Properties

Label 1008.2.t.j.193.5
Level $1008$
Weight $2$
Character 1008.193
Analytic conductor $8.049$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(193,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 193.5
Root \(-0.674693 + 1.59524i\) of defining polynomial
Character \(\chi\) \(=\) 1008.193
Dual form 1008.2.t.j.961.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.674693 + 1.59524i) q^{3} +4.14520 q^{5} +(-0.190437 - 2.63889i) q^{7} +(-2.08958 + 2.15260i) q^{9} -0.868858 q^{11} +(2.86231 - 4.95766i) q^{13} +(2.79674 + 6.61258i) q^{15} +(-1.44613 + 2.50478i) q^{17} +(2.00703 + 3.47627i) q^{19} +(4.08117 - 2.08423i) q^{21} +5.82977 q^{23} +12.1827 q^{25} +(-4.84373 - 1.88104i) q^{27} +(-0.900417 - 1.55957i) q^{29} +(-1.48046 - 2.56422i) q^{31} +(-0.586213 - 1.38604i) q^{33} +(-0.789399 - 10.9387i) q^{35} +(-2.64925 - 4.58864i) q^{37} +(9.83984 + 1.22116i) q^{39} +(-5.89325 + 10.2074i) q^{41} +(2.00703 + 3.47627i) q^{43} +(-8.66171 + 8.92293i) q^{45} +(1.17218 - 2.03028i) q^{47} +(-6.92747 + 1.00508i) q^{49} +(-4.97142 - 0.616973i) q^{51} +(-1.09116 + 1.88995i) q^{53} -3.60159 q^{55} +(-4.19136 + 5.54711i) q^{57} +(-1.52715 - 2.64510i) q^{59} +(-2.81659 + 4.87848i) q^{61} +(6.07839 + 5.10423i) q^{63} +(11.8648 - 20.5505i) q^{65} +(-1.25539 - 2.17440i) q^{67} +(3.93331 + 9.29988i) q^{69} +1.09143 q^{71} +(0.723285 - 1.25277i) q^{73} +(8.21956 + 19.4343i) q^{75} +(0.165463 + 2.29282i) q^{77} +(-1.06464 + 1.84401i) q^{79} +(-0.267330 - 8.99603i) q^{81} +(-2.18784 - 3.78946i) q^{83} +(-5.99451 + 10.3828i) q^{85} +(1.88038 - 2.48861i) q^{87} +(5.83373 + 10.1043i) q^{89} +(-13.6278 - 6.60919i) q^{91} +(3.09170 - 4.09174i) q^{93} +(8.31953 + 14.4098i) q^{95} +(-3.98779 - 6.90706i) q^{97} +(1.81555 - 1.87030i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 4 q^{5} + 3 q^{7} + 10 q^{9} + 4 q^{11} + 2 q^{13} - 7 q^{15} + 2 q^{17} - 7 q^{19} - 2 q^{21} + 22 q^{23} + 18 q^{25} - 9 q^{27} + q^{29} + q^{31} + 5 q^{33} + 19 q^{35} + 10 q^{37} + 20 q^{39}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.674693 + 1.59524i 0.389534 + 0.921012i
\(4\) 0 0
\(5\) 4.14520 1.85379 0.926894 0.375322i \(-0.122468\pi\)
0.926894 + 0.375322i \(0.122468\pi\)
\(6\) 0 0
\(7\) −0.190437 2.63889i −0.0719784 0.997406i
\(8\) 0 0
\(9\) −2.08958 + 2.15260i −0.696526 + 0.717532i
\(10\) 0 0
\(11\) −0.868858 −0.261971 −0.130985 0.991384i \(-0.541814\pi\)
−0.130985 + 0.991384i \(0.541814\pi\)
\(12\) 0 0
\(13\) 2.86231 4.95766i 0.793861 1.37501i −0.129698 0.991554i \(-0.541401\pi\)
0.923560 0.383455i \(-0.125266\pi\)
\(14\) 0 0
\(15\) 2.79674 + 6.61258i 0.722115 + 1.70736i
\(16\) 0 0
\(17\) −1.44613 + 2.50478i −0.350739 + 0.607498i −0.986379 0.164488i \(-0.947403\pi\)
0.635640 + 0.771986i \(0.280736\pi\)
\(18\) 0 0
\(19\) 2.00703 + 3.47627i 0.460444 + 0.797512i 0.998983 0.0450884i \(-0.0143570\pi\)
−0.538539 + 0.842600i \(0.681024\pi\)
\(20\) 0 0
\(21\) 4.08117 2.08423i 0.890585 0.454817i
\(22\) 0 0
\(23\) 5.82977 1.21559 0.607795 0.794094i \(-0.292054\pi\)
0.607795 + 0.794094i \(0.292054\pi\)
\(24\) 0 0
\(25\) 12.1827 2.43653
\(26\) 0 0
\(27\) −4.84373 1.88104i −0.932176 0.362005i
\(28\) 0 0
\(29\) −0.900417 1.55957i −0.167203 0.289604i 0.770232 0.637763i \(-0.220140\pi\)
−0.937435 + 0.348159i \(0.886807\pi\)
\(30\) 0 0
\(31\) −1.48046 2.56422i −0.265898 0.460548i 0.701901 0.712275i \(-0.252335\pi\)
−0.967798 + 0.251727i \(0.919002\pi\)
\(32\) 0 0
\(33\) −0.586213 1.38604i −0.102047 0.241278i
\(34\) 0 0
\(35\) −0.789399 10.9387i −0.133433 1.84898i
\(36\) 0 0
\(37\) −2.64925 4.58864i −0.435535 0.754368i 0.561804 0.827270i \(-0.310107\pi\)
−0.997339 + 0.0729017i \(0.976774\pi\)
\(38\) 0 0
\(39\) 9.83984 + 1.22116i 1.57564 + 0.195543i
\(40\) 0 0
\(41\) −5.89325 + 10.2074i −0.920371 + 1.59413i −0.121528 + 0.992588i \(0.538780\pi\)
−0.798842 + 0.601541i \(0.794554\pi\)
\(42\) 0 0
\(43\) 2.00703 + 3.47627i 0.306069 + 0.530127i 0.977499 0.210941i \(-0.0676529\pi\)
−0.671430 + 0.741068i \(0.734320\pi\)
\(44\) 0 0
\(45\) −8.66171 + 8.92293i −1.29121 + 1.33015i
\(46\) 0 0
\(47\) 1.17218 2.03028i 0.170980 0.296147i −0.767783 0.640711i \(-0.778640\pi\)
0.938763 + 0.344564i \(0.111973\pi\)
\(48\) 0 0
\(49\) −6.92747 + 1.00508i −0.989638 + 0.143583i
\(50\) 0 0
\(51\) −4.97142 0.616973i −0.696138 0.0863935i
\(52\) 0 0
\(53\) −1.09116 + 1.88995i −0.149883 + 0.259605i −0.931184 0.364549i \(-0.881223\pi\)
0.781301 + 0.624154i \(0.214556\pi\)
\(54\) 0 0
\(55\) −3.60159 −0.485638
\(56\) 0 0
\(57\) −4.19136 + 5.54711i −0.555159 + 0.734733i
\(58\) 0 0
\(59\) −1.52715 2.64510i −0.198818 0.344363i 0.749327 0.662200i \(-0.230377\pi\)
−0.948146 + 0.317837i \(0.897044\pi\)
\(60\) 0 0
\(61\) −2.81659 + 4.87848i −0.360628 + 0.624625i −0.988064 0.154042i \(-0.950771\pi\)
0.627437 + 0.778668i \(0.284104\pi\)
\(62\) 0 0
\(63\) 6.07839 + 5.10423i 0.765805 + 0.643072i
\(64\) 0 0
\(65\) 11.8648 20.5505i 1.47165 2.54898i
\(66\) 0 0
\(67\) −1.25539 2.17440i −0.153370 0.265645i 0.779094 0.626907i \(-0.215679\pi\)
−0.932464 + 0.361262i \(0.882346\pi\)
\(68\) 0 0
\(69\) 3.93331 + 9.29988i 0.473514 + 1.11957i
\(70\) 0 0
\(71\) 1.09143 0.129529 0.0647647 0.997901i \(-0.479370\pi\)
0.0647647 + 0.997901i \(0.479370\pi\)
\(72\) 0 0
\(73\) 0.723285 1.25277i 0.0846541 0.146625i −0.820590 0.571518i \(-0.806355\pi\)
0.905244 + 0.424893i \(0.139688\pi\)
\(74\) 0 0
\(75\) 8.21956 + 19.4343i 0.949113 + 2.24408i
\(76\) 0 0
\(77\) 0.165463 + 2.29282i 0.0188562 + 0.261291i
\(78\) 0 0
\(79\) −1.06464 + 1.84401i −0.119781 + 0.207468i −0.919681 0.392666i \(-0.871553\pi\)
