61\) 5.63318 0.721255 0.360628 0.932710i \(-0.382563\pi\)
0.360628 + 0.932710i \(0.382563\pi\)
\(62\) 0 0
\(63\) −5.28253 5.92410i −0.665536 0.746366i
\(64\) 0 0
\(65\) −23.7297 −2.94330
\(66\) 0 0
\(67\) 2.51078 0.306740 0.153370 0.988169i \(-0.450987\pi\)
0.153370 + 0.988169i \(0.450987\pi\)
\(68\) 0 0
\(69\) 3.93331 + 9.29988i 0.473514 + 1.11957i
\(70\) 0 0
\(71\) 1.09143 0.129529 0.0647647 0.997901i \(-0.479370\pi\)
0.0647647 + 0.997901i \(0.479370\pi\)
\(72\) 0 0
\(73\) 0.723285 + 1.25277i 0.0846541 + 0.146625i 0.905244 0.424893i \(-0.139688\pi\)
−0.820590 + 0.571518i \(0.806355\pi\)
\(74\) 0 0
\(75\) 12.7208 16.8355i 1.46887 1.94399i
\(76\) 0 0
\(77\) −2.06837 + 1.00312i −0.235713 + 0.114316i
\(78\) 0 0
\(79\) 2.12928 0.239563 0.119781 0.992800i \(-0.461781\pi\)
0.119781 + 0.992800i \(0.461781\pi\)
\(80\) 0 0
\(81\) 7.92445 + 4.26650i 0.880495 + 0.474055i
\(82\) 0 0
\(83\) −2.18784 3.78946i −0.240147 0.415947i 0.720609 0.693342i \(-0.243862\pi\)
−0.960756 + 0.277395i \(0.910529\pi\)
\(84\) 0 0
\(85\) −5.99451 + 10.3828i −0.650196 + 1.12617i
\(86\) 0 0
\(87\) 1.21501 + 2.87276i 0.130263 + 0.307992i
\(88\) 0 0
\(89\) 5.83373 10.1043i 0.618374 1.07105i −0.371409 0.928469i \(-0.621125\pi\)
0.989783 0.142585i \(-0.0455415\pi\)
\(90\) 0 0
\(91\) −13.6278 + 6.60919i −1.42858 + 0.692831i
\(92\) 0 0
\(93\) −5.08940 0.631616i −0.527747 0.0654955i
\(94\) 0 0
\(95\) −16.6391 −1.70713
\(96\) 0 0
\(97\) −3.98779 6.90706i −0.404899 0.701306i 0.589411 0.807834i \(-0.299360\pi\)
−0.994310 + 0.106528i \(0.966027\pi\)
\(98\) 0 0
\(99\) 1.81555 1.87030i 0.182469 0.187972i
\(100\) 0 0
\(101\) 1.88185 3.25946i 0.187251 0.324329i −0.757082 0.653320i \(-0.773376\pi\)
0.944333 + 0.328992i \(0.106709\pi\)
\(102\) 0 0
\(103\) 5.42778 + 9.40119i 0.534815 + 0.926327i 0.999172 + 0.0406786i \(0.0129520\pi\)
−0.464357 + 0.885648i \(0.653715\pi\)
\(104\) 0 0
\(105\) 3.69030 18.6338i 0.360136 1.81847i
\(106\) 0 0
\(107\) 4.82343 8.35442i 0.466298 0.807653i −0.532961 0.846140i \(-0.678921\pi\)
0.999259 + 0.0384875i \(0.0122540\pi\)
\(108\) 0 0
\(109\) −5.86131 10.1521i −0.561412 0.972394i −0.997374 0.0724288i \(-0.976925\pi\)
0.435962 0.899965i \(-0.356408\pi\)
\(110\) 0 0
\(111\) 5.53255 7.32212i 0.525127 0.694985i
\(112\) 0 0
\(113\) 2.88981 5.00530i 0.271851 0.470859i −0.697485 0.716599i \(-0.745698\pi\)
0.969336 + 0.245740i \(0.0790310\pi\)
\(114\) 0 0
\(115\) −12.0828 + 20.9280i −1.12672 + 1.95154i
\(116\) 0 0
\(117\) 11.9620 12.3228i 1.10589 1.13924i
\(118\) 0 0
\(119\) −0.550795 + 7.63237i −0.0504913 + 0.699659i
\(120\) 0 0
\(121\) 5.12254 + 8.87250i 0.465686 + 0.806591i
\(122\) 0 0
\(123\) 12.3071 16.2880i 1.10970 1.46864i
\(124\) 0 0
\(125\) 29.7736 2.66303
\(126\) 0 0
\(127\) −6.47468 −0.574535 −0.287268 0.957850i \(-0.592747\pi\)
−0.287268 + 0.957850i \(0.592747\pi\)
\(128\) 0 0
\(129\) −2.70826 6.40338i −0.238449 0.563786i
\(130\) 0 0
\(131\) −8.86514 15.3549i −0.774551 1.34156i −0.935046 0.354525i \(-0.884643\pi\)
0.160495 0.987037i \(-0.448691\pi\)
\(132\) 0 0
\(133\) −9.55571 + 4.63431i −0.828585 + 0.401846i
\(134\) 0 0
\(135\) 3.28648 + 21.2869i 0.282855 + 1.83208i
\(136\) 0 0
\(137\) −1.36116 + 2.35760i −0.116292 + 0.201423i −0.918295 0.395896i \(-0.870434\pi\)
0.802004 + 0.597319i \(0.203767\pi\)
\(138\) 0 0
\(139\) −8.65431 + 14.9897i −0.734049 + 1.27141i 0.221090 + 0.975253i \(0.429038\pi\)
−0.955139 + 0.296157i \(0.904295\pi\)
\(140\) 0 0
\(141\) 4.02964 + 0.500095i 0.339357 + 0.0421156i
\(142\) 0 0
\(143\) −2.48694 4.30751i −0.207968 0.360212i
\(144\) 0 0
\(145\) −3.73241 + 6.46472i −0.309959 + 0.536865i
\(146\) 0 0
\(147\) −3.07057 11.7291i −0.253256 0.967399i
\(148\) 0 0
\(149\) 3.42343 + 5.92955i 0.280458 + 0.485767i 0.971498 0.237049i \(-0.0761803\pi\)
−0.691040 + 0.722817i \(0.742847\pi\)
\(150\) 0 0
\(151\) 4.64083 8.03816i 0.377666 0.654136i −0.613057 0.790039i \(-0.710060\pi\)
0.990722 + 0.135903i \(0.0433936\pi\)
\(152\) 0 0
\(153\) −2.36996 8.34687i −0.191600 0.674804i
\(154\) 0 0
\(155\) −6.13678 10.6292i −0.492918 0.853759i
\(156\) 0 0
\(157\) 13.6768 1.09153 0.545764 0.837939i \(-0.316240\pi\)
0.545764 + 0.837939i \(0.316240\pi\)
\(158\) 0 0
\(159\) 1.47240 + 3.48134i 0.116769 + 0.276088i
\(160\) 0 0
\(161\) −1.11020 + 15.3841i −0.0874963 + 1.21244i
\(162\) 0 0
\(163\) 1.65003 2.85793i 0.129240 0.223850i −0.794142 0.607732i \(-0.792080\pi\)
0.923382 + 0.383882i \(0.125413\pi\)
\(164\) 0 0
\(165\) 6.19064 + 0.768284i 0.481941 + 0.0598108i
\(166\) 0 0
\(167\) −5.96228 + 10.3270i −0.461375 + 0.799125i −0.999030 0.0440399i \(-0.985977\pi\)
0.537655 + 0.843165i \(0.319310\pi\)
\(168\) 0 0
\(169\) −9.88562 17.1224i −0.760432 1.31711i
\(170\) 0 0
\(171\) 8.38768 8.64064i 0.641422 0.660766i
\(172\) 0 0
\(173\) −9.63389 −0.732451 −0.366225 0.930526i \(-0.619350\pi\)
−0.366225 + 0.930526i \(0.619350\pi\)
\(174\) 0 0
\(175\) 29.0016 14.0651i 2.19231 1.06322i
\(176\) 0 0
\(177\) −5.24993 0.651538i −0.394609 0.0489726i
\(178\) 0 0
