Properties

Label 1764.2.j.h.589.5
Level $1764$
Weight $2$
Character 1764.589
Analytic conductor $14.086$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(589,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.589"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 589.5
Root \(-0.674693 - 1.59524i\) of defining polynomial
Character \(\chi\) \(=\) 1764.589
Dual form 1764.2.j.h.1177.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04417 - 1.38192i) q^{3} +(2.07260 - 3.58985i) q^{5} +(-0.819413 - 2.88592i) q^{9} +(-0.434429 - 0.752453i) q^{11} +(-2.86231 + 4.95766i) q^{13} +(-2.79674 - 6.61258i) q^{15} -2.89227 q^{17} -4.01406 q^{19} +(2.91488 - 5.04873i) q^{23} +(-6.09133 - 10.5505i) q^{25} +(-4.84373 - 1.88104i) q^{27} +(-0.900417 - 1.55957i) q^{29} +(-1.48046 + 2.56422i) q^{31} +(-1.49345 - 0.185343i) q^{33} +5.29851 q^{37} +(3.86236 + 9.13213i) q^{39} +(5.89325 - 10.2074i) q^{41} +(-2.00703 - 3.47627i) q^{43} +(-12.0583 - 3.03980i) q^{45} +(1.17218 + 2.03028i) q^{47} +(-3.02002 + 3.99689i) q^{51} +2.18233 q^{53} -3.60159 q^{55} +(-4.19136 + 5.54711i) q^{57} +(-1.52715 + 2.64510i) q^{59} +(2.81659 + 4.87848i) q^{61} +(11.8648 + 20.5505i) q^{65} +(1.25539 - 2.17440i) q^{67} +(-3.93331 - 9.29988i) q^{69} -1.09143 q^{71} +1.44657 q^{73} +(-20.9403 - 2.59878i) q^{75} +(1.06464 + 1.84401i) q^{79} +(-7.65712 + 4.72953i) q^{81} +(-2.18784 - 3.78946i) q^{83} +(-5.99451 + 10.3828i) q^{85} +(-3.09539 - 0.384150i) q^{87} +11.6675 q^{89} +(1.99771 + 4.72336i) q^{93} +(-8.31953 + 14.4098i) q^{95} +(3.98779 + 6.90706i) q^{97} +(-1.81555 + 1.87030i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{3} + 2 q^{5} - 5 q^{9} + 2 q^{11} - 2 q^{13} + 7 q^{15} + 4 q^{17} + 14 q^{19} + 11 q^{23} - 9 q^{25} - 9 q^{27} + q^{29} + q^{31} + q^{33} - 20 q^{37} + 22 q^{39} + 33 q^{41} + 7 q^{43}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.04417 1.38192i 0.602853 0.797853i
\(4\) 0 0
\(5\) 2.07260 3.58985i 0.926894 1.60543i 0.138409 0.990375i \(-0.455801\pi\)
0.788486 0.615053i \(-0.210865\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.819413 2.88592i −0.273138 0.961975i
\(10\) 0 0
\(11\) −0.434429 0.752453i −0.130985 0.226873i 0.793071 0.609129i \(-0.208481\pi\)
−0.924057 + 0.382256i \(0.875147\pi\)
\(12\) 0 0
\(13\) −2.86231 + 4.95766i −0.793861 + 1.37501i 0.129698 + 0.991554i \(0.458599\pi\)
−0.923560 + 0.383455i \(0.874734\pi\)
\(14\) 0 0
\(15\) −2.79674 6.61258i −0.722115 1.70736i
\(16\) 0 0
\(17\) −2.89227 −0.701478 −0.350739 0.936473i \(-0.614070\pi\)
−0.350739 + 0.936473i \(0.614070\pi\)
\(18\) 0 0
\(19\) −4.01406 −0.920888 −0.460444 0.887689i \(-0.652310\pi\)
−0.460444 + 0.887689i \(0.652310\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.91488 5.04873i 0.607795 1.05273i −0.383808 0.923413i \(-0.625387\pi\)
0.991603 0.129319i \(-0.0412792\pi\)
\(24\) 0 0
\(25\) −6.09133 10.5505i −1.21827 2.11010i
\(26\) 0 0
\(27\) −4.84373 1.88104i −0.932176 0.362005i
\(28\) 0 0
\(29\) −0.900417 1.55957i −0.167203 0.289604i 0.770232 0.637763i \(-0.220140\pi\)
−0.937435 + 0.348159i \(0.886807\pi\)
\(30\) 0 0
\(31\) −1.48046 + 2.56422i −0.265898 + 0.460548i −0.967798 0.251727i \(-0.919002\pi\)
0.701901 + 0.712275i \(0.252335\pi\)
\(32\) 0 0
\(33\) −1.49345 0.185343i −0.259976 0.0322641i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.29851 0.871070 0.435535 0.900172i \(-0.356559\pi\)
0.435535 + 0.900172i \(0.356559\pi\)
\(38\) 0 0
\(39\) 3.86236 + 9.13213i 0.618473 + 1.46231i
\(40\) 0 0
\(41\) 5.89325 10.2074i 0.920371 1.59413i 0.121528 0.992588i \(-0.461220\pi\)
0.798842 0.601541i \(-0.205446\pi\)
\(42\) 0 0
\(43\) −2.00703 3.47627i −0.306069 0.530127i 0.671430 0.741068i \(-0.265680\pi\)
−0.977499 + 0.210941i \(0.932347\pi\)
\(44\) 0 0
\(45\) −12.0583 3.03980i −1.79755 0.453146i
\(46\) 0 0
\(47\) 1.17218 + 2.03028i 0.170980 + 0.296147i 0.938763 0.344564i \(-0.111973\pi\)
−0.767783 + 0.640711i \(0.778640\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.02002 + 3.99689i −0.422888 + 0.559676i
\(52\) 0 0
\(53\) 2.18233 0.299766 0.149883 0.988704i \(-0.452110\pi\)
0.149883 + 0.988704i \(0.452110\pi\)
\(54\) 0 0
\(55\) −3.60159 −0.485638
\(56\) 0 0
\(57\) −4.19136 + 5.54711i −0.555159 + 0.734733i
\(58\) 0 0
\(59\) −1.52715 + 2.64510i −0.198818 + 0.344363i −0.948146 0.317837i \(-0.897044\pi\)
0.749327 + 0.662200i \(0.230377\pi\)
\(60\) 0 0
\(61\) 2.81659 + 4.87848i 0.360628 + 0.624625i 0.988064 0.154042i \(-0.0492292\pi\)
−0.627437 + 0.778668i \(0.715896\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 11.8648 + 20.5505i 1.47165 + 2.54898i
\(66\) 0 0
\(67\) 1.25539 2.17440i 0.153370 0.265645i −0.779094 0.626907i \(-0.784321\pi\)
0.932464 + 0.361262i \(0.117654\pi\)
\(68\) 0 0
\(69\) −3.93331 9.29988i −0.473514 1.11957i
\(70\) 0 0
\(71\) −1.09143 −0.129529 −0.0647647 0.997901i \(-0.520630\pi\)