0.799900 + 0.600134i \(0.204886\pi\)
\(80\) 0 0
\(81\) −0.267330 8.99603i −0.0297034 0.999559i
\(82\) 0 0
\(83\) −2.18784 3.78946i −0.240147 0.415947i 0.720609 0.693342i \(-0.243862\pi\)
−0.960756 + 0.277395i \(0.910529\pi\)
\(84\) 0 0
\(85\) −5.99451 + 10.3828i −0.650196 + 1.12617i
\(86\) 0 0
\(87\) 1.88038 2.48861i 0.201598 0.266807i
\(88\) 0 0
\(89\) 5.83373 + 10.1043i 0.618374 + 1.07105i 0.989783 + 0.142585i \(0.0455415\pi\)
−0.371409 + 0.928469i \(0.621125\pi\)
\(90\) 0 0
\(91\) −13.6278 6.60919i −1.42858 0.692831i
\(92\) 0 0
\(93\) 3.09170 4.09174i 0.320594 0.424294i
\(94\) 0 0
\(95\) 8.31953 + 14.4098i 0.853566 + 1.47842i
\(96\) 0 0
\(97\) −3.98779 6.90706i −0.404899 0.701306i 0.589411 0.807834i \(-0.299360\pi\)
−0.994310 + 0.106528i \(0.966027\pi\)
\(98\) 0 0
\(99\) 1.81555 1.87030i 0.182469 0.187972i
\(100\) 0 0
\(101\) −3.76370 −0.374502 −0.187251 0.982312i \(-0.559958\pi\)
−0.187251 + 0.982312i \(0.559958\pi\)
\(102\) 0 0
\(103\) −10.8556 −1.06963 −0.534815 0.844969i \(-0.679619\pi\)
−0.534815 + 0.844969i \(0.679619\pi\)
\(104\) 0 0
\(105\) 16.9173 8.63956i 1.65096 0.843135i
\(106\) 0 0
\(107\) 4.82343 + 8.35442i 0.466298 + 0.807653i 0.999259 0.0384875i \(-0.0122540\pi\)
−0.532961 + 0.846140i \(0.678921\pi\)
\(108\) 0 0
\(109\) −5.86131 + 10.1521i −0.561412 + 0.972394i 0.435962 + 0.899965i \(0.356408\pi\)
−0.997374 + 0.0724288i \(0.976925\pi\)
\(110\) 0 0
\(111\) 5.53255 7.32212i 0.525127 0.694985i
\(112\) 0 0
\(113\) 2.88981 5.00530i 0.271851 0.470859i −0.697485 0.716599i \(-0.745698\pi\)
0.969336 + 0.245740i \(0.0790310\pi\)
\(114\) 0 0
\(115\) 24.1655 2.25345
\(116\) 0 0
\(117\) 4.69083 + 16.5208i 0.433667 + 1.52735i
\(118\) 0 0
\(119\) 6.88523 + 3.33918i 0.631168 + 0.306103i
\(120\) 0 0
\(121\) −10.2451 −0.931371
\(122\) 0 0
\(123\) −20.2594 2.51427i −1.82673 0.226704i
\(124\) 0 0
\(125\) 29.7736 2.66303
\(126\) 0 0
\(127\) −6.47468 −0.574535 −0.287268 0.957850i \(-0.592747\pi\)
−0.287268 + 0.957850i \(0.592747\pi\)
\(128\) 0 0
\(129\) −4.19136 + 5.54711i −0.369029 + 0.488396i
\(130\) 0 0
\(131\) 17.7303 1.54910 0.774551 0.632511i \(-0.217976\pi\)
0.774551 + 0.632511i \(0.217976\pi\)
\(132\) 0 0
\(133\) 8.79129 5.95833i 0.762301 0.516653i
\(134\) 0 0
\(135\) −20.0782 7.79726i −1.72806 0.671081i
\(136\) 0 0
\(137\) 2.72232 0.232583 0.116292 0.993215i \(-0.462899\pi\)
0.116292 + 0.993215i \(0.462899\pi\)
\(138\) 0 0
\(139\) −8.65431 + 14.9897i −0.734049 + 1.27141i 0.221090 + 0.975253i \(0.429038\pi\)
−0.955139 + 0.296157i \(0.904295\pi\)
\(140\) 0 0
\(141\) 4.02964 + 0.500095i 0.339357 + 0.0421156i
\(142\) 0 0
\(143\) −2.48694 + 4.30751i −0.207968 + 0.360212i
\(144\) 0 0
\(145\) −3.73241 6.46472i −0.309959 0.536865i
\(146\) 0 0
\(147\) −6.27727 10.3728i −0.517740 0.855538i
\(148\) 0 0
\(149\) −6.84685 −0.560916 −0.280458 0.959866i \(-0.590486\pi\)
−0.280458 + 0.959866i \(0.590486\pi\)
\(150\) 0 0
\(151\) −9.28166 −0.755331 −0.377666 0.925942i \(-0.623273\pi\)
−0.377666 + 0.925942i \(0.623273\pi\)
\(152\) 0 0
\(153\) −2.36996 8.34687i −0.191600 0.674804i
\(154\) 0 0
\(155\) −6.13678 10.6292i −0.492918 0.853759i
\(156\) 0 0
\(157\) −6.83840 11.8445i −0.545764 0.945291i −0.998558 0.0536759i \(-0.982906\pi\)
0.452795 0.891615i \(-0.350427\pi\)
\(158\) 0 0
\(159\) −3.75113 0.465530i −0.297484 0.0369189i
\(160\) 0 0
\(161\) −1.11020 15.3841i −0.0874963 1.21244i
\(162\) 0 0
\(163\) 1.65003 + 2.85793i 0.129240 + 0.223850i 0.923382 0.383882i \(-0.125413\pi\)
−0.794142 + 0.607732i \(0.792080\pi\)
\(164\) 0 0
\(165\) −2.42997 5.74540i −0.189173 0.447279i
\(166\) 0 0
\(167\) −5.96228 + 10.3270i −0.461375 + 0.799125i −0.999030 0.0440399i \(-0.985977\pi\)
0.537655 + 0.843165i \(0.319310\pi\)
\(168\) 0 0
\(169\) −9.88562 17.1224i −0.760432 1.31711i
\(170\) 0 0
\(171\) −11.6769 2.94363i −0.892951 0.225105i
\(172\) 0 0
\(173\) 4.81694 8.34319i 0.366225 0.634321i −0.622747 0.782424i \(-0.713983\pi\)
0.988972 + 0.148103i \(0.0473166\pi\)
\(174\) 0 0
\(175\) −2.32003 32.1487i −0.175378 2.43021i
\(176\) 0 0
\(177\) 3.18922 4.22081i 0.239716 0.317255i
\(178\) 0 0
\(179\) 11.5285 19.9680i 0.861682 1.49248i −0.00862183 0.999963i \(-0.502744\pi\)
0.870304 0.492515i \(-0.163922\pi\)
\(180\) 0 0
\(181\) −11.8325 −0.879504 −0.439752 0.898119i \(-0.644934\pi\)
−0.439752 + 0.898119i \(0.644934\pi\)
\(182\) 0 0
\(183\) −9.68268 1.20166i −0.715764 0.0888292i
\(184\) 0 0
\(185\) −10.9817 19.0208i −0.807390 1.39844i
\(186\) 0 0
\(187\) 1.25649 2.17630i 0.0918833 0.159147i
\(188\) 0 0
\(189\) −4.04142 + 13.1403i −0.293970 + 0.955815i
\(190\) 0 0
\(191\) −3.14254 + 5.44303i −0.227386 + 0.393844i −0.957033 0.289980i \(-0.906351\pi\)
0.729647 + 0.683824i \(0.239685\pi\)
\(192\) 0 0
\(193\) −6.86559 11.8915i −0.494196 0.855972i 0.505782 0.862661i \(-0.331204\pi\)
−0.999978 + 0.00668919i \(0.997871\pi\)
\(194\) 0 0
\(195\) 40.7881 + 5.06197i 2.92090 + 0.362495i
\(196\) 0 0
\(197\) −0.161495 −0.0115061 −0.00575303 0.999983i \(-0.501831\pi\)
−0.00575303 + 0.999983i \(0.501831\pi\)
\(198\) 0 0
\(199\) 12.4140 21.5016i 0.880003 1.52421i 0.0286672 0.999589i \(-0.490874\pi\)
0.851336 0.524621i \(-0.175793\pi\)
\(200\) 0 0
\(201\) 2.62168 3.46970i 0.184919 0.244733i
\(202\) 0 0
\(203\) −3.94405 + 2.67310i −0.276818 + 0.187615i
\(204\) 0 0
\(205\) −24.4287 + 42.3117i −1.70617 + 2.95518i
\(206\) 0 0
\(207\) −12.1818 + 12.5491i −0.846690 + 0.872225i
\(208\) 0 0
\(209\) −1.74382 3.02039i −0.120623 0.208925i
\(210\) 0 0
\(211\) −9.44607 + 16.3611i −0.650295 + 1.12634i 0.332757 + 0.943013i \(0.392021\pi\)
−0.983051 + 0.183331i \(0.941312\pi\)
\(212\) 0 0