\(179\) 11.5285 + 19.9680i 0.861682 + 1.49248i 0.870304 + 0.492515i \(0.163922\pi\)
−0.00862183 + 0.999963i \(0.502744\pi\)
\(180\) 0 0
\(181\) −11.8325 −0.879504 −0.439752 0.898119i \(-0.644934\pi\)
−0.439752 + 0.898119i \(0.644934\pi\)
\(182\) 0 0
\(183\) −9.68268 1.20166i −0.715764 0.0888292i
\(184\) 0 0
\(185\) 21.9634 1.61478
\(186\) 0 0
\(187\) −2.51297 −0.183767
\(188\) 0 0
\(189\) 7.81623 + 11.3096i 0.568547 + 0.822651i
\(190\) 0 0
\(191\) 6.28508 0.454772 0.227386 0.973805i \(-0.426982\pi\)
0.227386 + 0.973805i \(0.426982\pi\)
\(192\) 0 0
\(193\) 13.7312 0.988392 0.494196 0.869351i \(-0.335463\pi\)
0.494196 + 0.869351i \(0.335463\pi\)
\(194\) 0 0
\(195\) 40.7881 + 5.06197i 2.92090 + 0.362495i
\(196\) 0 0
\(197\) −0.161495 −0.0115061 −0.00575303 0.999983i \(-0.501831\pi\)
−0.00575303 + 0.999983i \(0.501831\pi\)
\(198\) 0 0
\(199\) 12.4140 + 21.5016i 0.880003 + 1.52421i 0.851336 + 0.524621i \(0.175793\pi\)
0.0286672 + 0.999589i \(0.490874\pi\)
\(200\) 0 0
\(201\) −4.31569 0.535594i −0.304405 0.0377779i
\(202\) 0 0
\(203\) −0.342945 + 4.75220i −0.0240700 + 0.333539i
\(204\) 0 0
\(205\) 48.8573 3.41235
\(206\) 0 0
\(207\) −4.77699 16.8243i −0.332024 1.16937i
\(208\) 0 0
\(209\) −1.74382 3.02039i −0.120623 0.208925i
\(210\) 0 0
\(211\) −9.44607 + 16.3611i −0.650295 + 1.12634i 0.332757 + 0.943013i \(0.392021\pi\)
−0.983051 + 0.183331i \(0.941312\pi\)
\(212\) 0 0
\(213\) −1.87603 0.232823i −0.128543 0.0159527i
\(214\) 0 0
\(215\) 8.31953 14.4098i 0.567387 0.982743i
\(216\) 0 0
\(217\) −6.48477 4.39508i −0.440215 0.298357i
\(218\) 0 0
\(219\) −0.975992 2.30763i −0.0659514 0.155935i
\(220\) 0 0
\(221\) −16.5571 −1.11375
\(222\) 0 0
\(223\) −7.04717 12.2061i −0.471914 0.817378i 0.527570 0.849512i \(-0.323103\pi\)
−0.999484 + 0.0321333i \(0.989770\pi\)
\(224\) 0 0
\(225\) −25.4566 + 26.2243i −1.69711 + 1.74829i
\(226\) 0 0
\(227\) 12.9891 22.4978i 0.862118 1.49323i −0.00776306 0.999970i \(-0.502471\pi\)
0.869881 0.493262i \(-0.164196\pi\)
\(228\) 0 0
\(229\) −12.4579 21.5777i −0.823239 1.42589i −0.903258 0.429098i \(-0.858831\pi\)
0.0800190 0.996793i \(-0.474502\pi\)
\(230\) 0 0
\(231\) 3.76923 1.28300i 0.247997 0.0844151i
\(232\) 0 0
\(233\) −3.05923 + 5.29874i −0.200417 + 0.347132i −0.948663 0.316289i \(-0.897563\pi\)
0.748246 + 0.663421i \(0.230896\pi\)
\(234\) 0 0
\(235\) 4.85893 + 8.41591i 0.316961 + 0.548993i
\(236\) 0 0
\(237\) −3.65995 0.454214i −0.237739 0.0295044i
\(238\) 0 0
\(239\) 7.71988 13.3712i 0.499357 0.864912i −0.500643 0.865654i \(-0.666903\pi\)
1.00000 0.000742080i \(0.000236211\pi\)
\(240\) 0 0
\(241\) −4.92259 + 8.52617i −0.317092 + 0.549219i −0.979880 0.199588i \(-0.936040\pi\)
0.662788 + 0.748807i \(0.269373\pi\)
\(242\) 0 0
\(243\) −12.7109 9.02396i −0.815407 0.578888i
\(244\) 0 0
\(245\) 17.9660 22.7854i 1.14780 1.45571i
\(246\) 0 0
\(247\) −11.4895 19.9003i −0.731057 1.26623i
\(248\) 0 0
\(249\) 2.95225 + 6.98027i 0.187091 + 0.442357i
\(250\) 0 0
\(251\) −26.8843 −1.69692 −0.848461 0.529258i \(-0.822470\pi\)
−0.848461 + 0.529258i \(0.822470\pi\)
\(252\) 0 0
\(253\) −5.06524 −0.318449
\(254\) 0 0
\(255\) 12.5186 16.5679i 0.783945 1.03752i
\(256\) 0 0
\(257\) −5.50636 9.53729i −0.343477 0.594920i 0.641599 0.767040i \(-0.278271\pi\)
−0.985076 + 0.172121i \(0.944938\pi\)
\(258\) 0 0
\(259\) 12.6134 6.11724i 0.783761 0.380107i
\(260\) 0 0
\(261\) −1.47563 5.19707i −0.0913390 0.321691i
\(262\) 0 0
\(263\) −3.65547 + 6.33146i −0.225406 + 0.390415i −0.956441 0.291925i \(-0.905704\pi\)
0.731035 + 0.682340i \(0.239038\pi\)
\(264\) 0 0
\(265\) −4.52309 + 7.83423i −0.277851 + 0.481253i
\(266\) 0 0
\(267\) −12.1828 + 16.1235i −0.745576 + 0.986742i
\(268\) 0 0
\(269\) −2.08048 3.60349i −0.126849 0.219709i 0.795605 0.605815i \(-0.207153\pi\)
−0.922454 + 0.386107i \(0.873820\pi\)
\(270\) 0 0
\(271\) 4.18300 7.24516i 0.254099 0.440112i −0.710551 0.703645i \(-0.751554\pi\)
0.964650 + 0.263533i \(0.0848878\pi\)
\(272\) 0 0
\(273\) 24.8342 8.45325i 1.50304 0.511614i
\(274\) 0 0
\(275\) 5.29250 + 9.16689i 0.319150 + 0.552784i
\(276\) 0 0
\(277\) 1.39928 2.42362i 0.0840745 0.145621i −0.820922 0.571040i \(-0.806540\pi\)
0.904996 + 0.425419i \(0.139873\pi\)
\(278\) 0 0
\(279\) 8.61326 + 2.17132i 0.515662 + 0.129994i
\(280\) 0 0
\(281\) −5.44314 9.42779i −0.324710 0.562415i 0.656743 0.754114i \(-0.271933\pi\)
−0.981454 + 0.191699i \(0.938600\pi\)
\(282\) 0 0
\(283\) 2.02424 0.120328 0.0601642 0.998188i \(-0.480838\pi\)
0.0601642 + 0.998188i \(0.480838\pi\)
\(284\) 0 0
\(285\) 28.6003 + 3.54941i 1.69413 + 0.210249i
\(286\) 0 0
\(287\) 28.0585 13.6078i 1.65624 0.803241i
\(288\) 0 0
\(289\) 4.31739 7.47794i 0.253964 0.439879i
\(290\) 0 0
\(291\) 5.38108 + 12.7230i 0.315444 + 0.745834i
\(292\) 0 0
\(293\) −9.65448 + 16.7220i −0.564021 + 0.976912i 0.433120 + 0.901336i \(0.357413\pi\)
−0.997140 + 0.0755757i \(0.975921\pi\)
\(294\) 0 0
\(295\) −6.33035 10.9645i −0.368567 0.638377i
\(296\) 0 0
\(297\) −3.51965 + 2.82750i −0.204231 + 0.164068i
\(298\) 0 0