−0.0647647 + 0.997901i \(0.520630\pi\)
\(72\) 0 0
\(73\) 1.44657 0.169308 0.0846541 0.996410i \(-0.473021\pi\)
0.0846541 + 0.996410i \(0.473021\pi\)
\(74\) 0 0
\(75\) −20.9403 2.59878i −2.41798 0.300082i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.06464 + 1.84401i 0.119781 + 0.207468i 0.919681 0.392666i \(-0.128447\pi\)
−0.799900 + 0.600134i \(0.795114\pi\)
\(80\) 0 0
\(81\) −7.65712 + 4.72953i −0.850792 + 0.525503i
\(82\) 0 0
\(83\) −2.18784 3.78946i −0.240147 0.415947i 0.720609 0.693342i \(-0.243862\pi\)
−0.960756 + 0.277395i \(0.910529\pi\)
\(84\) 0 0
\(85\) −5.99451 + 10.3828i −0.650196 + 1.12617i
\(86\) 0 0
\(87\) −3.09539 0.384150i −0.331861 0.0411852i
\(88\) 0 0
\(89\) 11.6675 1.23675 0.618374 0.785884i \(-0.287792\pi\)
0.618374 + 0.785884i \(0.287792\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.99771 + 4.72336i 0.207153 + 0.489790i
\(94\) 0 0
\(95\) −8.31953 + 14.4098i −0.853566 + 1.47842i
\(96\) 0 0
\(97\) 3.98779 + 6.90706i 0.404899 + 0.701306i 0.994310 0.106528i \(-0.0339733\pi\)
−0.589411 + 0.807834i \(0.700640\pi\)
\(98\) 0 0
\(99\) −1.81555 + 1.87030i −0.182469 + 0.187972i
\(100\) 0 0
\(101\) −1.88185 3.25946i −0.187251 0.324329i 0.757082 0.653320i \(-0.226624\pi\)
−0.944333 + 0.328992i \(0.893291\pi\)
\(102\) 0 0
\(103\) 5.42778 9.40119i 0.534815 0.926327i −0.464357 0.885648i \(-0.653715\pi\)
0.999172 0.0406786i \(-0.0129520\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.64686 0.932597 0.466298 0.884627i \(-0.345587\pi\)
0.466298 + 0.884627i \(0.345587\pi\)
\(108\) 0 0
\(109\) 11.7226 1.12282 0.561412 0.827536i \(-0.310258\pi\)
0.561412 + 0.827536i \(0.310258\pi\)
\(110\) 0 0
\(111\) 5.53255 7.32212i 0.525127 0.694985i
\(112\) 0 0
\(113\) 2.88981 5.00530i 0.271851 0.470859i −0.697485 0.716599i \(-0.745698\pi\)
0.969336 + 0.245740i \(0.0790310\pi\)
\(114\) 0 0
\(115\) −12.0828 20.9280i −1.12672 1.95154i
\(116\) 0 0
\(117\) 16.6529 + 4.19803i 1.53956 + 0.388108i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.12254 8.87250i 0.465686 0.806591i
\(122\) 0 0
\(123\) −7.95227 18.8023i −0.717032 1.69534i
\(124\) 0 0
\(125\) −29.7736 −2.66303
\(126\) 0 0
\(127\) 6.47468 0.574535 0.287268 0.957850i \(-0.407253\pi\)
0.287268 + 0.957850i \(0.407253\pi\)
\(128\) 0 0
\(129\) −6.89962 0.856271i −0.607478 0.0753904i
\(130\) 0 0
\(131\) −8.86514 + 15.3549i −0.774551 + 1.34156i 0.160495 + 0.987037i \(0.448691\pi\)
−0.935046 + 0.354525i \(0.884643\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −16.7917 + 13.4896i −1.44520 + 1.16100i
\(136\) 0 0
\(137\) −1.36116 2.35760i −0.116292 0.201423i 0.802004 0.597319i \(-0.203767\pi\)
−0.918295 + 0.395896i \(0.870434\pi\)
\(138\) 0 0
\(139\) −8.65431 + 14.9897i −0.734049 + 1.27141i 0.221090 + 0.975253i \(0.429038\pi\)
−0.955139 + 0.296157i \(0.904295\pi\)
\(140\) 0 0
\(141\) 4.02964 + 0.500095i 0.339357 + 0.0421156i
\(142\) 0 0
\(143\) 4.97388 0.415937
\(144\) 0 0
\(145\) −7.46481 −0.619919
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.42343 5.92955i 0.280458 0.485767i −0.691040 0.722817i \(-0.742847\pi\)
0.971498 + 0.237049i \(0.0761803\pi\)
\(150\) 0 0
\(151\) −4.64083 8.03816i −0.377666 0.654136i 0.613057 0.790039i \(-0.289940\pi\)
−0.990722 + 0.135903i \(0.956606\pi\)
\(152\) 0 0
\(153\) 2.36996 + 8.34687i 0.191600 + 0.674804i
\(154\) 0 0
\(155\) 6.13678 + 10.6292i 0.492918 + 0.853759i
\(156\) 0 0
\(157\) 6.83840 11.8445i 0.545764 0.945291i −0.452795 0.891615i \(-0.649573\pi\)
0.998558 0.0536759i \(-0.0170938\pi\)
\(158\) 0 0
\(159\) 2.27872 3.01581i 0.180715 0.239169i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.30005 0.258480 0.129240 0.991613i \(-0.458746\pi\)
0.129240 + 0.991613i \(0.458746\pi\)
\(164\) 0 0
\(165\) −3.76068 + 4.97711i −0.292768 + 0.387468i
\(166\) 0 0
\(167\) −5.96228 + 10.3270i −0.461375 + 0.799125i −0.999030 0.0440399i \(-0.985977\pi\)
0.537655 + 0.843165i \(0.319310\pi\)
\(168\) 0 0
\(169\) −9.88562 17.1224i −0.760432 1.31711i
\(170\) 0 0
\(171\) 3.28917 + 11.5843i 0.251529 + 0.885871i
\(172\) 0 0
\(173\) −4.81694 8.34319i −0.366225 0.634321i 0.622747 0.782424i \(-0.286017\pi\)
−0.988972 + 0.148103i \(0.952683\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.06072 + 4.87234i 0.154893 + 0.366228i
\(178\) 0 0
\(179\) 23.0570 1.72336 0.861682 0.507448i \(-0.169411\pi\)
0.861682 + 0.507448i \(0.169411\pi\)
\(180\) 0 0
\(181\) 11.8325 0.879504 0.439752 0.898119i \(-0.355066\pi\)
0.439752 + 0.898119i \(0.355066\pi\)
\(182\) 0 0
\(183\) 9.68268 + 1.20166i 0.715764 + 0.0888292i
\(184\) 0 0
\(185\) 10.9817 19.0208i 0.807390 1.39844i
\(186\) 0 0
\(187\) 1.25649 + 2.17630i 0.0918833 + 0.159147i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.14254 + 5.44303i 0.227386 + 0.393844i 0.957033 0.289980i \(-0.0936487\pi\)
−0.729647 + 0.683824i \(0.760315\pi\)