\(213\) 0.736384 + 1.74110i 0.0504562 + 0.119298i
\(214\) 0 0
\(215\) 8.31953 + 14.4098i 0.567387 + 0.982743i
\(216\) 0 0
\(217\) −6.48477 + 4.39508i −0.440215 + 0.298357i
\(218\) 0 0
\(219\) 2.48646 + 0.308580i 0.168019 + 0.0208519i
\(220\) 0 0
\(221\) 8.27856 + 14.3389i 0.556876 + 0.964538i
\(222\) 0 0
\(223\) −7.04717 12.2061i −0.471914 0.817378i 0.527570 0.849512i \(-0.323103\pi\)
−0.999484 + 0.0321333i \(0.989770\pi\)
\(224\) 0 0
\(225\) −25.4566 + 26.2243i −1.69711 + 1.74829i
\(226\) 0 0
\(227\) −25.9782 −1.72424 −0.862118 0.506708i \(-0.830862\pi\)
−0.862118 + 0.506708i \(0.830862\pi\)
\(228\) 0 0
\(229\) 24.9157 1.64648 0.823239 0.567695i \(-0.192165\pi\)
0.823239 + 0.567695i \(0.192165\pi\)
\(230\) 0 0
\(231\) −3.54596 + 1.81090i −0.233307 + 0.119149i
\(232\) 0 0
\(233\) −3.05923 5.29874i −0.200417 0.347132i 0.748246 0.663421i \(-0.230896\pi\)
−0.948663 + 0.316289i \(0.897563\pi\)
\(234\) 0 0
\(235\) 4.85893 8.41591i 0.316961 0.548993i
\(236\) 0 0
\(237\) −3.65995 0.454214i −0.237739 0.0295044i
\(238\) 0 0
\(239\) 7.71988 13.3712i 0.499357 0.864912i −0.500643 0.865654i \(-0.666903\pi\)
1.00000 0.000742080i \(0.000236211\pi\)
\(240\) 0 0
\(241\) 9.84518 0.634183 0.317092 0.948395i \(-0.397294\pi\)
0.317092 + 0.948395i \(0.397294\pi\)
\(242\) 0 0
\(243\) 14.1705 6.49602i 0.909035 0.416720i
\(244\) 0 0
\(245\) −28.7157 + 4.16627i −1.83458 + 0.266173i
\(246\) 0 0
\(247\) 22.9789 1.46211
\(248\) 0 0
\(249\) 4.56897 6.04685i 0.289546 0.383204i
\(250\) 0 0
\(251\) −26.8843 −1.69692 −0.848461 0.529258i \(-0.822470\pi\)
−0.848461 + 0.529258i \(0.822470\pi\)
\(252\) 0 0
\(253\) −5.06524 −0.318449
\(254\) 0 0
\(255\) −20.6075 2.55748i −1.29049 0.160155i
\(256\) 0 0
\(257\) 11.0127 0.686954 0.343477 0.939161i \(-0.388395\pi\)
0.343477 + 0.939161i \(0.388395\pi\)
\(258\) 0 0
\(259\) −11.6044 + 7.86494i −0.721063 + 0.488703i
\(260\) 0 0
\(261\) 5.23861 + 1.32060i 0.324262 + 0.0817434i
\(262\) 0 0
\(263\) 7.31095 0.450812 0.225406 0.974265i \(-0.427629\pi\)
0.225406 + 0.974265i \(0.427629\pi\)
\(264\) 0 0
\(265\) −4.52309 + 7.83423i −0.277851 + 0.481253i
\(266\) 0 0
\(267\) −12.1828 + 16.1235i −0.745576 + 0.986742i
\(268\) 0 0
\(269\) −2.08048 + 3.60349i −0.126849 + 0.219709i −0.922454 0.386107i \(-0.873820\pi\)
0.795605 + 0.605815i \(0.207153\pi\)
\(270\) 0 0
\(271\) 4.18300 + 7.24516i 0.254099 + 0.440112i 0.964650 0.263533i \(-0.0848878\pi\)
−0.710551 + 0.703645i \(0.751554\pi\)
\(272\) 0 0
\(273\) 1.34865 26.1988i 0.0816239 1.58562i
\(274\) 0 0
\(275\) −10.5850 −0.638300
\(276\) 0 0
\(277\) −2.79856 −0.168149 −0.0840745 0.996459i \(-0.526793\pi\)
−0.0840745 + 0.996459i \(0.526793\pi\)
\(278\) 0 0
\(279\) 8.61326 + 2.17132i 0.515662 + 0.129994i
\(280\) 0 0
\(281\) −5.44314 9.42779i −0.324710 0.562415i 0.656743 0.754114i \(-0.271933\pi\)
−0.981454 + 0.191699i \(0.938600\pi\)
\(282\) 0 0
\(283\) −1.01212 1.75304i −0.0601642 0.104207i 0.834374 0.551198i \(-0.185829\pi\)
−0.894539 + 0.446990i \(0.852496\pi\)
\(284\) 0 0
\(285\) −17.3740 + 22.9939i −1.02915 + 1.36204i
\(286\) 0 0
\(287\) 28.0585 + 13.6078i 1.65624 + 0.803241i
\(288\) 0 0
\(289\) 4.31739 + 7.47794i 0.253964 + 0.439879i
\(290\) 0 0
\(291\) 8.32788 11.0216i 0.488189 0.646100i
\(292\) 0 0
\(293\) −9.65448 + 16.7220i −0.564021 + 0.976912i 0.433120 + 0.901336i \(0.357413\pi\)
−0.997140 + 0.0755757i \(0.975921\pi\)
\(294\) 0 0
\(295\) −6.33035 10.9645i −0.368567 0.638377i
\(296\) 0 0
\(297\) 4.20851 + 1.63435i 0.244203 + 0.0948348i
\(298\) 0 0
\(299\) 16.6866 28.9020i 0.965011 1.67145i
\(300\) 0 0
\(301\) 8.79129 5.95833i 0.506721 0.343433i
\(302\) 0 0
\(303\) −2.53935 6.00401i −0.145882 0.344921i
\(304\) 0 0
\(305\) −11.6753 + 20.2223i −0.668527 + 1.15792i
\(306\) 0 0
\(307\) 13.1378 0.749813 0.374907 0.927063i \(-0.377675\pi\)
0.374907 + 0.927063i \(0.377675\pi\)
\(308\) 0 0
\(309\) −7.32417 17.3172i −0.416658 0.985142i
\(310\) 0 0
\(311\) −6.76606 11.7192i −0.383668 0.664533i 0.607915 0.794002i \(-0.292006\pi\)
−0.991583 + 0.129469i \(0.958673\pi\)
\(312\) 0 0
\(313\) 12.6000 21.8238i 0.712194 1.23356i −0.251838 0.967770i \(-0.581035\pi\)
0.964032 0.265787i \(-0.0856318\pi\)
\(314\) 0 0
\(315\) 25.1961 + 21.1580i 1.41964 + 1.19212i
\(316\) 0 0
\(317\) 6.14888 10.6502i 0.345356 0.598173i −0.640063 0.768323i \(-0.721092\pi\)
0.985418 + 0.170149i \(0.0544250\pi\)
\(318\) 0 0
\(319\) 0.782335 + 1.35504i 0.0438023 + 0.0758679i
\(320\) 0 0
\(321\) −10.0730 + 13.3312i −0.562218 + 0.744075i
\(322\) 0 0
\(323\) −11.6097 −0.645982
\(324\) 0 0
\(325\) 34.8705 60.3975i 1.93427 3.35025i
\(326\) 0 0
\(327\) −20.1496 2.50065i −1.11428 0.138286i
\(328\) 0 0
\(329\) −5.58091 2.70662i −0.307685 0.149221i
\(330\) 0 0
\(331\) −9.96285 + 17.2562i −0.547608 + 0.948484i 0.450830 + 0.892610i \(0.351128\pi\)
−0.998438 + 0.0558745i \(0.982205\pi\)
\(332\) 0 0
\(333\) 15.4133 + 3.88556i 0.844645 + 0.212927i
\(334\) 0 0
\(335\) −5.20383 9.01330i −0.284316 0.492449i
\(336\) 0 0
\(337\) −0.966380 + 1.67382i −0.0526421 + 0.0911788i −0.891146 0.453717i \(-0.850098\pi\)
0.838504 + 0.544896i \(0.183431\pi\)
\(338\) 0 0
\(339\) 9.93439 + 1.23290i 0.539562 + 0.0669618i
\(340\) 0 0
\(341\) 1.28631 + 2.22795i 0.0696574 + 0.120650i
\(342\) 0 0
\(343\) 3.97155 + 18.0894i 0.214444 + 0.976736i
\(344\) 0 0
\(345\) 16.3043 + 38.5498i 0.877796 + 2.07545i
\(346\) 0 0
\(347\) 8.48241 + 14.6920i 0.455360 + 0.788706i 0.998709 0.0508006i \(-0.0161773\pi\)
−0.543349 + 0.839507i \(0.682844\pi\)
\(348\) 0 0
\(349\) −6.25767 10.8386i −0.334966 0.580177i 0.648513 0.761204i \(-0.275391\pi\)
−0.983478 + 0.181027i \(0.942058\pi\)