\(299\) −33.3732 −1.93002
\(300\) 0 0
\(301\) 0.764425 10.5926i 0.0440607 0.610550i
\(302\) 0 0
\(303\) −3.92995 + 5.20114i −0.225770 + 0.298798i
\(304\) 0 0
\(305\) −11.6753 20.2223i −0.668527 1.15792i
\(306\) 0 0
\(307\) 13.1378 0.749813 0.374907 0.927063i \(-0.377675\pi\)
0.374907 + 0.927063i \(0.377675\pi\)
\(308\) 0 0
\(309\) −7.32417 17.3172i −0.416658 0.985142i
\(310\) 0 0
\(311\) 13.5321 0.767336 0.383668 0.923471i \(-0.374661\pi\)
0.383668 + 0.923471i \(0.374661\pi\)
\(312\) 0 0
\(313\) −25.2000 −1.42439 −0.712194 0.701983i \(-0.752298\pi\)
−0.712194 + 0.701983i \(0.752298\pi\)
\(314\) 0 0
\(315\) −10.3180 + 31.2417i −0.581356 + 1.76027i
\(316\) 0 0
\(317\) −12.2978 −0.690711 −0.345356 0.938472i \(-0.612242\pi\)
−0.345356 + 0.938472i \(0.612242\pi\)
\(318\) 0 0
\(319\) −1.56467 −0.0876047
\(320\) 0 0
\(321\) −10.0730 + 13.3312i −0.562218 + 0.744075i
\(322\) 0 0
\(323\) −11.6097 −0.645982
\(324\) 0 0
\(325\) 34.8705 + 60.3975i 1.93427 + 3.35025i
\(326\) 0 0
\(327\) 7.90918 + 18.7004i 0.437379 + 1.03413i
\(328\) 0 0
\(329\) 5.13445 + 3.47990i 0.283072 + 0.191853i
\(330\) 0 0
\(331\) 19.9257 1.09522 0.547608 0.836735i \(-0.315539\pi\)
0.547608 + 0.836735i \(0.315539\pi\)
\(332\) 0 0
\(333\) −11.0716 + 11.4055i −0.606723 + 0.625020i
\(334\) 0 0
\(335\) −5.20383 9.01330i −0.284316 0.492449i
\(336\) 0 0
\(337\) −0.966380 + 1.67382i −0.0526421 + 0.0911788i −0.891146 0.453717i \(-0.850098\pi\)
0.838504 + 0.544896i \(0.183431\pi\)
\(338\) 0 0
\(339\) −6.03492 + 7.98698i −0.327772 + 0.433793i
\(340\) 0 0
\(341\) 1.28631 2.22795i 0.0696574 0.120650i
\(342\) 0 0
\(343\) 3.97155 18.0894i 0.214444 0.976736i
\(344\) 0 0
\(345\) 25.2330 33.3949i 1.35850 1.79792i
\(346\) 0 0
\(347\) −16.9648 −0.910720 −0.455360 0.890307i \(-0.650489\pi\)
−0.455360 + 0.890307i \(0.650489\pi\)
\(348\) 0 0
\(349\) −6.25767 10.8386i −0.334966 0.580177i 0.648513 0.761204i \(-0.275391\pi\)
−0.983478 + 0.181027i \(0.942058\pi\)
\(350\) 0 0
\(351\) −23.1898 + 18.6295i −1.23778 + 0.994368i
\(352\) 0 0
\(353\) −16.1929 + 28.0468i −0.861859 + 1.49278i 0.00827416 + 0.999966i \(0.497366\pi\)
−0.870133 + 0.492817i \(0.835967\pi\)
\(354\) 0 0
\(355\) −2.26211 3.91808i −0.120060 0.207950i
\(356\) 0 0
\(357\) 2.57486 13.0015i 0.136276 0.688113i
\(358\) 0 0
\(359\) −8.98559 + 15.5635i −0.474242 + 0.821410i −0.999565 0.0294922i \(-0.990611\pi\)
0.525323 + 0.850903i \(0.323944\pi\)
\(360\) 0 0
\(361\) 1.44368 + 2.50052i 0.0759830 + 0.131606i
\(362\) 0 0
\(363\) −6.91229 16.3434i −0.362801 0.857804i
\(364\) 0 0
\(365\) 2.99816 5.19297i 0.156931 0.271812i
\(366\) 0 0
\(367\) 4.08420 7.07404i 0.213194 0.369262i −0.739519 0.673136i \(-0.764947\pi\)
0.952712 + 0.303874i \(0.0982802\pi\)
\(368\) 0 0
\(369\) −24.6288 + 25.3715i −1.28212 + 1.32079i
\(370\) 0 0
\(371\) −0.415596 + 5.75892i −0.0215767 + 0.298988i
\(372\) 0 0
\(373\) 2.58080 + 4.47008i 0.133629 + 0.231452i 0.925073 0.379790i \(-0.124004\pi\)
−0.791444 + 0.611242i \(0.790670\pi\)
\(374\) 0 0
\(375\) −51.1767 6.35124i −2.64275 0.327977i
\(376\) 0 0
\(377\) −10.3091 −0.530945
\(378\) 0 0
\(379\) −21.0017 −1.07878 −0.539392 0.842055i \(-0.681346\pi\)
−0.539392 + 0.842055i \(0.681346\pi\)
\(380\) 0 0
\(381\) 11.1291 + 1.38117i 0.570161 + 0.0707593i
\(382\) 0 0
\(383\) 14.7794 + 25.5988i 0.755194 + 1.30804i 0.945278 + 0.326267i \(0.105791\pi\)
−0.190083 + 0.981768i \(0.560876\pi\)
\(384\) 0 0
\(385\) 7.88794 + 5.34608i 0.402006 + 0.272462i
\(386\) 0 0
\(387\) 3.28917 + 11.5843i 0.167198 + 0.588861i
\(388\) 0 0
\(389\) 8.26895 14.3222i 0.419252 0.726166i −0.576612 0.817018i \(-0.695626\pi\)
0.995864 + 0.0908518i \(0.0289589\pi\)
\(390\) 0 0
\(391\) −8.43063 + 14.6023i −0.426355 + 0.738469i
\(392\) 0 0
\(393\) 11.9625 + 28.2840i 0.603429 + 1.42674i
\(394\) 0 0
\(395\) −4.41315 7.64379i −0.222049 0.384601i
\(396\) 0 0
\(397\) 15.4394 26.7418i 0.774881 1.34213i −0.159980 0.987120i \(-0.551143\pi\)
0.934861 0.355014i \(-0.115524\pi\)
\(398\) 0 0
\(399\) 17.4136 5.92735i 0.871768 0.296739i
\(400\) 0 0
\(401\) −5.31614 9.20782i −0.265475 0.459817i 0.702213 0.711967i \(-0.252196\pi\)
−0.967688 + 0.252150i \(0.918862\pi\)
\(402\) 0 0
\(403\) 8.47504 14.6792i 0.422172 0.731223i
\(404\) 0 0
\(405\) −1.10814 37.2903i −0.0550638 1.85297i
\(406\) 0 0
\(407\) 2.30183 + 3.98688i 0.114097 + 0.197622i
\(408\) 0 0
\(409\) −14.7956 −0.731598 −0.365799 0.930694i \(-0.619204\pi\)
−0.365799 + 0.930694i \(0.619204\pi\)
\(410\) 0 0
\(411\) 2.84257 3.76203i 0.140214 0.185567i
\(412\) 0 0
\(413\) −6.68931 4.53371i −0.329159 0.223089i
\(414\) 0 0
\(415\) −9.06904 + 15.7080i −0.445182 + 0.771078i
\(416\) 0 0
\(417\) 18.0732 23.9191i 0.885046 1.17133i
\(418\) 0 0
\(419\) 1.56134 2.70432i 0.0762765 0.132115i −0.825364 0.564601i \(-0.809030\pi\)
0.901641 + 0.432486i \(0.142363\pi\)
\(420\) 0 0
\(421\) −0.644580 1.11645i −0.0314149 0.0544122i 0.849891 0.526959i \(-0.176668\pi\)
−0.881305 + 0.472547i \(0.843335\pi\)
\(422\) 0 0
\(423\) −6.81973 1.71919i −0.331587 0.0835900i