\(192\) 0 0
\(193\) −6.86559 + 11.8915i −0.494196 + 0.855972i −0.999978 0.00668919i \(-0.997871\pi\)
0.505782 + 0.862661i \(0.331204\pi\)
\(194\) 0 0
\(195\) 40.7881 + 5.06197i 2.92090 + 0.362495i
\(196\) 0 0
\(197\) −0.161495 −0.0115061 −0.00575303 0.999983i \(-0.501831\pi\)
−0.00575303 + 0.999983i \(0.501831\pi\)
\(198\) 0 0
\(199\) −24.8279 −1.76001 −0.880003 0.474968i \(-0.842460\pi\)
−0.880003 + 0.474968i \(0.842460\pi\)
\(200\) 0 0
\(201\) −1.69400 4.00529i −0.119486 0.282511i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −24.4287 42.3117i −1.70617 2.95518i
\(206\) 0 0
\(207\) −16.9587 4.27514i −1.17871 0.297143i
\(208\) 0 0
\(209\) 1.74382 + 3.02039i 0.120623 + 0.208925i
\(210\) 0 0
\(211\) 9.44607 16.3611i 0.650295 1.12634i −0.332757 0.943013i \(-0.607979\pi\)
0.983051 0.183331i \(-0.0586879\pi\)
\(212\) 0 0
\(213\) −1.13964 + 1.50828i −0.0780871 + 0.103345i
\(214\) 0 0
\(215\) −16.6391 −1.13477
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.51047 1.99905i 0.102068 0.135083i
\(220\) 0 0
\(221\) 8.27856 14.3389i 0.556876 0.964538i
\(222\) 0 0
\(223\) −7.04717 12.2061i −0.471914 0.817378i 0.527570 0.849512i \(-0.323103\pi\)
−0.999484 + 0.0321333i \(0.989770\pi\)
\(224\) 0 0
\(225\) −25.4566 + 26.2243i −1.69711 + 1.74829i
\(226\) 0 0
\(227\) 12.9891 + 22.4978i 0.862118 + 1.49323i 0.869881 + 0.493262i \(0.164196\pi\)
−0.00776306 + 0.999970i \(0.502471\pi\)
\(228\) 0 0
\(229\) 12.4579 21.5777i 0.823239 1.42589i −0.0800190 0.996793i \(-0.525498\pi\)
0.903258 0.429098i \(-0.141169\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.11846 0.400834 0.200417 0.979711i \(-0.435770\pi\)
0.200417 + 0.979711i \(0.435770\pi\)
\(234\) 0 0
\(235\) 9.71785 0.633923
\(236\) 0 0
\(237\) 3.65995 + 0.454214i 0.237739 + 0.0295044i
\(238\) 0 0
\(239\) −7.71988 + 13.3712i −0.499357 + 0.864912i −1.00000 0.000742080i \(-0.999764\pi\)
0.500643 + 0.865654i \(0.333097\pi\)
\(240\) 0 0
\(241\) 4.92259 + 8.52617i 0.317092 + 0.549219i 0.979880 0.199588i \(-0.0639604\pi\)
−0.662788 + 0.748807i \(0.730627\pi\)
\(242\) 0 0
\(243\) −1.45951 + 15.5200i −0.0936277 + 0.995607i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 11.4895 19.9003i 0.731057 1.26623i
\(248\) 0 0
\(249\) −7.52121 0.933413i −0.476638 0.0591527i
\(250\) 0 0
\(251\) −26.8843 −1.69692 −0.848461 0.529258i \(-0.822470\pi\)
−0.848461 + 0.529258i \(0.822470\pi\)
\(252\) 0 0
\(253\) −5.06524 −0.318449
\(254\) 0 0
\(255\) 8.08891 + 19.1254i 0.506547 + 1.19768i
\(256\) 0 0
\(257\) 5.50636 9.53729i 0.343477 0.594920i −0.641599 0.767040i \(-0.721729\pi\)
0.985076 + 0.172121i \(0.0550619\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.76298 + 3.87647i −0.232923 + 0.239947i
\(262\) 0 0
\(263\) 3.65547 + 6.33146i 0.225406 + 0.390415i 0.956441 0.291925i \(-0.0942958\pi\)
−0.731035 + 0.682340i \(0.760962\pi\)
\(264\) 0 0
\(265\) 4.52309 7.83423i 0.277851 0.481253i
\(266\) 0 0
\(267\) 12.1828 16.1235i 0.745576 0.986742i
\(268\) 0 0
\(269\) −4.16095 −0.253698 −0.126849 0.991922i \(-0.540486\pi\)
−0.126849 + 0.991922i \(0.540486\pi\)
\(270\) 0 0
\(271\) −8.36599 −0.508198 −0.254099 0.967178i \(-0.581779\pi\)
−0.254099 + 0.967178i \(0.581779\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.29250 + 9.16689i −0.319150 + 0.552784i
\(276\) 0 0
\(277\) 1.39928 + 2.42362i 0.0840745 + 0.145621i 0.904996 0.425419i \(-0.139873\pi\)
−0.820922 + 0.571040i \(0.806540\pi\)
\(278\) 0 0
\(279\) 8.61326 + 2.17132i 0.515662 + 0.129994i
\(280\) 0 0
\(281\) −5.44314 9.42779i −0.324710 0.562415i 0.656743 0.754114i \(-0.271933\pi\)
−0.981454 + 0.191699i \(0.938600\pi\)
\(282\) 0 0
\(283\) −1.01212 + 1.75304i −0.0601642 + 0.104207i −0.894539 0.446990i \(-0.852496\pi\)
0.834374 + 0.551198i \(0.185829\pi\)
\(284\) 0 0
\(285\) 11.2263 + 26.5433i 0.664986 + 1.57229i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.63479 −0.507929
\(290\) 0 0
\(291\) 13.7090 + 1.70134i 0.803633 + 0.0997341i
\(292\) 0 0
\(293\) 9.65448 16.7220i 0.564021 0.976912i −0.433120 0.901336i \(-0.642587\pi\)
0.997140 0.0755757i \(-0.0240795\pi\)
\(294\) 0 0
\(295\) 6.33035 + 10.9645i 0.368567 + 0.638377i
\(296\) 0 0
\(297\) 0.688866 + 4.46186i 0.0399721 + 0.258903i
\(298\) 0 0
\(299\) 16.6866 + 28.9020i 0.965011 + 1.67145i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.46929 0.802866i −0.371651 0.0461234i
\(304\) 0 0
\(305\) 23.3507 1.33705
\(306\) 0 0
\(307\) 13.1378 0.749813 0.374907 0.927063i \(-0.377675\pi\)
0.374907 + 0.927063i \(0.377675\pi\)
\(308\) 0 0
\(309\) −7.32417 17.3172i −0.416658 0.985142i
\(310\) 0 0
\(311\) −6.76606 + 11.7192i −0.383668 + 0.664533i −0.991583 0.129469i \(-0.958673\pi\)
0.607915 + 0.794002i \(0.292006\pi\)
\(312\) 0 0
\(313\) −12.6000 21.8238i −0.712194 1.23356i −0.964032 0.265787i \(-0.914368\pi\)