\(350\) 0 0
\(351\) −23.1898 + 18.6295i −1.23778 + 0.994368i
\(352\) 0 0
\(353\) 32.3857 1.72372 0.861859 0.507149i \(-0.169300\pi\)
0.861859 + 0.507149i \(0.169300\pi\)
\(354\) 0 0
\(355\) 4.52421 0.240120
\(356\) 0 0
\(357\) −0.681382 + 13.2365i −0.0360626 + 0.700550i
\(358\) 0 0
\(359\) −8.98559 15.5635i −0.474242 0.821410i 0.525323 0.850903i \(-0.323944\pi\)
−0.999565 + 0.0294922i \(0.990611\pi\)
\(360\) 0 0
\(361\) 1.44368 2.50052i 0.0759830 0.131606i
\(362\) 0 0
\(363\) −6.91229 16.3434i −0.362801 0.857804i
\(364\) 0 0
\(365\) 2.99816 5.19297i 0.156931 0.271812i
\(366\) 0 0
\(367\) −8.16840 −0.426387 −0.213194 0.977010i \(-0.568386\pi\)
−0.213194 + 0.977010i \(0.568386\pi\)
\(368\) 0 0
\(369\) −9.65801 34.0149i −0.502776 1.77075i
\(370\) 0 0
\(371\) 5.19517 + 2.51954i 0.269720 + 0.130808i
\(372\) 0 0
\(373\) −5.16161 −0.267258 −0.133629 0.991031i \(-0.542663\pi\)
−0.133629 + 0.991031i \(0.542663\pi\)
\(374\) 0 0
\(375\) 20.0880 + 47.4960i 1.03734 + 2.45268i
\(376\) 0 0
\(377\) −10.3091 −0.530945
\(378\) 0 0
\(379\) −21.0017 −1.07878 −0.539392 0.842055i \(-0.681346\pi\)
−0.539392 + 0.842055i \(0.681346\pi\)
\(380\) 0 0
\(381\) −4.36843 10.3287i −0.223801 0.529154i
\(382\) 0 0
\(383\) −29.5589 −1.51039 −0.755194 0.655501i \(-0.772458\pi\)
−0.755194 + 0.655501i \(0.772458\pi\)
\(384\) 0 0
\(385\) 0.685876 + 9.50419i 0.0349555 + 0.484379i
\(386\) 0 0
\(387\) −11.6769 2.94363i −0.593568 0.149633i
\(388\) 0 0
\(389\) −16.5379 −0.838505 −0.419252 0.907870i \(-0.637708\pi\)
−0.419252 + 0.907870i \(0.637708\pi\)
\(390\) 0 0
\(391\) −8.43063 + 14.6023i −0.426355 + 0.738469i
\(392\) 0 0
\(393\) 11.9625 + 28.2840i 0.603429 + 1.42674i
\(394\) 0 0
\(395\) −4.41315 + 7.64379i −0.222049 + 0.384601i
\(396\) 0 0
\(397\) 15.4394 + 26.7418i 0.774881 + 1.34213i 0.934861 + 0.355014i \(0.115524\pi\)
−0.159980 + 0.987120i \(0.551143\pi\)
\(398\) 0 0
\(399\) 15.4364 + 10.0042i 0.772786 + 0.500835i
\(400\) 0 0
\(401\) 10.6323 0.530951 0.265475 0.964118i \(-0.414471\pi\)
0.265475 + 0.964118i \(0.414471\pi\)
\(402\) 0 0
\(403\) −16.9501 −0.844343
\(404\) 0 0
\(405\) −1.10814 37.2903i −0.0550638 1.85297i
\(406\) 0 0
\(407\) 2.30183 + 3.98688i 0.114097 + 0.197622i
\(408\) 0 0
\(409\) 7.39782 + 12.8134i 0.365799 + 0.633582i 0.988904 0.148556i \(-0.0474625\pi\)
−0.623105 + 0.782138i \(0.714129\pi\)
\(410\) 0 0
\(411\) 1.83673 + 4.34275i 0.0905993 + 0.214212i
\(412\) 0 0
\(413\) −6.68931 + 4.53371i −0.329159 + 0.223089i
\(414\) 0 0
\(415\) −9.06904 15.7080i −0.445182 0.771078i
\(416\) 0 0
\(417\) −29.7512 3.69224i −1.45692 0.180810i
\(418\) 0 0
\(419\) 1.56134 2.70432i 0.0762765 0.132115i −0.825364 0.564601i \(-0.809030\pi\)
0.901641 + 0.432486i \(0.142363\pi\)
\(420\) 0 0
\(421\) −0.644580 1.11645i −0.0314149 0.0544122i 0.849891 0.526959i \(-0.176668\pi\)
−0.881305 + 0.472547i \(0.843335\pi\)
\(422\) 0 0
\(423\) 1.92100 + 6.76566i 0.0934023 + 0.328958i
\(424\) 0 0
\(425\) −17.6178 + 30.5149i −0.854587 + 1.48019i
\(426\) 0 0
\(427\) 13.4101 + 6.50363i 0.648962 + 0.314733i
\(428\) 0 0
\(429\) −8.54943 1.06102i −0.412770 0.0512265i
\(430\) 0 0
\(431\) 11.5916 20.0773i 0.558350 0.967090i −0.439285 0.898348i \(-0.644768\pi\)
0.997634 0.0687421i \(-0.0218986\pi\)
\(432\) 0 0
\(433\) 35.6437 1.71293 0.856464 0.516207i \(-0.172657\pi\)
0.856464 + 0.516207i \(0.172657\pi\)
\(434\) 0 0
\(435\) 7.79454 10.3158i 0.373720 0.494604i
\(436\) 0 0
\(437\) 11.7005 + 20.2659i 0.559711 + 0.969448i
\(438\) 0 0
\(439\) 8.00620 13.8671i 0.382115 0.661843i −0.609249 0.792979i \(-0.708529\pi\)
0.991364 + 0.131136i \(0.0418625\pi\)
\(440\) 0 0
\(441\) 12.3119 17.0122i 0.586283 0.810106i
\(442\) 0 0
\(443\) 7.17778 12.4323i 0.341027 0.590676i −0.643597 0.765365i \(-0.722559\pi\)
0.984624 + 0.174689i \(0.0558920\pi\)
\(444\) 0 0
\(445\) 24.1819 + 41.8844i 1.14633 + 1.98551i
\(446\) 0 0
\(447\) −4.61953 10.9224i −0.218496 0.516610i
\(448\) 0 0
\(449\) 5.72475 0.270168 0.135084 0.990834i \(-0.456870\pi\)
0.135084 + 0.990834i \(0.456870\pi\)
\(450\) 0 0
\(451\) 5.12040 8.86879i 0.241110 0.417615i
\(452\) 0 0
\(453\) −6.26228 14.8065i −0.294227 0.695669i
\(454\) 0 0
\(455\) −56.4900 27.3964i −2.64829 1.28436i
\(456\) 0 0
\(457\) −7.33175 + 12.6990i −0.342965 + 0.594033i −0.984982 0.172658i \(-0.944765\pi\)
0.642017 + 0.766690i \(0.278098\pi\)
\(458\) 0 0
\(459\) 11.7163 9.41223i 0.546868 0.439325i
\(460\) 0 0
\(461\) −12.9720 22.4681i −0.604164 1.04644i −0.992183 0.124792i \(-0.960174\pi\)
0.388018 0.921652i \(-0.373160\pi\)
\(462\) 0 0
\(463\) 6.46277 11.1939i 0.300351 0.520223i −0.675865 0.737026i \(-0.736230\pi\)
0.976215 + 0.216803i \(0.0695630\pi\)
\(464\) 0 0
\(465\) 12.8157 16.9611i 0.594314 0.786552i
\(466\) 0 0
\(467\) 16.3104 + 28.2504i 0.754755 + 1.30727i 0.945496 + 0.325633i \(0.105577\pi\)
−0.190741 + 0.981640i \(0.561089\pi\)
\(468\) 0 0
\(469\) −5.49892 + 3.72692i −0.253916 + 0.172093i
\(470\) 0 0
\(471\) 14.2809 18.9003i 0.658030 0.870878i
\(472\) 0 0
\(473\) −1.74382 3.02039i −0.0801811 0.138878i
\(474\) 0 0
\(475\) 24.4509 + 42.3503i 1.12189 + 1.94316i
\(476\) 0 0
\(477\) −1.78823 6.29804i −0.0818774 0.288367i
\(478\) 0 0
\(479\) 25.3478 1.15817 0.579084 0.815268i \(-0.303410\pi\)
0.579084 + 0.815268i \(0.303410\pi\)
\(480\) 0 0
\(481\) −30.3319 −1.38302
\(482\) 0 0
\(483\) 23.7923 12.1506i 1.08259 0.552871i
\(484\) 0 0
\(485\) −16.5302 28.6311i −0.750597 1.30007i
\(486\) 0 0
\(487\) −17.7383 + 30.7236i −0.803799 + 1.39222i 0.113299 + 0.993561i \(0.463858\pi\)
−0.917099 + 0.398660i \(0.869475\pi\)
\(488\) 0 0
\(489\) −3.44582 + 4.56041i −0.155825 + 0.206229i