\(424\) 0 0
\(425\) 35.2355 1.70917
\(426\) 0 0
\(427\) −12.3374 8.36171i −0.597048 0.404652i
\(428\) 0 0
\(429\) 3.35584 + 7.93453i 0.162022 + 0.383083i
\(430\) 0 0
\(431\) 11.5916 + 20.0773i 0.558350 + 0.967090i 0.997634 + 0.0687421i \(0.0218986\pi\)
−0.439285 + 0.898348i \(0.644768\pi\)
\(432\) 0 0
\(433\) 35.6437 1.71293 0.856464 0.516207i \(-0.172657\pi\)
0.856464 + 0.516207i \(0.172657\pi\)
\(434\) 0 0
\(435\) 7.79454 10.3158i 0.373720 0.494604i
\(436\) 0 0
\(437\) −23.4010 −1.11942
\(438\) 0 0
\(439\) −16.0124 −0.764230 −0.382115 0.924115i \(-0.624804\pi\)
−0.382115 + 0.924115i \(0.624804\pi\)
\(440\) 0 0
\(441\) 2.77586 + 20.8157i 0.132184 + 0.991225i
\(442\) 0 0
\(443\) −14.3556 −0.682054 −0.341027 0.940054i \(-0.610775\pi\)
−0.341027 + 0.940054i \(0.610775\pi\)
\(444\) 0 0
\(445\) −48.3639 −2.29267
\(446\) 0 0
\(447\) −4.61953 10.9224i −0.218496 0.516610i
\(448\) 0 0
\(449\) 5.72475 0.270168 0.135084 0.990834i \(-0.456870\pi\)
0.135084 + 0.990834i \(0.456870\pi\)
\(450\) 0 0
\(451\) 5.12040 + 8.86879i 0.241110 + 0.417615i
\(452\) 0 0
\(453\) −9.69164 + 12.8265i −0.455353 + 0.602643i
\(454\) 0 0
\(455\) 51.9710 + 35.2235i 2.43644 + 1.65131i
\(456\) 0 0
\(457\) 14.6635 0.685930 0.342965 0.939348i \(-0.388569\pi\)
0.342965 + 0.939348i \(0.388569\pi\)
\(458\) 0 0
\(459\) 2.29311 + 14.8527i 0.107033 + 0.693264i
\(460\) 0 0
\(461\) −12.9720 22.4681i −0.604164 1.04644i −0.992183 0.124792i \(-0.960174\pi\)
0.388018 0.921652i \(-0.373160\pi\)
\(462\) 0 0
\(463\) 6.46277 11.1939i 0.300351 0.520223i −0.675865 0.737026i \(-0.736230\pi\)
0.976215 + 0.216803i \(0.0695630\pi\)
\(464\) 0 0
\(465\) 8.28089 + 19.5793i 0.384017 + 0.907967i
\(466\) 0 0
\(467\) 16.3104 28.2504i 0.754755 1.30727i −0.190741 0.981640i \(-0.561089\pi\)
0.945496 0.325633i \(-0.105577\pi\)
\(468\) 0 0
\(469\) −5.49892 3.72692i −0.253916 0.172093i
\(470\) 0 0
\(471\) −23.5086 2.91751i −1.08322 0.134432i
\(472\) 0 0
\(473\) 3.48765 0.160362
\(474\) 0 0
\(475\) 24.4509 + 42.3503i 1.12189 + 1.94316i
\(476\) 0 0
\(477\) −1.78823 6.29804i −0.0818774 0.288367i
\(478\) 0 0
\(479\) −12.6739 + 21.9518i −0.579084 + 1.00300i 0.416500 + 0.909136i \(0.363256\pi\)
−0.995585 + 0.0938679i \(0.970077\pi\)
\(480\) 0 0
\(481\) 15.1660 + 26.2682i 0.691509 + 1.19773i
\(482\) 0 0
\(483\) 5.19000 26.2064i 0.236153 1.19243i
\(484\) 0 0
\(485\) −16.5302 + 28.6311i −0.750597 + 1.30007i
\(486\) 0 0
\(487\) −17.7383 30.7236i −0.803799 1.39222i −0.917099 0.398660i \(-0.869475\pi\)
0.113299 0.993561i \(-0.463858\pi\)
\(488\) 0 0
\(489\) −3.44582 + 4.56041i −0.155825 + 0.206229i
\(490\) 0 0
\(491\) −13.2554 + 22.9590i −0.598208 + 1.03613i 0.394877 + 0.918734i \(0.370787\pi\)
−0.993085 + 0.117393i \(0.962546\pi\)
\(492\) 0 0
\(493\) −2.60425 + 4.51069i −0.117289 + 0.203151i
\(494\) 0 0
\(495\) −10.4770 2.64115i −0.470906 0.118711i
\(496\) 0 0
\(497\) −2.39038 1.62009i −0.107223 0.0726710i
\(498\) 0 0
\(499\) −3.00130 5.19841i −0.134357 0.232713i 0.790995 0.611823i \(-0.209563\pi\)
−0.925352 + 0.379110i \(0.876230\pi\)
\(500\) 0 0
\(501\) 12.4513 16.4788i 0.556282 0.736219i
\(502\) 0 0
\(503\) 22.9460 1.02311 0.511556 0.859250i \(-0.329069\pi\)
0.511556 + 0.859250i \(0.329069\pi\)
\(504\) 0 0
\(505\) −15.6013 −0.694248
\(506\) 0 0
\(507\) 13.3395 + 31.5399i 0.592429 + 1.40073i
\(508\) 0 0
\(509\) −14.9348 25.8679i −0.661975 1.14657i −0.980096 0.198524i \(-0.936385\pi\)
0.318121 0.948050i \(-0.396948\pi\)
\(510\) 0 0
\(511\) 0.275480 3.81734i 0.0121865 0.168869i
\(512\) 0 0
\(513\) −16.2605 + 13.0628i −0.717918 + 0.576738i
\(514\) 0 0
\(515\) 22.4992 38.9698i 0.991434 1.71721i
\(516\) 0 0
\(517\) −1.01846 + 1.76402i −0.0447918 + 0.0775817i
\(518\) 0 0
\(519\) 16.5593 + 2.05508i 0.726875 + 0.0902081i
\(520\) 0 0
\(521\) 15.5980 + 27.0166i 0.683362 + 1.18362i 0.973949 + 0.226769i \(0.0728162\pi\)
−0.290587 + 0.956849i \(0.593851\pi\)
\(522\) 0 0
\(523\) 3.07911 5.33318i 0.134640 0.233203i −0.790820 0.612049i \(-0.790346\pi\)
0.925460 + 0.378846i \(0.123679\pi\)
\(524\) 0 0
\(525\) −52.8502 + 17.9895i −2.30657 + 0.785127i
\(526\) 0 0
\(527\) −4.28187 7.41642i −0.186521 0.323064i
\(528\) 0 0
\(529\) −5.49310 + 9.51433i −0.238830 + 0.413666i
\(530\) 0 0
\(531\) 8.88494 + 2.23981i 0.385574 + 0.0971995i
\(532\) 0 0
\(533\) 33.7366 + 58.4335i 1.46129 + 2.53103i
\(534\) 0 0
\(535\) −39.9881 −1.72884
\(536\) 0 0
\(537\) −15.5564 36.7815i −0.671310 1.58724i
\(538\) 0 0
\(539\) 6.01899 + 0.873275i 0.259256 + 0.0376146i
\(540\) 0 0
\(541\) −13.5137 + 23.4064i −0.580999 + 1.00632i 0.414362 + 0.910112i \(0.364005\pi\)
−0.995361 + 0.0962083i \(0.969329\pi\)
\(542\) 0 0
\(543\) 20.3385 + 2.52409i 0.872808 + 0.108319i
\(544\) 0 0
\(545\) −24.2963 + 42.0824i −1.04074 + 1.80261i
\(546\) 0 0
\(547\) −14.9426 25.8814i −0.638900 1.10661i −0.985675 0.168658i \(-0.946057\pi\)
0.346775 0.937948i \(-0.387277\pi\)
\(548\) 0 0
\(549\) 16.3869 + 4.13098i 0.699375 + 0.176306i
\(550\) 0 0
\(551\) −7.22865 −0.307951