0.251838 0.967770i \(-0.418965\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.14888 + 10.6502i 0.345356 + 0.598173i 0.985418 0.170149i \(-0.0544250\pi\)
−0.640063 + 0.768323i \(0.721092\pi\)
\(318\) 0 0
\(319\) −0.782335 + 1.35504i −0.0438023 + 0.0758679i
\(320\) 0 0
\(321\) 10.0730 13.3312i 0.562218 0.744075i
\(322\) 0 0
\(323\) 11.6097 0.645982
\(324\) 0 0
\(325\) 69.7411 3.86854
\(326\) 0 0
\(327\) 12.2404 16.1997i 0.676897 0.895848i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 9.96285 + 17.2562i 0.547608 + 0.948484i 0.998438 + 0.0558745i \(0.0177947\pi\)
−0.450830 + 0.892610i \(0.648872\pi\)
\(332\) 0 0
\(333\) −4.34167 15.2911i −0.237922 0.837947i
\(334\) 0 0
\(335\) −5.20383 9.01330i −0.284316 0.492449i
\(336\) 0 0
\(337\) −0.966380 + 1.67382i −0.0526421 + 0.0911788i −0.891146 0.453717i \(-0.850098\pi\)
0.838504 + 0.544896i \(0.183431\pi\)
\(338\) 0 0
\(339\) −3.89947 9.21988i −0.211790 0.500755i
\(340\) 0 0
\(341\) 2.57261 0.139315
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −41.5373 5.15495i −2.23629 0.277533i
\(346\) 0 0
\(347\) −8.48241 + 14.6920i −0.455360 + 0.788706i −0.998709 0.0508006i \(-0.983823\pi\)
0.543349 + 0.839507i \(0.317156\pi\)
\(348\) 0 0
\(349\) 6.25767 + 10.8386i 0.334966 + 0.580177i 0.983478 0.181027i \(-0.0579420\pi\)
−0.648513 + 0.761204i \(0.724609\pi\)
\(350\) 0 0
\(351\) 23.1898 18.6295i 1.23778 0.994368i
\(352\) 0 0
\(353\) 16.1929 + 28.0468i 0.861859 + 1.49278i 0.870133 + 0.492817i \(0.164033\pi\)
−0.00827416 + 0.999966i \(0.502634\pi\)
\(354\) 0 0
\(355\) −2.26211 + 3.91808i −0.120060 + 0.207950i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −17.9712 −0.948483 −0.474242 0.880395i \(-0.657278\pi\)
−0.474242 + 0.880395i \(0.657278\pi\)
\(360\) 0 0
\(361\) −2.88735 −0.151966
\(362\) 0 0
\(363\) −6.91229 16.3434i −0.362801 0.857804i
\(364\) 0 0
\(365\) 2.99816 5.19297i 0.156931 0.271812i
\(366\) 0 0
\(367\) 4.08420 + 7.07404i 0.213194 + 0.369262i 0.952712 0.303874i \(-0.0982802\pi\)
−0.739519 + 0.673136i \(0.764947\pi\)
\(368\) 0 0
\(369\) −34.2868 8.64339i −1.78490 0.449957i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.58080 4.47008i 0.133629 0.231452i −0.791444 0.611242i \(-0.790670\pi\)
0.925073 + 0.379790i \(0.124004\pi\)
\(374\) 0 0
\(375\) −31.0887 + 41.1447i −1.60541 + 2.12470i
\(376\) 0 0
\(377\) 10.3091 0.530945
\(378\) 0 0
\(379\) 21.0017 1.07878 0.539392 0.842055i \(-0.318654\pi\)
0.539392 + 0.842055i \(0.318654\pi\)
\(380\) 0 0
\(381\) 6.76068 8.94750i 0.346360 0.458394i
\(382\) 0 0
\(383\) 14.7794 25.5988i 0.755194 1.30804i −0.190083 0.981768i \(-0.560876\pi\)
0.945278 0.326267i \(-0.105791\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.38768 + 8.64064i −0.426370 + 0.439228i
\(388\) 0 0
\(389\) 8.26895 + 14.3222i 0.419252 + 0.726166i 0.995864 0.0908518i \(-0.0289589\pi\)
−0.576612 + 0.817018i \(0.695626\pi\)
\(390\) 0 0
\(391\) −8.43063 + 14.6023i −0.426355 + 0.738469i
\(392\) 0 0
\(393\) 11.9625 + 28.2840i 0.603429 + 1.42674i
\(394\) 0 0
\(395\) 8.82629 0.444099
\(396\) 0 0
\(397\) 30.8788 1.54976 0.774881 0.632107i \(-0.217810\pi\)
0.774881 + 0.632107i \(0.217810\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.31614 + 9.20782i −0.265475 + 0.459817i −0.967688 0.252150i \(-0.918862\pi\)
0.702213 + 0.711967i \(0.252196\pi\)
\(402\) 0 0
\(403\) −8.47504 14.6792i −0.422172 0.731223i
\(404\) 0 0
\(405\) 1.10814 + 37.2903i 0.0550638 + 1.85297i
\(406\) 0 0
\(407\) −2.30183 3.98688i −0.114097 0.197622i
\(408\) 0 0
\(409\) −7.39782 + 12.8134i −0.365799 + 0.633582i −0.988904 0.148556i \(-0.952538\pi\)
0.623105 + 0.782138i \(0.285871\pi\)
\(410\) 0 0
\(411\) −4.67930 0.580720i −0.230813 0.0286448i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −18.1381 −0.890364
\(416\) 0 0
\(417\) 11.6780 + 27.6114i 0.571875 + 1.35214i
\(418\) 0 0
\(419\) 1.56134 2.70432i 0.0762765 0.132115i −0.825364 0.564601i \(-0.809030\pi\)
0.901641 + 0.432486i \(0.142363\pi\)
\(420\) 0 0
\(421\) −0.644580 1.11645i −0.0314149 0.0544122i 0.849891 0.526959i \(-0.176668\pi\)
−0.881305 + 0.472547i \(0.843335\pi\)
\(422\) 0 0
\(423\) 4.89873 5.04647i 0.238184 0.245368i
\(424\) 0 0
\(425\) 17.6178 + 30.5149i 0.854587 + 1.48019i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 5.19358 6.87351i 0.250749 0.331856i
\(430\) 0 0
\(431\) 23.1833 1.11670 0.558350 0.829606i \(-0.311435\pi\)
0.558350 + 0.829606i \(0.311435\pi\)
\(432\) 0 0
\(433\) −35.6437 −1.71293 −0.856464 0.516207i \(-0.827343\pi\)
−0.856464 + 0.516207i \(0.827343\pi\)
\(434\) 0 0
\(435\) −7.79454 + 10.3158i −0.373720 + 0.494604i
\(436\) 0 0
\(437\) −11.7005 + 20.2659i −0.559711 + 0.969448i
\(438\) 0 0
\(439\) 8.00620 + 13.8671i 0.382115 + 0.661843i 0.991364 0.131136i \(-0.0418625\pi\)
−0.609249 + 0.792979i \(0.708529\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.17778 12.4323i −0.341027 0.590676i 0.643597 0.765365i \(-0.277441\pi\)