\(490\) 0 0
\(491\) −13.2554 + 22.9590i −0.598208 + 1.03613i 0.394877 + 0.918734i \(0.370787\pi\)
−0.993085 + 0.117393i \(0.962546\pi\)
\(492\) 0 0
\(493\) 5.20849 0.234579
\(494\) 0 0
\(495\) 7.52580 7.75276i 0.338260 0.348461i
\(496\) 0 0
\(497\) −0.207849 2.88017i −0.00932332 0.129193i
\(498\) 0 0
\(499\) 6.00261 0.268714 0.134357 0.990933i \(-0.457103\pi\)
0.134357 + 0.990933i \(0.457103\pi\)
\(500\) 0 0
\(501\) −20.4967 2.54373i −0.915725 0.113645i
\(502\) 0 0
\(503\) 22.9460 1.02311 0.511556 0.859250i \(-0.329069\pi\)
0.511556 + 0.859250i \(0.329069\pi\)
\(504\) 0 0
\(505\) −15.6013 −0.694248
\(506\) 0 0
\(507\) 20.6446 27.3223i 0.916857 1.21343i
\(508\) 0 0
\(509\) 29.8697 1.32395 0.661975 0.749526i \(-0.269719\pi\)
0.661975 + 0.749526i \(0.269719\pi\)
\(510\) 0 0
\(511\) −3.44365 1.67010i −0.152338 0.0738807i
\(512\) 0 0
\(513\) −3.18250 20.6134i −0.140511 0.910105i
\(514\) 0 0
\(515\) −44.9984 −1.98287
\(516\) 0 0
\(517\) −1.01846 + 1.76402i −0.0447918 + 0.0775817i
\(518\) 0 0
\(519\) 16.5593 + 2.05508i 0.726875 + 0.0902081i
\(520\) 0 0
\(521\) 15.5980 27.0166i 0.683362 1.18362i −0.290587 0.956849i \(-0.593851\pi\)
0.973949 0.226769i \(-0.0728162\pi\)
\(522\) 0 0
\(523\) 3.07911 + 5.33318i 0.134640 + 0.233203i 0.925460 0.378846i \(-0.123679\pi\)
−0.790820 + 0.612049i \(0.790346\pi\)
\(524\) 0 0
\(525\) 49.7196 25.3915i 2.16994 1.10818i
\(526\) 0 0
\(527\) 8.56375 0.373043
\(528\) 0 0
\(529\) 10.9862 0.477661
\(530\) 0 0
\(531\) 8.88494 + 2.23981i 0.385574 + 0.0971995i
\(532\) 0 0
\(533\) 33.7366 + 58.4335i 1.46129 + 2.53103i
\(534\) 0 0
\(535\) 19.9941 + 34.6307i 0.864419 + 1.49722i
\(536\) 0 0
\(537\) 39.6319 + 4.91849i 1.71024 + 0.212248i
\(538\) 0 0
\(539\) 6.01899 0.873275i 0.259256 0.0376146i
\(540\) 0 0
\(541\) −13.5137 23.4064i −0.580999 1.00632i −0.995361 0.0962083i \(-0.969329\pi\)
0.414362 0.910112i \(-0.364005\pi\)
\(542\) 0 0
\(543\) −7.98332 18.8757i −0.342597 0.810033i
\(544\) 0 0
\(545\) −24.2963 + 42.0824i −1.04074 + 1.80261i
\(546\) 0 0
\(547\) −14.9426 25.8814i −0.638900 1.10661i −0.985675 0.168658i \(-0.946057\pi\)
0.346775 0.937948i \(-0.387277\pi\)
\(548\) 0 0
\(549\) −4.61590 16.2569i −0.197002 0.693829i
\(550\) 0 0
\(551\) 3.61432 6.26019i 0.153975 0.266693i
\(552\) 0 0
\(553\) 5.06889 + 2.45830i 0.215551 + 0.104538i
\(554\) 0 0
\(555\) 22.9335 30.3517i 0.973474 1.28836i
\(556\) 0 0
\(557\) 10.6650 18.4722i 0.451889 0.782694i −0.546615 0.837384i \(-0.684084\pi\)
0.998503 + 0.0546900i \(0.0174171\pi\)
\(558\) 0 0
\(559\) 22.9789 0.971905
\(560\) 0 0
\(561\) 4.31946 + 0.536062i 0.182368 + 0.0226326i
\(562\) 0 0
\(563\) 15.7317 + 27.2482i 0.663014 + 1.14837i 0.979820 + 0.199884i \(0.0640564\pi\)
−0.316805 + 0.948491i \(0.602610\pi\)
\(564\) 0 0
\(565\) 11.9788 20.7480i 0.503954 0.872873i
\(566\) 0 0
\(567\) −23.6886 + 2.41863i −0.994828 + 0.101573i
\(568\) 0 0
\(569\) −14.6696 + 25.4084i −0.614980 + 1.06518i 0.375408 + 0.926860i \(0.377503\pi\)
−0.990388 + 0.138317i \(0.955831\pi\)
\(570\) 0 0
\(571\) −13.7473 23.8111i −0.575308 0.996463i −0.996008 0.0892631i \(-0.971549\pi\)
0.420700 0.907200i \(-0.361785\pi\)
\(572\) 0 0
\(573\) −10.8032 1.34072i −0.451310 0.0560094i
\(574\) 0 0
\(575\) 71.0221 2.96183
\(576\) 0 0
\(577\) −20.2293 + 35.0381i −0.842156 + 1.45866i 0.0459122 + 0.998945i \(0.485381\pi\)
−0.888068 + 0.459712i \(0.847953\pi\)
\(578\) 0 0
\(579\) 14.3377 18.9754i 0.595854 0.788591i
\(580\) 0 0
\(581\) −9.58331 + 6.49513i −0.397583 + 0.269463i
\(582\) 0 0
\(583\) 0.948067 1.64210i 0.0392649 0.0680089i
\(584\) 0 0
\(585\) 19.4444 + 68.4820i 0.803927 + 2.83138i
\(586\) 0 0
\(587\) 13.6559 + 23.6528i 0.563641 + 0.976255i 0.997175 + 0.0751177i \(0.0239333\pi\)
−0.433533 + 0.901137i \(0.642733\pi\)
\(588\) 0 0
\(589\) 5.94263 10.2929i 0.244862 0.424113i
\(590\) 0 0
\(591\) −0.108960 0.257624i −0.00448201 0.0105972i
\(592\) 0 0
\(593\) 14.2898 + 24.7507i 0.586813 + 1.01639i 0.994647 + 0.103334i \(0.0329512\pi\)
−0.407833 + 0.913056i \(0.633716\pi\)
\(594\) 0 0
\(595\) 28.5406 + 13.8416i 1.17005 + 0.567449i
\(596\) 0 0
\(597\) 42.6759 + 5.29625i 1.74661 + 0.216761i
\(598\) 0 0
\(599\) 19.9919 + 34.6270i 0.816848 + 1.41482i 0.907994 + 0.418984i \(0.137614\pi\)
−0.0911461 + 0.995838i \(0.529053\pi\)
\(600\) 0 0
\(601\) −12.6948 21.9880i −0.517831 0.896910i −0.999785 0.0207133i \(-0.993406\pi\)
0.481954 0.876196i \(-0.339927\pi\)
\(602\) 0 0
\(603\) 7.30383 + 1.84123i 0.297435 + 0.0749806i
\(604\) 0 0
\(605\) −42.4679 −1.72657
\(606\) 0 0
\(607\) 37.2939 1.51371 0.756856 0.653581i \(-0.226734\pi\)
0.756856 + 0.653581i \(0.226734\pi\)
\(608\) 0 0
\(609\) −6.92526 4.48819i −0.280626 0.181870i
\(610\) 0 0
\(611\) −6.71029 11.6226i −0.271469 0.470199i
\(612\) 0 0
\(613\) −11.7319 + 20.3203i −0.473848 + 0.820729i −0.999552 0.0299390i \(-0.990469\pi\)
0.525704 + 0.850668i \(0.323802\pi\)
\(614\) 0 0
\(615\) −83.9792 10.4222i −3.38637 0.420262i
\(616\) 0 0
\(617\) 6.56888 11.3776i 0.264453 0.458047i −0.702967 0.711223i \(-0.748142\pi\)
0.967420 + 0.253176i \(0.0814752\pi\)
\(618\) 0 0
\(619\) −21.5553 −0.866380 −0.433190 0.901303i \(-0.642612\pi\)
−0.433190 + 0.901303i \(0.642612\pi\)
\(620\) 0 0
\(621\) −28.2378 10.9660i −1.13314 0.440050i
\(622\) 0 0
\(623\) 25.5532 17.3188i 1.02377 0.693862i
\(624\) 0 0
\(625\) 62.5040 2.50016
\(626\) 0 0
\(627\) 3.64170 4.81965i 0.145435 0.192478i
\(628\) 0 0
\(629\) 15.3247 0.611036
\(630\) 0 0
\(631\) 6.15223 0.244916 0.122458 0.992474i \(-0.460922\pi\)
0.122458 + 0.992474i \(0.460922\pi\)
\(632\) 0 0
\(633\) −32.4730 4.03004i −1.29069 0.160180i