\(552\) 0 0
\(553\) −4.66339 3.16064i −0.198308 0.134404i
\(554\) 0 0
\(555\) −37.7521 4.68518i −1.60249 0.198875i
\(556\) 0 0
\(557\) 10.6650 + 18.4722i 0.451889 + 0.782694i 0.998503 0.0546900i \(-0.0174171\pi\)
−0.546615 + 0.837384i \(0.684084\pi\)
\(558\) 0 0
\(559\) 22.9789 0.971905
\(560\) 0 0
\(561\) 4.31946 + 0.536062i 0.182368 + 0.0226326i
\(562\) 0 0
\(563\) −31.4635 −1.32603 −0.663014 0.748607i \(-0.730723\pi\)
−0.663014 + 0.748607i \(0.730723\pi\)
\(564\) 0 0
\(565\) −23.9577 −1.00791
\(566\) 0 0
\(567\) −11.0225 21.1070i −0.462902 0.886410i
\(568\) 0 0
\(569\) 29.3391 1.22996 0.614980 0.788543i \(-0.289164\pi\)
0.614980 + 0.788543i \(0.289164\pi\)
\(570\) 0 0
\(571\) 27.4947 1.15062 0.575308 0.817937i \(-0.304882\pi\)
0.575308 + 0.817937i \(0.304882\pi\)
\(572\) 0 0
\(573\) −10.8032 1.34072i −0.451310 0.0560094i
\(574\) 0 0
\(575\) 71.0221 2.96183
\(576\) 0 0
\(577\) −20.2293 35.0381i −0.842156 1.45866i −0.888068 0.459712i \(-0.847953\pi\)
0.0459122 0.998945i \(-0.485381\pi\)
\(578\) 0 0
\(579\) −23.6020 2.92911i −0.980867 0.121730i
\(580\) 0 0
\(581\) −0.833292 + 11.5470i −0.0345708 + 0.479048i
\(582\) 0 0
\(583\) −1.89613 −0.0785299
\(584\) 0 0
\(585\) −69.0294 17.4017i −2.85401 0.719471i
\(586\) 0 0
\(587\) 13.6559 + 23.6528i 0.563641 + 0.976255i 0.997175 + 0.0751177i \(0.0239333\pi\)
−0.433533 + 0.901137i \(0.642733\pi\)
\(588\) 0 0
\(589\) 5.94263 10.2929i 0.244862 0.424113i
\(590\) 0 0
\(591\) 0.277589 + 0.0344499i 0.0114185 + 0.00141708i
\(592\) 0 0
\(593\) 14.2898 24.7507i 0.586813 1.01639i −0.407833 0.913056i \(-0.633716\pi\)
0.994647 0.103334i \(-0.0329512\pi\)
\(594\) 0 0
\(595\) 28.5406 13.8416i 1.17005 0.567449i
\(596\) 0 0
\(597\) −16.7512 39.6065i −0.685583 1.62099i
\(598\) 0 0
\(599\) −39.9838 −1.63370 −0.816848 0.576854i \(-0.804280\pi\)
−0.816848 + 0.576854i \(0.804280\pi\)
\(600\) 0 0
\(601\) −12.6948 21.9880i −0.517831 0.896910i −0.999785 0.0207133i \(-0.993406\pi\)
0.481954 0.876196i \(-0.339927\pi\)
\(602\) 0 0
\(603\) 7.30383 + 1.84123i 0.297435 + 0.0749806i
\(604\) 0 0
\(605\) 21.2340 36.7783i 0.863283 1.49525i
\(606\) 0 0
\(607\) −18.6469 32.2975i −0.756856 1.31091i −0.944446 0.328666i \(-0.893401\pi\)
0.187590 0.982247i \(-0.439932\pi\)
\(608\) 0 0
\(609\) 1.60321 8.09523i 0.0649652 0.328035i
\(610\) 0 0
\(611\) −6.71029 + 11.6226i −0.271469 + 0.470199i
\(612\) 0 0
\(613\) −11.7319 20.3203i −0.473848 0.820729i 0.525704 0.850668i \(-0.323802\pi\)
−0.999552 + 0.0299390i \(0.990469\pi\)
\(614\) 0 0
\(615\) −83.9792 10.4222i −3.38637 0.420262i
\(616\) 0 0
\(617\) 6.56888 11.3776i 0.264453 0.458047i −0.702967 0.711223i \(-0.748142\pi\)
0.967420 + 0.253176i \(0.0814752\pi\)
\(618\) 0 0
\(619\) 10.7776 18.6674i 0.433190 0.750308i −0.563956 0.825805i \(-0.690721\pi\)
0.997146 + 0.0754975i \(0.0240545\pi\)
\(620\) 0 0
\(621\) 4.62207 + 29.9377i 0.185477 + 1.20136i
\(622\) 0 0
\(623\) −27.7751 + 13.4703i −1.11279 + 0.539677i
\(624\) 0 0
\(625\) −31.2520 54.1300i −1.25008 2.16520i
\(626\) 0 0
\(627\) 2.35309 + 5.56363i 0.0939734 + 0.222190i
\(628\) 0 0
\(629\) 15.3247 0.611036
\(630\) 0 0
\(631\) 6.15223 0.244916 0.122458 0.992474i \(-0.460922\pi\)
0.122458 + 0.992474i \(0.460922\pi\)
\(632\) 0 0
\(633\) 19.7266 26.1075i 0.784063 1.03768i
\(634\) 0 0
\(635\) 13.4194 + 23.2431i 0.532533 + 0.922375i
\(636\) 0 0
\(637\) 39.6571 + 5.75372i 1.57127 + 0.227971i
\(638\) 0 0
\(639\) 3.17497 + 0.800381i 0.125600 + 0.0316626i
\(640\) 0 0
\(641\) 2.23682 3.87429i 0.0883491 0.153025i −0.818464 0.574557i \(-0.805174\pi\)
0.906813 + 0.421532i \(0.138508\pi\)
\(642\) 0 0
\(643\) −8.98009 + 15.5540i −0.354140 + 0.613389i −0.986970 0.160902i \(-0.948560\pi\)
0.632830 + 0.774291i \(0.281893\pi\)
\(644\) 0 0
\(645\) −17.3740 + 22.9939i −0.684101 + 0.905383i
\(646\) 0 0
\(647\) −6.02992 10.4441i −0.237061 0.410601i 0.722809 0.691048i \(-0.242851\pi\)
−0.959870 + 0.280447i \(0.909517\pi\)
\(648\) 0 0
\(649\) 1.32688 2.29822i 0.0520845 0.0902131i
\(650\) 0 0
\(651\) 10.2089 + 8.93786i 0.400118 + 0.350302i
\(652\) 0 0
\(653\) 24.1366 + 41.8059i 0.944540 + 1.63599i 0.756670 + 0.653797i \(0.226825\pi\)
0.187870 + 0.982194i \(0.439842\pi\)
\(654\) 0 0
\(655\) −36.7478 + 63.6490i −1.43585 + 2.48697i
\(656\) 0 0
\(657\) 1.18534 + 4.17469i 0.0462445 + 0.162870i
\(658\) 0 0
\(659\) −14.5795 25.2525i −0.567937 0.983696i −0.996770 0.0803122i \(-0.974408\pi\)
0.428832 0.903384i \(-0.358925\pi\)
\(660\) 0 0
\(661\) −14.5486 −0.565873 −0.282937 0.959139i \(-0.591309\pi\)
−0.282937 + 0.959139i \(0.591309\pi\)
\(662\) 0 0
\(663\) 28.4595 + 3.53193i 1.10527 + 0.137169i
\(664\) 0 0
\(665\) 36.4416 + 24.6985i 1.41315 + 0.957766i
\(666\) 0 0
\(667\) −5.24922 + 9.09192i −0.203251 + 0.352040i
\(668\) 0 0
\(669\) 9.50936 + 22.4839i 0.367653 + 0.869276i
\(670\) 0 0
\(671\) 2.44722 4.23871i 0.0944738 0.163633i
\(672\) 0 0
\(673\) 11.6825 + 20.2348i 0.450329 + 0.779993i 0.998406 0.0564349i \(-0.0179733\pi\)
−0.548077 + 0.836428i \(0.684640\pi\)
\(674\) 0 0