−0.984624 + 0.174689i \(0.944108\pi\)
\(444\) 0 0
\(445\) 24.1819 41.8844i 1.14633 1.98551i
\(446\) 0 0
\(447\) −4.61953 10.9224i −0.218496 0.516610i
\(448\) 0 0
\(449\) 5.72475 0.270168 0.135084 0.990834i \(-0.456870\pi\)
0.135084 + 0.990834i \(0.456870\pi\)
\(450\) 0 0
\(451\) −10.2408 −0.482220
\(452\) 0 0
\(453\) −15.9539 1.97995i −0.749581 0.0930260i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.33175 12.6990i −0.342965 0.594033i 0.642017 0.766690i \(-0.278098\pi\)
−0.984982 + 0.172658i \(0.944765\pi\)
\(458\) 0 0
\(459\) 14.0094 + 5.44046i 0.653901 + 0.253939i
\(460\) 0 0
\(461\) 12.9720 + 22.4681i 0.604164 + 1.04644i 0.992183 + 0.124792i \(0.0398263\pi\)
−0.388018 + 0.921652i \(0.626840\pi\)
\(462\) 0 0
\(463\) −6.46277 + 11.1939i −0.300351 + 0.520223i −0.976215 0.216803i \(-0.930437\pi\)
0.675865 + 0.737026i \(0.263770\pi\)
\(464\) 0 0
\(465\) 21.0966 + 2.61817i 0.978331 + 0.121415i
\(466\) 0 0
\(467\) −32.6208 −1.50951 −0.754755 0.656007i \(-0.772244\pi\)
−0.754755 + 0.656007i \(0.772244\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −9.22765 21.8178i −0.425188 1.00531i
\(472\) 0 0
\(473\) −1.74382 + 3.02039i −0.0801811 + 0.138878i
\(474\) 0 0
\(475\) 24.4509 + 42.3503i 1.12189 + 1.94316i
\(476\) 0 0
\(477\) −1.78823 6.29804i −0.0818774 0.288367i
\(478\) 0 0
\(479\) −12.6739 21.9518i −0.579084 1.00300i −0.995585 0.0938679i \(-0.970077\pi\)
0.416500 0.909136i \(-0.363256\pi\)
\(480\) 0 0
\(481\) −15.1660 + 26.2682i −0.691509 + 1.19773i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 33.0604 1.50119
\(486\) 0 0
\(487\) −35.4766 −1.60760 −0.803799 0.594901i \(-0.797191\pi\)
−0.803799 + 0.594901i \(0.797191\pi\)
\(488\) 0 0
\(489\) 3.44582 4.56041i 0.155825 0.206229i
\(490\) 0 0
\(491\) 13.2554 22.9590i 0.598208 1.03613i −0.394877 0.918734i \(-0.629213\pi\)
0.993085 0.117393i \(-0.0374538\pi\)
\(492\) 0 0
\(493\) 2.60425 + 4.51069i 0.117289 + 0.203151i
\(494\) 0 0
\(495\) 2.95119 + 10.3939i 0.132646 + 0.467172i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.00130 5.19841i 0.134357 0.232713i −0.790995 0.611823i \(-0.790437\pi\)
0.925352 + 0.379110i \(0.123770\pi\)
\(500\) 0 0
\(501\) 8.04542 + 19.0225i 0.359443 + 0.849864i
\(502\) 0 0
\(503\) 22.9460 1.02311 0.511556 0.859250i \(-0.329069\pi\)
0.511556 + 0.859250i \(0.329069\pi\)
\(504\) 0 0
\(505\) −15.6013 −0.694248
\(506\) 0 0
\(507\) −33.9841 4.21756i −1.50929 0.187309i
\(508\) 0 0
\(509\) 14.9348 25.8679i 0.661975 1.14657i −0.318121 0.948050i \(-0.603052\pi\)
0.980096 0.198524i \(-0.0636147\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 19.4430 + 7.55058i 0.858429 + 0.333366i
\(514\) 0 0
\(515\) −22.4992 38.9698i −0.991434 1.71721i
\(516\) 0 0
\(517\) 1.01846 1.76402i 0.0447918 0.0775817i
\(518\) 0 0
\(519\) −16.5593 2.05508i −0.726875 0.0902081i
\(520\) 0 0
\(521\) 31.1960 1.36672 0.683362 0.730080i \(-0.260517\pi\)
0.683362 + 0.730080i \(0.260517\pi\)
\(522\) 0 0
\(523\) −6.15822 −0.269280 −0.134640 0.990895i \(-0.542988\pi\)
−0.134640 + 0.990895i \(0.542988\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.28187 7.41642i 0.186521 0.323064i
\(528\) 0 0
\(529\) −5.49310 9.51433i −0.238830 0.413666i
\(530\) 0 0
\(531\) 8.88494 + 2.23981i 0.385574 + 0.0971995i
\(532\) 0 0
\(533\) 33.7366 + 58.4335i 1.46129 + 2.53103i
\(534\) 0 0
\(535\) 19.9941 34.6307i 0.864419 1.49722i
\(536\) 0 0
\(537\) 24.0755 31.8630i 1.03893 1.37499i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 27.0274 1.16200 0.580999 0.813904i \(-0.302662\pi\)
0.580999 + 0.813904i \(0.302662\pi\)
\(542\) 0 0
\(543\) 12.3552 16.3516i 0.530211 0.701714i
\(544\) 0 0
\(545\) 24.2963 42.0824i 1.04074 1.80261i
\(546\) 0 0
\(547\) 14.9426 + 25.8814i 0.638900 + 1.10661i 0.985675 + 0.168658i \(0.0539434\pi\)
−0.346775 + 0.937948i \(0.612723\pi\)
\(548\) 0 0
\(549\) 11.7710 12.1260i 0.502373 0.517523i
\(550\) 0 0
\(551\) 3.61432 + 6.26019i 0.153975 + 0.266693i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −14.8185 35.0368i −0.629012 1.48723i
\(556\) 0 0
\(557\) −21.3299 −0.903778 −0.451889 0.892074i \(-0.649250\pi\)
−0.451889 + 0.892074i \(0.649250\pi\)
\(558\) 0 0
\(559\) 22.9789 0.971905
\(560\) 0 0
\(561\) 4.31946 + 0.536062i 0.182368 + 0.0226326i
\(562\) 0 0
\(563\) 15.7317 27.2482i 0.663014 1.14837i −0.316805 0.948491i \(-0.602610\pi\)
0.979820 0.199884i \(-0.0640564\pi\)
\(564\) 0 0
\(565\) −11.9788 20.7480i −0.503954 0.872873i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.6696 25.4084i −0.614980 1.06518i −0.990388 0.138317i \(-0.955831\pi\)
0.375408 0.926860i \(-0.377503\pi\)
\(570\) 0 0
\(571\) 13.7473 23.8111i 0.575308 0.996463i −0.420700 0.907200i \(-0.638215\pi\)
0.996008 0.0892631i \(-0.0284512\pi\)
\(572\) 0 0