\(634\) 0 0
\(635\) −26.8388 −1.06507
\(636\) 0 0
\(637\) −14.8457 + 37.2209i −0.588207 + 1.47475i
\(638\) 0 0
\(639\) −2.28064 + 2.34942i −0.0902206 + 0.0929415i
\(640\) 0 0
\(641\) −4.47364 −0.176698 −0.0883491 0.996090i \(-0.528159\pi\)
−0.0883491 + 0.996090i \(0.528159\pi\)
\(642\) 0 0
\(643\) −8.98009 + 15.5540i −0.354140 + 0.613389i −0.986970 0.160902i \(-0.948560\pi\)
0.632830 + 0.774291i \(0.281893\pi\)
\(644\) 0 0
\(645\) −17.3740 + 22.9939i −0.684101 + 0.905383i
\(646\) 0 0
\(647\) −6.02992 + 10.4441i −0.237061 + 0.410601i −0.959870 0.280447i \(-0.909517\pi\)
0.722809 + 0.691048i \(0.242851\pi\)
\(648\) 0 0
\(649\) 1.32688 + 2.29822i 0.0520845 + 0.0902131i
\(650\) 0 0
\(651\) −11.3864 7.37943i −0.446269 0.289222i
\(652\) 0 0
\(653\) −48.2733 −1.88908 −0.944540 0.328397i \(-0.893492\pi\)
−0.944540 + 0.328397i \(0.893492\pi\)
\(654\) 0 0
\(655\) 73.4955 2.87171
\(656\) 0 0
\(657\) 1.18534 + 4.17469i 0.0462445 + 0.162870i
\(658\) 0 0
\(659\) −14.5795 25.2525i −0.567937 0.983696i −0.996770 0.0803122i \(-0.974408\pi\)
0.428832 0.903384i \(-0.358925\pi\)
\(660\) 0 0
\(661\) 7.27428 + 12.5994i 0.282937 + 0.490061i 0.972107 0.234539i \(-0.0753581\pi\)
−0.689170 + 0.724600i \(0.742025\pi\)
\(662\) 0 0
\(663\) −17.2885 + 22.8806i −0.671429 + 0.888611i
\(664\) 0 0
\(665\) 36.4416 24.6985i 1.41315 0.957766i
\(666\) 0 0
\(667\) −5.24922 9.09192i −0.203251 0.352040i
\(668\) 0 0
\(669\) 14.7169 19.4773i 0.568989 0.753035i
\(670\) 0 0
\(671\) 2.44722 4.23871i 0.0944738 0.163633i
\(672\) 0 0
\(673\) 11.6825 + 20.2348i 0.450329 + 0.779993i 0.998406 0.0564349i \(-0.0179733\pi\)
−0.548077 + 0.836428i \(0.684640\pi\)
\(674\) 0 0
\(675\) −59.0095 22.9160i −2.27128 0.882038i
\(676\) 0 0
\(677\) 8.85875 15.3438i 0.340469 0.589710i −0.644051 0.764983i \(-0.722747\pi\)
0.984520 + 0.175273i \(0.0560807\pi\)
\(678\) 0 0
\(679\) −17.4675 + 11.8387i −0.670343 + 0.454328i
\(680\) 0 0
\(681\) −17.5273 41.4415i −0.671649 1.58804i
\(682\) 0 0
\(683\) −21.7769 + 37.7186i −0.833269 + 1.44326i 0.0621637 + 0.998066i \(0.480200\pi\)
−0.895432 + 0.445198i \(0.853133\pi\)
\(684\) 0 0
\(685\) 11.2846 0.431161
\(686\) 0 0
\(687\) 16.8105 + 39.7466i 0.641360 + 1.51643i
\(688\) 0 0
\(689\) 6.24650 + 10.8193i 0.237973 + 0.412181i
\(690\) 0 0
\(691\) 11.7672 20.3814i 0.447645 0.775345i −0.550587 0.834778i \(-0.685596\pi\)
0.998232 + 0.0594333i \(0.0189294\pi\)
\(692\) 0 0
\(693\) −5.28126 4.43485i −0.200619 0.168466i
\(694\) 0 0
\(695\) −35.8738 + 62.1353i −1.36077 + 2.35693i
\(696\) 0 0
\(697\) −17.0449 29.5225i −0.645620 1.11825i
\(698\) 0 0
\(699\) 6.38872 8.45523i 0.241644 0.319806i
\(700\) 0 0
\(701\) 45.1804 1.70644 0.853219 0.521552i \(-0.174647\pi\)
0.853219 + 0.521552i \(0.174647\pi\)
\(702\) 0 0
\(703\) 10.6343 18.4191i 0.401079 0.694689i
\(704\) 0 0
\(705\) 16.7037 + 2.07299i 0.629097 + 0.0780735i
\(706\) 0 0
\(707\) 0.716748 + 9.93199i 0.0269561 + 0.373531i
\(708\) 0 0
\(709\) 13.5064 23.3937i 0.507242 0.878568i −0.492723 0.870186i \(-0.663998\pi\)
0.999965 0.00838223i \(-0.00266818\pi\)
\(710\) 0 0
\(711\) −1.74476 6.14495i −0.0654337 0.230453i
\(712\) 0 0
\(713\) −8.63071 14.9488i −0.323223 0.559838i
\(714\) 0 0
\(715\) −10.3089 + 17.8555i −0.385529 + 0.667757i
\(716\) 0 0
\(717\) 26.5388 + 3.29358i 0.991111 + 0.123001i
\(718\) 0 0
\(719\) 11.2096 + 19.4156i 0.418048 + 0.724080i 0.995743 0.0921724i \(-0.0293811\pi\)
−0.577695 + 0.816253i \(0.696048\pi\)
\(720\) 0 0
\(721\) 2.06730 + 28.6466i 0.0769902 + 1.06686i
\(722\) 0 0
\(723\) 6.64247 + 15.7054i 0.247036 + 0.584091i
\(724\) 0 0
\(725\) −10.9695 18.9997i −0.407396 0.705631i
\(726\) 0 0
\(727\) −21.9820 38.0740i −0.815268 1.41208i −0.909136 0.416500i \(-0.863256\pi\)
0.0938680 0.995585i \(-0.470077\pi\)
\(728\) 0 0
\(729\) 19.9234 + 18.2224i 0.737904 + 0.674905i
\(730\) 0 0
\(731\) −11.6097 −0.429401
\(732\) 0 0
\(733\) 0.866772 0.0320149 0.0160075 0.999872i \(-0.494904\pi\)
0.0160075 + 0.999872i \(0.494904\pi\)
\(734\) 0 0
\(735\) −26.0205 42.9975i −0.959781 1.58599i
\(736\) 0 0
\(737\) 1.09075 + 1.88924i 0.0401785 + 0.0695911i
\(738\) 0 0
\(739\) −13.0442 + 22.5932i −0.479838 + 0.831103i −0.999733 0.0231270i \(-0.992638\pi\)
0.519895 + 0.854230i \(0.325971\pi\)
\(740\) 0 0
\(741\) 15.5037 + 36.6569i 0.569544 + 1.34662i
\(742\) 0 0
\(743\) −22.5842 + 39.1170i −0.828533 + 1.43506i 0.0706551 + 0.997501i \(0.477491\pi\)
−0.899189 + 0.437561i \(0.855842\pi\)
\(744\) 0 0
\(745\) −28.3816 −1.03982
\(746\) 0 0
\(747\) 12.7288 + 3.20882i 0.465724 + 0.117405i
\(748\) 0 0
\(749\) 21.1278 14.3195i 0.771994 0.523222i
\(750\) 0 0
\(751\) 20.5988 0.751662 0.375831 0.926688i \(-0.377357\pi\)
0.375831 + 0.926688i \(0.377357\pi\)
\(752\) 0 0
\(753\) −18.1387 42.8869i −0.661009 1.56288i
\(754\) 0 0
\(755\) −38.4743 −1.40022
\(756\) 0 0
\(757\) −39.0856 −1.42059 −0.710294 0.703905i \(-0.751438\pi\)
−0.710294 + 0.703905i \(0.751438\pi\)
\(758\) 0 0
\(759\) −3.41749 8.08028i −0.124047 0.293295i
\(760\) 0 0
\(761\) −28.8872 −1.04716 −0.523581 0.851976i \(-0.675404\pi\)
−0.523581 + 0.851976i \(0.675404\pi\)
\(762\) 0 0
\(763\) 27.9065 + 13.5340i 1.01028 + 0.489964i
\(764\) 0 0
\(765\) −9.82396 34.5994i −0.355186 1.25094i
\(766\) 0 0
\(767\) −17.4847 −0.631336
\(768\) 0 0
\(769\) −11.1407 + 19.2962i −0.401742 + 0.695838i −0.993936 0.109957i \(-0.964929\pi\)
0.592194 + 0.805796i \(0.298262\pi\)
\(770\) 0 0
\(771\) 7.43021 + 17.5679i 0.267592 + 0.632693i
\(772\) 0 0
\(773\) −21.3593 + 36.9955i −0.768242 + 1.33063i 0.170273 + 0.985397i \(0.445535\pi\)
−0.938515 + 0.345238i \(0.887798\pi\)