\(675\) 49.3506 39.6457i 1.89951 1.52596i
\(676\) 0 0
\(677\) −17.7175 −0.680939 −0.340469 0.940256i \(-0.610586\pi\)
−0.340469 + 0.940256i \(0.610586\pi\)
\(678\) 0 0
\(679\) −1.51885 + 21.0467i −0.0582880 + 0.807698i
\(680\) 0 0
\(681\) −27.1257 + 35.8999i −1.03946 + 1.37569i
\(682\) 0 0
\(683\) −21.7769 37.7186i −0.833269 1.44326i −0.895432 0.445198i \(-0.853133\pi\)
0.0621637 0.998066i \(-0.480200\pi\)
\(684\) 0 0
\(685\) 11.2846 0.431161
\(686\) 0 0
\(687\) 16.8105 + 39.7466i 0.641360 + 1.51643i
\(688\) 0 0
\(689\) −12.4930 −0.475945
\(690\) 0 0
\(691\) −23.5344 −0.895291 −0.447645 0.894211i \(-0.647737\pi\)
−0.447645 + 0.894211i \(0.647737\pi\)
\(692\) 0 0
\(693\) −6.75249 + 1.40125i −0.256506 + 0.0532292i
\(694\) 0 0
\(695\) 71.7476 2.72154
\(696\) 0 0
\(697\) 34.0897 1.29124
\(698\) 0 0
\(699\) 6.38872 8.45523i 0.241644 0.319806i
\(700\) 0 0
\(701\) 45.1804 1.70644 0.853219 0.521552i \(-0.174647\pi\)
0.853219 + 0.521552i \(0.174647\pi\)
\(702\) 0 0
\(703\) 10.6343 + 18.4191i 0.401079 + 0.694689i
\(704\) 0 0
\(705\) −6.55657 15.5023i −0.246935 0.583850i
\(706\) 0 0
\(707\) −8.95973 + 4.34527i −0.336965 + 0.163421i
\(708\) 0 0
\(709\) −27.0127 −1.01448 −0.507242 0.861804i \(-0.669335\pi\)
−0.507242 + 0.861804i \(0.669335\pi\)
\(710\) 0 0
\(711\) 6.19406 + 1.56147i 0.232295 + 0.0585595i
\(712\) 0 0
\(713\) −8.63071 14.9488i −0.323223 0.559838i
\(714\) 0 0
\(715\) −10.3089 + 17.8555i −0.385529 + 0.667757i
\(716\) 0 0
\(717\) −16.1217 + 21.3365i −0.602077 + 0.796827i
\(718\) 0 0
\(719\) 11.2096 19.4156i 0.418048 0.724080i −0.577695 0.816253i \(-0.696048\pi\)
0.995743 + 0.0921724i \(0.0293811\pi\)
\(720\) 0 0
\(721\) 2.06730 28.6466i 0.0769902 1.06686i
\(722\) 0 0
\(723\) 10.2800 13.6053i 0.382319 0.505985i
\(724\) 0 0
\(725\) 21.9389 0.814792
\(726\) 0 0
\(727\) −21.9820 38.0740i −0.815268 1.41208i −0.909136 0.416500i \(-0.863256\pi\)
0.0938680 0.995585i \(-0.470077\pi\)
\(728\) 0 0
\(729\) 19.9234 + 18.2224i 0.737904 + 0.674905i
\(730\) 0 0
\(731\) 5.80486 10.0543i 0.214701 0.371872i
\(732\) 0 0
\(733\) −0.433386 0.750646i −0.0160075 0.0277257i 0.857911 0.513799i \(-0.171762\pi\)
−0.873918 + 0.486073i \(0.838429\pi\)
\(734\) 0 0
\(735\) −35.7416 + 35.3326i −1.31835 + 1.30326i
\(736\) 0 0
\(737\) 1.09075 1.88924i 0.0401785 0.0695911i
\(738\) 0 0
\(739\) −13.0442 22.5932i −0.479838 0.831103i 0.519895 0.854230i \(-0.325971\pi\)
−0.999733 + 0.0231270i \(0.992638\pi\)
\(740\) 0 0
\(741\) 15.5037 + 36.6569i 0.569544 + 1.34662i
\(742\) 0 0
\(743\) −22.5842 + 39.1170i −0.828533 + 1.43506i 0.0706551 + 0.997501i \(0.477491\pi\)
−0.899189 + 0.437561i \(0.855842\pi\)
\(744\) 0 0
\(745\) 14.1908 24.5791i 0.519910 0.900510i
\(746\) 0 0
\(747\) −3.58550 12.6279i −0.131186 0.462031i
\(748\) 0 0
\(749\) −22.9650 + 11.1375i −0.839121 + 0.406955i
\(750\) 0 0
\(751\) −10.2994 17.8391i −0.375831 0.650958i 0.614620 0.788823i \(-0.289309\pi\)
−0.990451 + 0.137865i \(0.955976\pi\)
\(752\) 0 0
\(753\) 46.2105 + 5.73491i 1.68400 + 0.208992i
\(754\) 0 0
\(755\) −38.4743 −1.40022
\(756\) 0 0
\(757\) −39.0856 −1.42059 −0.710294 0.703905i \(-0.751438\pi\)
−0.710294 + 0.703905i \(0.751438\pi\)
\(758\) 0 0
\(759\) 8.70647 + 1.08051i 0.316025 + 0.0392200i
\(760\) 0 0
\(761\) 14.4436 + 25.0171i 0.523581 + 0.906868i 0.999623 + 0.0274459i \(0.00873741\pi\)
−0.476043 + 0.879422i \(0.657929\pi\)
\(762\) 0 0
\(763\) −2.23242 + 30.9347i −0.0808191 + 1.11991i
\(764\) 0 0
\(765\) −25.0520 + 25.8075i −0.905757 + 0.933072i
\(766\) 0 0
\(767\) 8.74236 15.1422i 0.315668 0.546753i
\(768\) 0 0
\(769\) −11.1407 + 19.2962i −0.401742 + 0.695838i −0.993936 0.109957i \(-0.964929\pi\)
0.592194 + 0.805796i \(0.298262\pi\)
\(770\) 0 0
\(771\) 7.43021 + 17.5679i 0.267592 + 0.632693i
\(772\) 0 0
\(773\) −21.3593 36.9955i −0.768242 1.33063i −0.938515 0.345238i \(-0.887798\pi\)
0.170273 0.985397i \(-0.445535\pi\)
\(774\) 0 0
\(775\) −18.0359 + 31.2391i −0.647868 + 1.12214i
\(776\) 0 0
\(777\) −22.9857 + 7.82404i −0.824608 + 0.280686i
\(778\) 0 0
\(779\) 23.6558 + 40.9731i 0.847558 + 1.46801i
\(780\) 0 0
\(781\) 0.474151 0.821254i 0.0169665 0.0293868i
\(782\) 0 0
\(783\) 1.42777 + 9.24784i 0.0510245 + 0.330491i
\(784\) 0 0
\(785\) −28.3465 49.0976i −1.01173 1.75237i
\(786\) 0 0
\(787\) 0.286769 0.0102222 0.00511110 0.999987i \(-0.498373\pi\)
0.00511110 + 0.999987i \(0.498373\pi\)
\(788\) 0 0
\(789\) 7.63388 10.1032i 0.271773 0.359682i
\(790\) 0 0
\(791\) −13.7588 + 6.67270i −0.489205 + 0.237254i
\(792\) 0 0
\(793\) 16.1239 27.9274i 0.572577 0.991732i
\(794\) 0 0
\(795\) 9.44576 12.5011i 0.335007 0.443369i
\(796\) 0 0
\(797\) −0.457746 + 0.792840i −0.0162142 + 0.0280838i −0.874019 0.485892i \(-0.838495\pi\)
0.857804 + 0.513976i \(0.171828\pi\)
\(798\) 0 0
\(799\) 3.39026 + 5.87211i 0.119939 + 0.207740i
\(800\) 0 0
\(801\) 24.3800 25.1153i 0.861426 0.887405i
\(802\) 0 0
\(803\) 1.25687 0.0443538
\(804\) 0 0
\(805\) 57.5276 27.8996i 2.02758 0.983333i
\(806\) 0 0
\(807\) 2.80737 + 6.63771i 0.0988239 + 0.233659i