\(573\) 10.8032 + 1.34072i 0.451310 + 0.0560094i
\(574\) 0 0
\(575\) −71.0221 −2.96183
\(576\) 0 0
\(577\) −40.4586 −1.68431 −0.842156 0.539234i \(-0.818714\pi\)
−0.842156 + 0.539234i \(0.818714\pi\)
\(578\) 0 0
\(579\) 9.26433 + 21.9045i 0.385013 + 0.910320i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.948067 1.64210i −0.0392649 0.0680089i
\(584\) 0 0
\(585\) 49.5850 51.0804i 2.05009 2.11191i
\(586\) 0 0
\(587\) 13.6559 + 23.6528i 0.563641 + 0.976255i 0.997175 + 0.0751177i \(0.0239333\pi\)
−0.433533 + 0.901137i \(0.642733\pi\)
\(588\) 0 0
\(589\) 5.94263 10.2929i 0.244862 0.424113i
\(590\) 0 0
\(591\) −0.168629 + 0.223174i −0.00693646 + 0.00918014i
\(592\) 0 0
\(593\) 28.5797 1.17363 0.586813 0.809722i \(-0.300382\pi\)
0.586813 + 0.809722i \(0.300382\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −25.9246 + 34.3103i −1.06102 + 1.40423i
\(598\) 0 0
\(599\) −19.9919 + 34.6270i −0.816848 + 1.41482i 0.0911461 + 0.995838i \(0.470947\pi\)
−0.907994 + 0.418984i \(0.862386\pi\)
\(600\) 0 0
\(601\) 12.6948 + 21.9880i 0.517831 + 0.896910i 0.999785 + 0.0207133i \(0.00659372\pi\)
−0.481954 + 0.876196i \(0.660073\pi\)
\(602\) 0 0
\(603\) −7.30383 1.84123i −0.297435 0.0749806i
\(604\) 0 0
\(605\) −21.2340 36.7783i −0.863283 1.49525i
\(606\) 0 0
\(607\) −18.6469 + 32.2975i −0.756856 + 1.31091i 0.187590 + 0.982247i \(0.439932\pi\)
−0.944446 + 0.328666i \(0.893401\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.4206 −0.542939
\(612\) 0 0
\(613\) 23.4638 0.947696 0.473848 0.880607i \(-0.342865\pi\)
0.473848 + 0.880607i \(0.342865\pi\)
\(614\) 0 0
\(615\) −83.9792 10.4222i −3.38637 0.420262i
\(616\) 0 0
\(617\) 6.56888 11.3776i 0.264453 0.458047i −0.702967 0.711223i \(-0.748142\pi\)
0.967420 + 0.253176i \(0.0814752\pi\)
\(618\) 0 0
\(619\) 10.7776 + 18.6674i 0.433190 + 0.750308i 0.997146 0.0754975i \(-0.0240545\pi\)
−0.563956 + 0.825805i \(0.690721\pi\)
\(620\) 0 0
\(621\) −23.6157 + 18.9717i −0.947667 + 0.761307i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −31.2520 + 54.1300i −1.25008 + 2.16520i
\(626\) 0 0
\(627\) 5.99479 + 0.743978i 0.239409 + 0.0297116i
\(628\) 0 0
\(629\) −15.3247 −0.611036
\(630\) 0 0
\(631\) −6.15223 −0.244916 −0.122458 0.992474i \(-0.539078\pi\)
−0.122458 + 0.992474i \(0.539078\pi\)
\(632\) 0 0
\(633\) −12.7464 30.1375i −0.506624 1.19786i
\(634\) 0 0
\(635\) 13.4194 23.2431i 0.532533 0.922375i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.894336 + 3.14980i 0.0353794 + 0.124604i
\(640\) 0 0
\(641\) 2.23682 + 3.87429i 0.0883491 + 0.153025i 0.906813 0.421532i \(-0.138508\pi\)
−0.818464 + 0.574557i \(0.805174\pi\)
\(642\) 0 0
\(643\) −8.98009 + 15.5540i −0.354140 + 0.613389i −0.986970 0.160902i \(-0.948560\pi\)
0.632830 + 0.774291i \(0.281893\pi\)
\(644\) 0 0
\(645\) −17.3740 + 22.9939i −0.684101 + 0.905383i
\(646\) 0 0
\(647\) 12.0598 0.474121 0.237061 0.971495i \(-0.423816\pi\)
0.237061 + 0.971495i \(0.423816\pi\)
\(648\) 0 0
\(649\) 2.65376 0.104169
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24.1366 41.8059i 0.944540 1.63599i 0.187870 0.982194i \(-0.439842\pi\)
0.756670 0.653797i \(-0.226825\pi\)
\(654\) 0 0
\(655\) 36.7478 + 63.6490i 1.43585 + 2.48697i
\(656\) 0 0
\(657\) −1.18534 4.17469i −0.0462445 0.162870i
\(658\) 0 0
\(659\) 14.5795 + 25.2525i 0.567937 + 0.983696i 0.996770 + 0.0803122i \(0.0255917\pi\)
−0.428832 + 0.903384i \(0.641075\pi\)
\(660\) 0 0
\(661\) −7.27428 + 12.5994i −0.282937 + 0.490061i −0.972107 0.234539i \(-0.924642\pi\)
0.689170 + 0.724600i \(0.257975\pi\)
\(662\) 0 0
\(663\) −11.1710 26.4126i −0.433845 1.02578i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −10.4984 −0.406501
\(668\) 0 0
\(669\) −24.2263 3.00658i −0.936642 0.116241i
\(670\) 0 0
\(671\) 2.44722 4.23871i 0.0944738 0.163633i
\(672\) 0 0
\(673\) 11.6825 + 20.2348i 0.450329 + 0.779993i 0.998406 0.0564349i \(-0.0179733\pi\)
−0.548077 + 0.836428i \(0.684640\pi\)
\(674\) 0 0
\(675\) 9.65891 + 62.5617i 0.371771 + 2.40800i
\(676\) 0 0
\(677\) −8.85875 15.3438i −0.340469 0.589710i 0.644051 0.764983i \(-0.277253\pi\)
−0.984520 + 0.175273i \(0.943919\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 44.6531 + 5.54163i 1.71111 + 0.212356i
\(682\) 0 0
\(683\) −43.5537 −1.66654 −0.833269 0.552868i \(-0.813533\pi\)
−0.833269 + 0.552868i \(0.813533\pi\)
\(684\) 0 0
\(685\) −11.2846 −0.431161
\(686\) 0 0
\(687\) −16.8105 39.7466i −0.641360 1.51643i
\(688\) 0 0
\(689\) −6.24650 + 10.8193i −0.237973 + 0.412181i
\(690\) 0 0
\(691\) 11.7672 + 20.3814i 0.447645 + 0.775345i 0.998232 0.0594333i \(-0.0189294\pi\)
−0.550587 + 0.834778i \(0.685596\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 35.8738 + 62.1353i 1.36077 + 2.35693i
\(696\) 0 0
\(697\) −17.0449 + 29.5225i −0.645620 + 1.11825i
\(698\) 0 0
\(699\) 6.38872 8.45523i 0.241644 0.319806i
\(700\) 0 0