\(774\) 0 0
\(775\) −18.0359 31.2391i −0.647868 1.12214i
\(776\) 0 0
\(777\) −20.3759 13.2054i −0.730980 0.473741i
\(778\) 0 0
\(779\) −47.3116 −1.69512
\(780\) 0 0
\(781\) −0.948302 −0.0339329
\(782\) 0 0
\(783\) 1.42777 + 9.24784i 0.0510245 + 0.330491i
\(784\) 0 0
\(785\) −28.3465 49.0976i −1.01173 1.75237i
\(786\) 0 0
\(787\) −0.143384 0.248349i −0.00511110 0.00885268i 0.863459 0.504420i \(-0.168294\pi\)
−0.868570 + 0.495567i \(0.834960\pi\)
\(788\) 0 0
\(789\) 4.93265 + 11.6627i 0.175607 + 0.415203i
\(790\) 0 0
\(791\) −13.7588 6.67270i −0.489205 0.237254i
\(792\) 0 0
\(793\) 16.1239 + 27.9274i 0.572577 + 0.991732i
\(794\) 0 0
\(795\) −15.5492 1.92971i −0.551472 0.0684399i
\(796\) 0 0
\(797\) −0.457746 + 0.792840i −0.0162142 + 0.0280838i −0.874019 0.485892i \(-0.838495\pi\)
0.857804 + 0.513976i \(0.171828\pi\)
\(798\) 0 0
\(799\) 3.39026 + 5.87211i 0.119939 + 0.207740i
\(800\) 0 0
\(801\) −33.9405 8.55609i −1.19923 0.302315i
\(802\) 0 0
\(803\) −0.628433 + 1.08848i −0.0221769 + 0.0384115i
\(804\) 0 0
\(805\) −4.60201 63.7702i −0.162200 2.24760i
\(806\) 0 0
\(807\) −7.15211 0.887606i −0.251766 0.0312452i
\(808\) 0 0
\(809\) −14.3721 + 24.8932i −0.505297 + 0.875199i 0.494685 + 0.869073i \(0.335284\pi\)
−0.999981 + 0.00612685i \(0.998050\pi\)
\(810\) 0 0
\(811\) −14.3005 −0.502157 −0.251079 0.967967i \(-0.580785\pi\)
−0.251079 + 0.967967i \(0.580785\pi\)
\(812\) 0 0
\(813\) −8.73553 + 11.5611i −0.306368 + 0.405467i
\(814\) 0 0
\(815\) 6.83969 + 11.8467i 0.239584 + 0.414971i
\(816\) 0 0
\(817\) −8.05632 + 13.9540i −0.281855 + 0.488187i
\(818\) 0 0
\(819\) 42.7033 15.5247i 1.49217 0.542478i
\(820\) 0 0
\(821\) −17.8125 + 30.8521i −0.621660 + 1.07675i 0.367516 + 0.930017i \(0.380208\pi\)
−0.989177 + 0.146730i \(0.953125\pi\)
\(822\) 0 0
\(823\) −11.2157 19.4261i −0.390953 0.677151i 0.601622 0.798781i \(-0.294521\pi\)
−0.992576 + 0.121630i \(0.961188\pi\)
\(824\) 0 0
\(825\) −7.14164 16.8856i −0.248640 0.587882i
\(826\) 0 0
\(827\) 26.6728 0.927505 0.463753 0.885965i \(-0.346503\pi\)
0.463753 + 0.885965i \(0.346503\pi\)
\(828\) 0 0
\(829\) −16.0078 + 27.7263i −0.555973 + 0.962973i 0.441854 + 0.897087i \(0.354321\pi\)
−0.997827 + 0.0658866i \(0.979012\pi\)
\(830\) 0 0
\(831\) −1.88817 4.46437i −0.0654998 0.154867i
\(832\) 0 0
\(833\) 7.50053 18.8053i 0.259878 0.651563i
\(834\) 0 0
\(835\) −24.7148 + 42.8074i −0.855292 + 1.48141i
\(836\) 0 0
\(837\) 2.34753 + 15.2052i 0.0811425 + 0.525568i
\(838\) 0 0
\(839\) −9.10375 15.7682i −0.314296 0.544377i 0.664991 0.746851i \(-0.268435\pi\)
−0.979288 + 0.202474i \(0.935102\pi\)
\(840\) 0 0
\(841\) 12.8785 22.3062i 0.444086 0.769180i
\(842\) 0 0
\(843\) 11.3671 15.0440i 0.391505 0.518142i
\(844\) 0 0
\(845\) −40.9778 70.9757i −1.40968 2.44164i
\(846\) 0 0
\(847\) 1.95104 + 27.0356i 0.0670386 + 0.928956i
\(848\) 0 0
\(849\) 2.11365 2.79734i 0.0725403 0.0960044i
\(850\) 0 0
\(851\) −15.4445 26.7507i −0.529432 0.917003i
\(852\) 0 0
\(853\) 20.9242 + 36.2419i 0.716432 + 1.24090i 0.962404 + 0.271621i \(0.0875596\pi\)
−0.245972 + 0.969277i \(0.579107\pi\)
\(854\) 0 0
\(855\) −48.4029 12.2019i −1.65534 0.417297i
\(856\) 0 0
\(857\) 15.7141 0.536783 0.268391 0.963310i \(-0.413508\pi\)
0.268391 + 0.963310i \(0.413508\pi\)
\(858\) 0 0
\(859\) −24.2046 −0.825849 −0.412924 0.910765i \(-0.635493\pi\)
−0.412924 + 0.910765i \(0.635493\pi\)
\(860\) 0 0
\(861\) −2.77675 + 53.9411i −0.0946314 + 1.83831i
\(862\) 0 0
\(863\) −26.0542 45.1272i −0.886896 1.53615i −0.843525 0.537090i \(-0.819523\pi\)
−0.0433714 0.999059i \(-0.513810\pi\)
\(864\) 0 0
\(865\) 19.9672 34.5842i 0.678904 1.17590i
\(866\) 0 0
\(867\) −9.01619 + 11.9326i −0.306206 + 0.405252i
\(868\) 0 0
\(869\) 0.925022 1.60219i 0.0313792 0.0543504i
\(870\) 0 0
\(871\) −14.3732 −0.487018
\(872\) 0 0
\(873\) 23.2009 + 5.84874i 0.785232 + 0.197950i
\(874\) 0 0
\(875\) −5.66999 78.5691i −0.191680 2.65612i
\(876\) 0 0
\(877\) −13.9768 −0.471964 −0.235982 0.971757i \(-0.575831\pi\)
−0.235982 + 0.971757i \(0.575831\pi\)
\(878\) 0 0
\(879\) −33.1895 4.11895i −1.11945 0.138929i
\(880\) 0 0
\(881\) 28.1210 0.947421 0.473710 0.880681i \(-0.342914\pi\)
0.473710 + 0.880681i \(0.342914\pi\)
\(882\) 0 0
\(883\) 35.1633 1.18334 0.591670 0.806180i \(-0.298469\pi\)
0.591670 + 0.806180i \(0.298469\pi\)
\(884\) 0 0
\(885\) 13.2199 17.4961i 0.444383 0.588124i
\(886\) 0 0
\(887\) 26.9219 0.903950 0.451975 0.892031i \(-0.350720\pi\)
0.451975 + 0.892031i \(0.350720\pi\)
\(888\) 0 0
\(889\) 1.23302 + 17.0860i 0.0413541 + 0.573045i
\(890\) 0 0
\(891\) 0.232272 + 7.81627i 0.00778142 + 0.261855i
\(892\) 0 0
\(893\) 9.41041 0.314907
\(894\) 0 0
\(895\) 47.7880 82.7713i 1.59738 2.76674i
\(896\) 0 0
\(897\) 57.3640 + 7.11911i 1.91533 + 0.237700i
\(898\) 0 0
\(899\) −2.66605 + 4.61774i −0.0889179 + 0.154010i
\(900\) 0 0
\(901\) −3.15594 5.46625i −0.105140 0.182107i
\(902\) 0 0
\(903\) 15.4364 + 10.0042i 0.513691 + 0.332918i
\(904\) 0 0
\(905\) −49.0481 −1.63041
\(906\) 0 0
\(907\) 44.7142 1.48471 0.742355 0.670007i \(-0.233709\pi\)
0.742355 + 0.670007i \(0.233709\pi\)
\(908\) 0 0
\(909\) 7.86455 8.10173i 0.260851 0.268717i
\(910\) 0 0
\(911\) 13.7822 + 23.8715i 0.456626 + 0.790899i 0.998780 0.0493800i \(-0.0157246\pi\)
−0.542154 + 0.840279i \(0.682391\pi\)
\(912\) 0 0
\(913\) 1.90093 + 3.29250i 0.0629115 + 0.108966i
\(914\) 0 0
\(915\) −40.1366 4.98112i −1.32688 0.164671i
\(916\) 0 0
\(917\) −3.37650 46.7882i −0.111502 1.54508i
\(918\) 0 0
\(919\) 21.3836 + 37.0376i 0.705381 + 1.22176i 0.966554 + 0.256464i \(0.0825575\pi\)
−0.261173 + 0.965292i \(0.584109\pi\)