\(808\) 0 0
\(809\) −14.3721 24.8932i −0.505297 0.875199i −0.999981 0.00612685i \(-0.998050\pi\)
0.494685 0.869073i \(-0.335284\pi\)
\(810\) 0 0
\(811\) −14.3005 −0.502157 −0.251079 0.967967i \(-0.580785\pi\)
−0.251079 + 0.967967i \(0.580785\pi\)
\(812\) 0 0
\(813\) −8.73553 + 11.5611i −0.306368 + 0.405467i
\(814\) 0 0
\(815\) −13.6794 −0.479167
\(816\) 0 0
\(817\) 16.1126 0.563710
\(818\) 0 0
\(819\) −44.4899 + 9.23239i −1.55460 + 0.322606i
\(820\) 0 0
\(821\) 35.6250 1.24332 0.621660 0.783287i \(-0.286458\pi\)
0.621660 + 0.783287i \(0.286458\pi\)
\(822\) 0 0
\(823\) 22.4313 0.781907 0.390953 0.920411i \(-0.372145\pi\)
0.390953 + 0.920411i \(0.372145\pi\)
\(824\) 0 0
\(825\) −7.14164 16.8856i −0.248640 0.587882i
\(826\) 0 0
\(827\) 26.6728 0.927505 0.463753 0.885965i \(-0.346503\pi\)
0.463753 + 0.885965i \(0.346503\pi\)
\(828\) 0 0
\(829\) −16.0078 27.7263i −0.555973 0.962973i −0.997827 0.0658866i \(-0.979012\pi\)
0.441854 0.897087i \(-0.354321\pi\)
\(830\) 0 0
\(831\) −2.92217 + 3.86739i −0.101369 + 0.134158i
\(832\) 0 0
\(833\) 12.5356 15.8983i 0.434331 0.550843i
\(834\) 0 0
\(835\) 49.4297 1.71058
\(836\) 0 0
\(837\) −14.3418 5.56958i −0.495727 0.192513i
\(838\) 0 0
\(839\) −9.10375 15.7682i −0.314296 0.544377i 0.664991 0.746851i \(-0.268435\pi\)
−0.979288 + 0.202474i \(0.935102\pi\)
\(840\) 0 0
\(841\) 12.8785 22.3062i 0.444086 0.769180i
\(842\) 0 0
\(843\) 7.34490 + 17.3662i 0.252972 + 0.598124i
\(844\) 0 0
\(845\) −40.9778 + 70.9757i −1.40968 + 2.44164i
\(846\) 0 0
\(847\) 1.95104 27.0356i 0.0670386 0.928956i
\(848\) 0 0
\(849\) −3.47939 0.431807i −0.119412 0.0148196i
\(850\) 0 0
\(851\) 30.8891 1.05886
\(852\) 0 0
\(853\) 20.9242 + 36.2419i 0.716432 + 1.24090i 0.962404 + 0.271621i \(0.0875596\pi\)
−0.245972 + 0.969277i \(0.579107\pi\)
\(854\) 0 0
\(855\) −48.4029 12.2019i −1.65534 0.417297i
\(856\) 0 0
\(857\) −7.85704 + 13.6088i −0.268391 + 0.464867i −0.968447 0.249221i \(-0.919825\pi\)
0.700055 + 0.714089i \(0.253159\pi\)
\(858\) 0 0
\(859\) 12.1023 + 20.9618i 0.412924 + 0.715206i 0.995208 0.0977797i \(-0.0311741\pi\)
−0.582284 + 0.812986i \(0.697841\pi\)
\(860\) 0 0
\(861\) −51.1315 + 17.4045i −1.74256 + 0.593144i
\(862\) 0 0
\(863\) −26.0542 + 45.1272i −0.886896 + 1.53615i −0.0433714 + 0.999059i \(0.513810\pi\)
−0.843525 + 0.537090i \(0.819523\pi\)
\(864\) 0 0
\(865\) 19.9672 + 34.5842i 0.678904 + 1.17590i
\(866\) 0 0
\(867\) −9.01619 + 11.9326i −0.306206 + 0.405252i
\(868\) 0 0
\(869\) 0.925022 1.60219i 0.0313792 0.0543504i
\(870\) 0 0
\(871\) 7.18662 12.4476i 0.243509 0.421770i
\(872\) 0 0
\(873\) −6.53530 23.0169i −0.221186 0.779006i
\(874\) 0 0
\(875\) −65.2078 44.1949i −2.20443 1.49406i
\(876\) 0 0
\(877\) 6.98841 + 12.1043i 0.235982 + 0.408733i 0.959558 0.281512i \(-0.0908360\pi\)
−0.723576 + 0.690245i \(0.757503\pi\)
\(878\) 0 0
\(879\) 20.1619 26.6835i 0.680042 0.900011i
\(880\) 0 0
\(881\) 28.1210 0.947421 0.473710 0.880681i \(-0.342914\pi\)
0.473710 + 0.880681i \(0.342914\pi\)
\(882\) 0 0
\(883\) 35.1633 1.18334 0.591670 0.806180i \(-0.298469\pi\)
0.591670 + 0.806180i \(0.298469\pi\)
\(884\) 0 0
\(885\) 8.54208 + 20.1968i 0.287139 + 0.678909i
\(886\) 0 0
\(887\) −13.4610 23.3151i −0.451975 0.782844i 0.546533 0.837437i \(-0.315947\pi\)
−0.998509 + 0.0545932i \(0.982614\pi\)
\(888\) 0 0
\(889\) 14.1804 + 9.61081i 0.475594 + 0.322336i
\(890\) 0 0
\(891\) 6.65296 4.10929i 0.222882 0.137666i
\(892\) 0 0
\(893\) −4.70520 + 8.14965i −0.157454 + 0.272718i
\(894\) 0 0
\(895\) 47.7880 82.7713i 1.59738 2.76674i
\(896\) 0 0
\(897\) 57.3640 + 7.11911i 1.91533 + 0.237700i
\(898\) 0 0
\(899\) −2.66605 4.61774i −0.0889179 0.154010i
\(900\) 0 0
\(901\) −3.15594 + 5.46625i −0.105140 + 0.182107i
\(902\) 0 0
\(903\) −3.57355 + 18.0443i −0.118920 + 0.600475i
\(904\) 0 0
\(905\) 24.5241 + 42.4769i 0.815207 + 1.41198i
\(906\) 0 0
\(907\) −22.3571 + 38.7236i −0.742355 + 1.28580i 0.209065 + 0.977902i \(0.432958\pi\)
−0.951420 + 0.307895i \(0.900375\pi\)
\(908\) 0 0
\(909\) 7.86455 8.10173i 0.260851 0.268717i
\(910\) 0 0
\(911\) 13.7822 + 23.8715i 0.456626 + 0.790899i 0.998780 0.0493800i \(-0.0157246\pi\)
−0.542154 + 0.840279i \(0.682391\pi\)
\(912\) 0 0
\(913\) −3.80185 −0.125823
\(914\) 0 0
\(915\) 15.7545 + 37.2499i 0.520829 + 1.23144i
\(916\) 0 0
\(917\) −3.37650 + 46.7882i −0.111502 + 1.54508i
\(918\) 0 0
\(919\) 21.3836 37.0376i 0.705381 1.22176i −0.261173 0.965292i \(-0.584109\pi\)
0.966554 0.256464i \(-0.0825575\pi\)
\(920\) 0 0
\(921\) −22.5821 2.80253i −0.744105 0.0923464i
\(922\) 0 0
\(923\) 3.12402 5.41096i 0.102828 0.178104i
\(924\) 0 0
\(925\) −32.2750 55.9019i −1.06119 1.83804i
\(926\) 0 0
\(927\) 8.89519 + 31.3283i 0.292156 + 1.02896i
\(928\) 0 0
\(929\) 47.9497 1.57318 0.786589 0.617477i \(-0.211845\pi\)
0.786589 + 0.617477i \(0.211845\pi\)
\(930\) 0 0
\(931\) 27.8072 + 4.03446i 0.911346 + 0.132224i
\(932\) 0 0
\(933\) −23.2599 2.88665i −0.761495 0.0945046i
\(934\) 0 0
\(935\) 5.20838 + 9.02118i 0.170332 + 0.295024i