\(701\) 45.1804 1.70644 0.853219 0.521552i \(-0.174647\pi\)
0.853219 + 0.521552i \(0.174647\pi\)
\(702\) 0 0
\(703\) −21.2685 −0.802157
\(704\) 0 0
\(705\) 10.1471 13.4293i 0.382162 0.505777i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 13.5064 + 23.3937i 0.507242 + 0.878568i 0.999965 + 0.00838223i \(0.00266818\pi\)
−0.492723 + 0.870186i \(0.663998\pi\)
\(710\) 0 0
\(711\) 4.44930 4.58348i 0.166862 0.171894i
\(712\) 0 0
\(713\) 8.63071 + 14.9488i 0.323223 + 0.559838i
\(714\) 0 0
\(715\) 10.3089 17.8555i 0.385529 0.667757i
\(716\) 0 0
\(717\) 10.4171 + 24.6301i 0.389034 + 0.919828i
\(718\) 0 0
\(719\) −22.4192 −0.836096 −0.418048 0.908425i \(-0.637286\pi\)
−0.418048 + 0.908425i \(0.637286\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 16.9225 + 2.10015i 0.629355 + 0.0781056i
\(724\) 0 0
\(725\) −10.9695 + 18.9997i −0.407396 + 0.705631i
\(726\) 0 0
\(727\) −21.9820 38.0740i −0.815268 1.41208i −0.909136 0.416500i \(-0.863256\pi\)
0.0938680 0.995585i \(-0.470077\pi\)
\(728\) 0 0
\(729\) 19.9234 + 18.2224i 0.737904 + 0.674905i
\(730\) 0 0
\(731\) 5.80486 + 10.0543i 0.214701 + 0.371872i
\(732\) 0 0
\(733\) 0.433386 0.750646i 0.0160075 0.0277257i −0.857911 0.513799i \(-0.828238\pi\)
0.873918 + 0.486073i \(0.161571\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.18151 −0.0803569
\(738\) 0 0
\(739\) −26.0883 −0.959675 −0.479838 0.877357i \(-0.659304\pi\)
−0.479838 + 0.877357i \(0.659304\pi\)
\(740\) 0 0
\(741\) −15.5037 36.6569i −0.569544 1.34662i
\(742\) 0 0
\(743\) 22.5842 39.1170i 0.828533 1.43506i −0.0706551 0.997501i \(-0.522509\pi\)
0.899189 0.437561i \(-0.144158\pi\)
\(744\) 0 0
\(745\) −14.1908 24.5791i −0.519910 0.900510i
\(746\) 0 0
\(747\) −9.14334 + 9.41908i −0.334537 + 0.344626i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 10.2994 17.8391i 0.375831 0.650958i −0.614620 0.788823i \(-0.710691\pi\)
0.990451 + 0.137865i \(0.0440241\pi\)
\(752\) 0 0
\(753\) −28.0718 + 37.1520i −1.02299 + 1.35389i
\(754\) 0 0
\(755\) −38.4743 −1.40022
\(756\) 0 0
\(757\) −39.0856 −1.42059 −0.710294 0.703905i \(-0.751438\pi\)
−0.710294 + 0.703905i \(0.751438\pi\)
\(758\) 0 0
\(759\) −5.28898 + 6.99977i −0.191978 + 0.254075i
\(760\) 0 0
\(761\) −14.4436 + 25.0171i −0.523581 + 0.906868i 0.476043 + 0.879422i \(0.342071\pi\)
−0.999623 + 0.0274459i \(0.991263\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 34.8760 + 8.79191i 1.26094 + 0.317872i
\(766\) 0 0
\(767\) −8.74236 15.1422i −0.315668 0.546753i
\(768\) 0 0
\(769\) 11.1407 19.2962i 0.401742 0.695838i −0.592194 0.805796i \(-0.701738\pi\)
0.993936 + 0.109957i \(0.0350714\pi\)
\(770\) 0 0
\(771\) −7.43021 17.5679i −0.267592 0.632693i
\(772\) 0 0
\(773\) −42.7187 −1.53648 −0.768242 0.640159i \(-0.778868\pi\)
−0.768242 + 0.640159i \(0.778868\pi\)
\(774\) 0 0
\(775\) 36.0718 1.29574
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −23.6558 + 40.9731i −0.847558 + 1.46801i
\(780\) 0 0
\(781\) 0.474151 + 0.821254i 0.0169665 + 0.0293868i
\(782\) 0 0
\(783\) 1.42777 + 9.24784i 0.0510245 + 0.330491i
\(784\) 0 0
\(785\) −28.3465 49.0976i −1.01173 1.75237i
\(786\) 0 0
\(787\) −0.143384 + 0.248349i −0.00511110 + 0.00885268i −0.868570 0.495567i \(-0.834960\pi\)
0.863459 + 0.504420i \(0.168294\pi\)
\(788\) 0 0
\(789\) 12.5665 + 1.55956i 0.447380 + 0.0555217i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −32.2478 −1.14515
\(794\) 0 0
\(795\) −6.10340 14.4308i −0.216465 0.511809i
\(796\) 0 0
\(797\) 0.457746 0.792840i 0.0162142 0.0280838i −0.857804 0.513976i \(-0.828172\pi\)
0.874019 + 0.485892i \(0.161505\pi\)
\(798\) 0 0
\(799\) −3.39026 5.87211i −0.119939 0.207740i
\(800\) 0 0
\(801\) −9.56046 33.6714i −0.337802 1.18972i
\(802\) 0 0
\(803\) −0.628433 1.08848i −0.0221769 0.0384115i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.34474 + 5.75011i −0.152942 + 0.202413i
\(808\) 0 0
\(809\) 28.7442 1.01059 0.505297 0.862946i \(-0.331383\pi\)
0.505297 + 0.862946i \(0.331383\pi\)
\(810\) 0 0
\(811\) −14.3005 −0.502157 −0.251079 0.967967i \(-0.580785\pi\)
−0.251079 + 0.967967i \(0.580785\pi\)
\(812\) 0 0
\(813\) −8.73553 + 11.5611i −0.306368 + 0.405467i
\(814\) 0 0
\(815\) 6.83969 11.8467i 0.239584 0.414971i
\(816\) 0 0
\(817\) 8.05632 + 13.9540i 0.281855 + 0.488187i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.8125 30.8521i −0.621660 1.07675i −0.989177 0.146730i \(-0.953125\pi\)
0.367516 0.930017i \(-0.380208\pi\)
\(822\) 0 0
\(823\) 11.2157 19.4261i 0.390953 0.677151i −0.601622 0.798781i \(-0.705479\pi\)
0.992576 + 0.121630i \(0.0388121\pi\)
\(824\) 0 0
\(825\) 7.14164 + 16.8856i 0.248640 + 0.587882i
\(826\) 0 0
\(827\) −26.6728 −0.927505 −0.463753 0.885965i \(-0.653497\pi\)
−0.463753 + 0.885965i \(0.653497\pi\)
\(828\) 0 0
\(829\) −32.0155 −1.11195 −0.555973 0.831200i \(-0.687654\pi\)
−0.555973 + 0.831200i \(0.687654\pi\)