\(920\) 0 0
\(921\) 8.86398 + 20.9579i 0.292078 + 0.690587i
\(922\) 0 0
\(923\) 3.12402 5.41096i 0.102828 0.178104i
\(924\) 0 0
\(925\) −32.2750 55.9019i −1.06119 1.83804i
\(926\) 0 0
\(927\) 22.6835 23.3676i 0.745025 0.767493i
\(928\) 0 0
\(929\) −23.9748 + 41.5256i −0.786589 + 1.36241i 0.141456 + 0.989945i \(0.454822\pi\)
−0.928045 + 0.372468i \(0.878512\pi\)
\(930\) 0 0
\(931\) −17.3976 22.0645i −0.570182 0.723136i
\(932\) 0 0
\(933\) 14.1299 18.7003i 0.462591 0.612221i
\(934\) 0 0
\(935\) 5.20838 9.02118i 0.170332 0.295024i
\(936\) 0 0
\(937\) 33.9136 1.10791 0.553955 0.832547i \(-0.313118\pi\)
0.553955 + 0.832547i \(0.313118\pi\)
\(938\) 0 0
\(939\) 43.3154 + 5.37562i 1.41354 + 0.175427i
\(940\) 0 0
\(941\) 4.27395 + 7.40270i 0.139327 + 0.241321i 0.927242 0.374463i \(-0.122173\pi\)
−0.787915 + 0.615784i \(0.788839\pi\)
\(942\) 0 0
\(943\) −34.3563 + 59.5068i −1.11879 + 1.93781i
\(944\) 0 0
\(945\) −16.7525 + 54.4691i −0.544958 + 1.77188i
\(946\) 0 0
\(947\) 0.411563 0.712848i 0.0133740 0.0231645i −0.859261 0.511538i \(-0.829076\pi\)
0.872635 + 0.488373i \(0.162409\pi\)
\(948\) 0 0
\(949\) −4.14053 7.17161i −0.134407 0.232800i
\(950\) 0 0
\(951\) 21.1382 + 2.62334i 0.685453 + 0.0850675i
\(952\) 0 0
\(953\) −44.6726 −1.44709 −0.723544 0.690278i \(-0.757488\pi\)
−0.723544 + 0.690278i \(0.757488\pi\)
\(954\) 0 0
\(955\) −13.0264 + 22.5625i −0.421526 + 0.730104i
\(956\) 0 0
\(957\) −1.63378 + 2.16225i −0.0528127 + 0.0698956i
\(958\) 0 0
\(959\) −0.518430 7.18390i −0.0167410 0.231980i
\(960\) 0 0
\(961\) 11.1165 19.2544i 0.358597 0.621108i
\(962\) 0 0
\(963\) −28.0626 7.07433i −0.904305 0.227967i
\(964\) 0 0
\(965\) −28.4592 49.2928i −0.916135 1.58679i
\(966\) 0 0
\(967\) 18.2289 31.5735i 0.586203 1.01533i −0.408521 0.912749i \(-0.633955\pi\)
0.994724 0.102585i \(-0.0327114\pi\)
\(968\) 0 0
\(969\) −7.83301 18.5203i −0.251632 0.594957i
\(970\) 0 0
\(971\) −8.63674 14.9593i −0.277166 0.480066i 0.693513 0.720444i \(-0.256062\pi\)
−0.970679 + 0.240378i \(0.922729\pi\)
\(972\) 0 0
\(973\) 41.2043 + 19.9832i 1.32095 + 0.640631i
\(974\) 0 0
\(975\) 119.875 + 14.8770i 3.83909 + 0.476446i
\(976\) 0 0
\(977\) −4.51775 7.82497i −0.144536 0.250343i 0.784664 0.619921i \(-0.212835\pi\)
−0.929200 + 0.369578i \(0.879502\pi\)
\(978\) 0 0
\(979\) −5.06868 8.77921i −0.161996 0.280585i
\(980\) 0 0
\(981\) −9.60567 33.8306i −0.306686 1.08013i
\(982\) 0 0
\(983\) 22.8573 0.729034 0.364517 0.931197i \(-0.381234\pi\)
0.364517 + 0.931197i \(0.381234\pi\)
\(984\) 0 0
\(985\) −0.669430 −0.0213298
\(986\) 0 0
\(987\) 0.552303 10.7290i 0.0175800 0.341508i
\(988\) 0 0
\(989\) 11.7005 + 20.2659i 0.372055 + 0.644417i
\(990\) 0 0
\(991\) 4.37884 7.58437i 0.139098 0.240925i −0.788057 0.615602i \(-0.788913\pi\)
0.927156 + 0.374677i \(0.122246\pi\)
\(992\) 0 0
\(993\) −34.2496 4.25051i −1.08688 0.134886i
\(994\) 0 0
\(995\) 51.4584 89.1285i 1.63134 2.82556i
\(996\) 0 0
\(997\) 6.93070 0.219498 0.109749 0.993959i \(-0.464995\pi\)
0.109749 + 0.993959i \(0.464995\pi\)
\(998\) 0 0
\(999\) 4.20087 + 27.2095i 0.132910 + 0.860870i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.t.j.193.5 14
3.2 odd 2 3024.2.t.j.1873.1 14
4.3 odd 2 252.2.l.b.193.3 yes 14
7.2 even 3 1008.2.q.j.625.1 14
9.2 odd 6 3024.2.q.j.2881.7 14
9.7 even 3 1008.2.q.j.529.1 14
12.11 even 2 756.2.l.b.361.1 14
21.2 odd 6 3024.2.q.j.2305.7 14
28.3 even 6 1764.2.j.h.589.5 14
28.11 odd 6 1764.2.j.g.589.3 14
28.19 even 6 1764.2.i.i.373.1 14
28.23 odd 6 252.2.i.b.121.7 yes 14
28.27 even 2 1764.2.l.i.949.5 14
36.7 odd 6 252.2.i.b.25.7 14
36.11 even 6 756.2.i.b.613.7 14
36.23 even 6 2268.2.k.f.1621.7 14
36.31 odd 6 2268.2.k.e.1621.1 14
63.2 odd 6 3024.2.t.j.289.1 14
63.16 even 3 inner 1008.2.t.j.961.5 14
84.11 even 6 5292.2.j.h.1765.7 14
84.23 even 6 756.2.i.b.37.7 14
84.47 odd 6 5292.2.i.i.1549.1 14
84.59 odd 6 5292.2.j.g.1765.1 14
84.83 odd 2 5292.2.l.i.361.7 14
252.11 even 6 5292.2.j.h.3529.7 14
252.23 even 6 2268.2.k.f.1297.7 14
252.47 odd 6 5292.2.l.i.3313.7 14
252.79 odd 6 252.2.l.b.205.3 yes 14
252.83 odd 6 5292.2.i.i.2125.1 14
252.115 even 6 1764.2.j.h.1177.5 14
252.151 odd 6 1764.2.j.g.1177.3 14
252.187 even 6 1764.2.l.i.961.5 14
252.191 even 6 756.2.l.b.289.1 14
252.223 even 6 1764.2.i.i.1537.1 14
252.227 odd 6 5292.2.j.g.3529.1 14
252.247 odd 6 2268.2.k.e.1297.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.7 14 36.7 odd 6
252.2.i.b.121.7 yes 14 28.23 odd 6
252.2.l.b.193.3 yes 14 4.3 odd 2
252.2.l.b.205.3 yes 14 252.79 odd 6
756.2.i.b.37.7 14 84.23 even 6
756.2.i.b.613.7 14 36.11 even 6
756.2.l.b.289.1 14 252.191 even 6
756.2.l.b.361.1 14 12.11 even 2
1008.2.q.j.529.1 14 9.7 even 3
1008.2.q.j.625.1 14 7.2 even 3
1008.2.t.j.193.5 14 1.1 even 1 trivial
1008.2.t.j.961.5 14 63.16 even 3 inner
1764.2.i.i.373.1 14 28.19 even 6
1764.2.i.i.1537.1 14 252.223 even 6
1764.2.j.g.589.3 14 28.11 odd 6
1764.2.j.g.1177.3 14 252.151 odd 6
1764.2.j.h.589.5 14 28.3 even 6
1764.2.j.h.1177.5 14 252.115 even 6
1764.2.l.i.949.5 14 28.27 even 2
1764.2.l.i.961.5 14 252.187 even 6
2268.2.k.e.1297.1 14 252.247 odd 6
2268.2.k.e.1621.1 14 36.31 odd 6
2268.2.k.f.1297.7 14 252.23 even 6
2268.2.k.f.1621.7 14 36.23 even 6
3024.2.q.j.2305.7 14 21.2 odd 6
3024.2.q.j.2881.7 14 9.2 odd 6
3024.2.t.j.289.1 14 63.2 odd 6
3024.2.t.j.1873.1 14 3.2 odd 2
5292.2.i.i.1549.1 14 84.47 odd 6
5292.2.i.i.2125.1 14 252.83 odd 6
5292.2.j.g.1765.1 14 84.59 odd 6
5292.2.j.g.3529.1 14 252.227 odd 6
5292.2.j.h.1765.7 14 84.11 even 6
5292.2.j.h.3529.7 14 252.11 even 6
5292.2.l.i.361.7 14 84.83 odd 2
5292.2.l.i.3313.7 14 252.47 odd 6