\(936\) 0 0
\(937\) 33.9136 1.10791 0.553955 0.832547i \(-0.313118\pi\)
0.553955 + 0.832547i \(0.313118\pi\)
\(938\) 0 0
\(939\) 43.3154 + 5.37562i 1.41354 + 0.175427i
\(940\) 0 0
\(941\) −8.54790 −0.278654 −0.139327 0.990246i \(-0.544494\pi\)
−0.139327 + 0.990246i \(0.544494\pi\)
\(942\) 0 0
\(943\) 68.7125 2.23759
\(944\) 0 0
\(945\) 24.3997 51.4993i 0.793724 1.67527i
\(946\) 0 0
\(947\) −0.823127 −0.0267480 −0.0133740 0.999911i \(-0.504257\pi\)
−0.0133740 + 0.999911i \(0.504257\pi\)
\(948\) 0 0
\(949\) 8.28106 0.268815
\(950\) 0 0
\(951\) 21.1382 + 2.62334i 0.685453 + 0.0850675i
\(952\) 0 0
\(953\) −44.6726 −1.44709 −0.723544 0.690278i \(-0.757488\pi\)
−0.723544 + 0.690278i \(0.757488\pi\)
\(954\) 0 0
\(955\) −13.0264 22.5625i −0.421526 0.730104i
\(956\) 0 0
\(957\) 2.68945 + 0.333772i 0.0869377 + 0.0107893i
\(958\) 0 0
\(959\) 6.48065 3.14298i 0.209271 0.101492i
\(960\) 0 0
\(961\) −22.2330 −0.717194
\(962\) 0 0
\(963\) 20.1579 20.7658i 0.649578 0.669168i
\(964\) 0 0
\(965\) −28.4592 49.2928i −0.916135 1.58679i
\(966\) 0 0
\(967\) 18.2289 31.5735i 0.586203 1.01533i −0.408521 0.912749i \(-0.633955\pi\)
0.994724 0.102585i \(-0.0327114\pi\)
\(968\) 0 0
\(969\) 19.9555 + 2.47656i 0.641064 + 0.0795587i
\(970\) 0 0
\(971\) −8.63674 + 14.9593i −0.277166 + 0.480066i −0.970679 0.240378i \(-0.922729\pi\)
0.693513 + 0.720444i \(0.256062\pi\)
\(972\) 0 0
\(973\) 41.2043 19.9832i 1.32095 0.640631i
\(974\) 0 0
\(975\) −47.0538 111.254i −1.50693 3.56297i
\(976\) 0 0
\(977\) 9.03550 0.289071 0.144536 0.989500i \(-0.453831\pi\)
0.144536 + 0.989500i \(0.453831\pi\)
\(978\) 0 0
\(979\) −5.06868 8.77921i −0.161996 0.280585i
\(980\) 0 0
\(981\) −9.60567 33.8306i −0.306686 1.08013i
\(982\) 0 0
\(983\) −11.4286 + 19.7950i −0.364517 + 0.631362i −0.988698 0.149918i \(-0.952099\pi\)
0.624182 + 0.781279i \(0.285432\pi\)
\(984\) 0 0
\(985\) 0.334715 + 0.579743i 0.0106649 + 0.0184722i
\(986\) 0 0
\(987\) −8.08310 7.07675i −0.257288 0.225255i
\(988\) 0 0
\(989\) 11.7005 20.2659i 0.372055 0.644417i
\(990\) 0 0
\(991\) 4.37884 + 7.58437i 0.139098 + 0.240925i 0.927156 0.374677i \(-0.122246\pi\)
−0.788057 + 0.615602i \(0.788913\pi\)
\(992\) 0 0
\(993\) −34.2496 4.25051i −1.08688 0.134886i
\(994\) 0 0
\(995\) 51.4584 89.1285i 1.63134 2.82556i
\(996\) 0 0
\(997\) −3.46535 + 6.00216i −0.109749 + 0.190090i −0.915668 0.401934i \(-0.868338\pi\)
0.805920 + 0.592025i \(0.201671\pi\)
\(998\) 0 0
\(999\) 21.4637 17.2428i 0.679081 0.545538i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.q.j.625.1 14
3.2 odd 2 3024.2.q.j.2305.7 14
4.3 odd 2 252.2.i.b.121.7 yes 14
7.4 even 3 1008.2.t.j.193.5 14
9.2 odd 6 3024.2.t.j.289.1 14
9.7 even 3 1008.2.t.j.961.5 14
12.11 even 2 756.2.i.b.37.7 14
21.11 odd 6 3024.2.t.j.1873.1 14
28.3 even 6 1764.2.l.i.949.5 14
28.11 odd 6 252.2.l.b.193.3 yes 14
28.19 even 6 1764.2.j.h.589.5 14
28.23 odd 6 1764.2.j.g.589.3 14
28.27 even 2 1764.2.i.i.373.1 14
36.7 odd 6 252.2.l.b.205.3 yes 14
36.11 even 6 756.2.l.b.289.1 14
36.23 even 6 2268.2.k.f.1297.7 14
36.31 odd 6 2268.2.k.e.1297.1 14
63.11 odd 6 3024.2.q.j.2881.7 14
63.25 even 3 inner 1008.2.q.j.529.1 14
84.11 even 6 756.2.l.b.361.1 14
84.23 even 6 5292.2.j.h.1765.7 14
84.47 odd 6 5292.2.j.g.1765.1 14
84.59 odd 6 5292.2.l.i.361.7 14
84.83 odd 2 5292.2.i.i.1549.1 14
252.11 even 6 756.2.i.b.613.7 14
252.47 odd 6 5292.2.j.g.3529.1 14
252.67 odd 6 2268.2.k.e.1621.1 14
252.79 odd 6 1764.2.j.g.1177.3 14
252.83 odd 6 5292.2.l.i.3313.7 14
252.95 even 6 2268.2.k.f.1621.7 14
252.115 even 6 1764.2.i.i.1537.1 14
252.151 odd 6 252.2.i.b.25.7 14
252.187 even 6 1764.2.j.h.1177.5 14
252.191 even 6 5292.2.j.h.3529.7 14
252.223 even 6 1764.2.l.i.961.5 14
252.227 odd 6 5292.2.i.i.2125.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.7 14 252.151 odd 6
252.2.i.b.121.7 yes 14 4.3 odd 2
252.2.l.b.193.3 yes 14 28.11 odd 6
252.2.l.b.205.3 yes 14 36.7 odd 6
756.2.i.b.37.7 14 12.11 even 2
756.2.i.b.613.7 14 252.11 even 6
756.2.l.b.289.1 14 36.11 even 6
756.2.l.b.361.1 14 84.11 even 6
1008.2.q.j.529.1 14 63.25 even 3 inner
1008.2.q.j.625.1 14 1.1 even 1 trivial
1008.2.t.j.193.5 14 7.4 even 3
1008.2.t.j.961.5 14 9.7 even 3
1764.2.i.i.373.1 14 28.27 even 2
1764.2.i.i.1537.1 14 252.115 even 6
1764.2.j.g.589.3 14 28.23 odd 6
1764.2.j.g.1177.3 14 252.79 odd 6
1764.2.j.h.589.5 14 28.19 even 6
1764.2.j.h.1177.5 14 252.187 even 6
1764.2.l.i.949.5 14 28.3 even 6
1764.2.l.i.961.5 14 252.223 even 6
2268.2.k.e.1297.1 14 36.31 odd 6
2268.2.k.e.1621.1 14 252.67 odd 6
2268.2.k.f.1297.7 14 36.23 even 6
2268.2.k.f.1621.7 14 252.95 even 6
3024.2.q.j.2305.7 14 3.2 odd 2
3024.2.q.j.2881.7 14 63.11 odd 6
3024.2.t.j.289.1 14 9.2 odd 6
3024.2.t.j.1873.1 14 21.11 odd 6
5292.2.i.i.1549.1 14 84.83 odd 2
5292.2.i.i.2125.1 14 252.227 odd 6
5292.2.j.g.1765.1 14 84.47 odd 6
5292.2.j.g.3529.1 14 252.47 odd 6
5292.2.j.h.1765.7 14 84.23 even 6
5292.2.j.h.3529.7 14 252.191 even 6
5292.2.l.i.361.7 14 84.59 odd 6
5292.2.l.i.3313.7 14 252.83 odd 6