\(830\) 0 0
\(831\) 4.81034 + 0.596983i 0.166869 + 0.0207091i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 24.7148 + 42.8074i 0.855292 + 1.48141i
\(836\) 0 0
\(837\) 11.9943 9.63561i 0.414584 0.333056i
\(838\) 0 0
\(839\) −9.10375 15.7682i −0.314296 0.544377i 0.664991 0.746851i \(-0.268435\pi\)
−0.979288 + 0.202474i \(0.935102\pi\)
\(840\) 0 0
\(841\) 12.8785 22.3062i 0.444086 0.769180i
\(842\) 0 0
\(843\) −18.7120 2.32224i −0.644477 0.0799822i
\(844\) 0 0
\(845\) −81.9557 −2.81936
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.36574 + 3.22914i 0.0468721 + 0.110824i
\(850\) 0 0
\(851\) 15.4445 26.7507i 0.529432 0.917003i
\(852\) 0 0
\(853\) −20.9242 36.2419i −0.716432 1.24090i −0.962404 0.271621i \(-0.912440\pi\)
0.245972 0.969277i \(-0.420893\pi\)
\(854\) 0 0
\(855\) 48.4029 + 12.2019i 1.65534 + 0.417297i
\(856\) 0 0
\(857\) 7.85704 + 13.6088i 0.268391 + 0.464867i 0.968447 0.249221i \(-0.0801746\pi\)
−0.700055 + 0.714089i \(0.746841\pi\)
\(858\) 0 0
\(859\) 12.1023 20.9618i 0.412924 0.715206i −0.582284 0.812986i \(-0.697841\pi\)
0.995208 + 0.0977797i \(0.0311741\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −52.1085 −1.77379 −0.886896 0.461969i \(-0.847143\pi\)
−0.886896 + 0.461969i \(0.847143\pi\)
\(864\) 0 0
\(865\) −39.9344 −1.35781
\(866\) 0 0
\(867\) −9.01619 + 11.9326i −0.306206 + 0.405252i
\(868\) 0 0
\(869\) 0.925022 1.60219i 0.0313792 0.0543504i
\(870\) 0 0
\(871\) 7.18662 + 12.4476i 0.243509 + 0.421770i
\(872\) 0 0
\(873\) 16.6656 17.1682i 0.564045 0.581056i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.98841 12.1043i 0.235982 0.408733i −0.723576 0.690245i \(-0.757503\pi\)
0.959558 + 0.281512i \(0.0908360\pi\)
\(878\) 0 0
\(879\) −13.0276 30.8024i −0.439411 1.03894i
\(880\) 0 0
\(881\) −28.1210 −0.947421 −0.473710 0.880681i \(-0.657086\pi\)
−0.473710 + 0.880681i \(0.657086\pi\)
\(882\) 0 0
\(883\) −35.1633 −1.18334 −0.591670 0.806180i \(-0.701531\pi\)
−0.591670 + 0.806180i \(0.701531\pi\)
\(884\) 0 0
\(885\) 21.7620 + 2.70075i 0.731522 + 0.0907849i
\(886\) 0 0
\(887\) −13.4610 + 23.3151i −0.451975 + 0.782844i −0.998509 0.0545932i \(-0.982614\pi\)
0.546533 + 0.837437i \(0.315947\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 6.88523 + 3.70698i 0.230664 + 0.124189i
\(892\) 0 0
\(893\) −4.70520 8.14965i −0.157454 0.272718i
\(894\) 0 0
\(895\) 47.7880 82.7713i 1.59738 2.76674i
\(896\) 0 0
\(897\) 57.3640 + 7.11911i 1.91533 + 0.237700i
\(898\) 0 0
\(899\) 5.33211 0.177836
\(900\) 0 0
\(901\) −6.31188 −0.210279
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24.5241 42.4769i 0.815207 1.41198i
\(906\) 0 0
\(907\) 22.3571 + 38.7236i 0.742355 + 1.28580i 0.951420 + 0.307895i \(0.0996246\pi\)
−0.209065 + 0.977902i \(0.567042\pi\)
\(908\) 0 0
\(909\) −7.86455 + 8.10173i −0.260851 + 0.268717i
\(910\) 0 0
\(911\) −13.7822 23.8715i −0.456626 0.790899i 0.542154 0.840279i \(-0.317609\pi\)
−0.998780 + 0.0493800i \(0.984275\pi\)
\(912\) 0 0
\(913\) −1.90093 + 3.29250i −0.0629115 + 0.108966i
\(914\) 0 0
\(915\) 24.3821 32.2688i 0.806047 1.06677i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 42.7673 1.41076 0.705381 0.708828i \(-0.250776\pi\)
0.705381 + 0.708828i \(0.250776\pi\)
\(920\) 0 0
\(921\) 13.7181 18.1554i 0.452027 0.598240i
\(922\) 0 0
\(923\) 3.12402 5.41096i 0.102828 0.178104i
\(924\) 0 0
\(925\) −32.2750 55.9019i −1.06119 1.83804i
\(926\) 0 0
\(927\) −31.5787 7.96070i −1.03718 0.261464i
\(928\) 0 0
\(929\) 23.9748 + 41.5256i 0.786589 + 1.36241i 0.928045 + 0.372468i \(0.121488\pi\)
−0.141456 + 0.989945i \(0.545178\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 9.13003 + 21.5870i 0.298904 + 0.706726i
\(934\) 0 0
\(935\) 10.4168 0.340665
\(936\) 0 0
\(937\) −33.9136 −1.10791 −0.553955 0.832547i \(-0.686882\pi\)
−0.553955 + 0.832547i \(0.686882\pi\)
\(938\) 0 0
\(939\) −43.3154 5.37562i −1.41354 0.175427i
\(940\) 0 0
\(941\) −4.27395 + 7.40270i −0.139327 + 0.241321i −0.927242 0.374463i \(-0.877827\pi\)
0.787915 + 0.615784i \(0.211161\pi\)
\(942\) 0 0
\(943\) −34.3563 59.5068i −1.11879 1.93781i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.411563 0.712848i −0.0133740 0.0231645i 0.859261 0.511538i \(-0.170924\pi\)
−0.872635 + 0.488373i \(0.837591\pi\)
\(948\) 0 0
\(949\) −4.14053 + 7.17161i −0.134407 + 0.232800i
\(950\) 0 0
\(951\) 21.1382 + 2.62334i 0.685453 + 0.0850675i
\(952\) 0 0
\(953\) −44.6726 −1.44709 −0.723544 0.690278i \(-0.757488\pi\)
−0.723544 + 0.690278i \(0.757488\pi\)
\(954\) 0 0
\(955\) 26.0529 0.843051
\(956\) 0 0
\(957\) 1.05567 + 2.49602i 0.0341250 + 0.0806849i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 11.1165 + 19.2544i 0.358597 + 0.621108i
\(962\) 0 0
\(963\) −7.90476 27.8401i −0.254727 0.897135i
\(964\) 0 0
\(965\) 28.4592 + 49.2928i 0.916135 + 1.58679i
\(966\) 0 0
\(967\) −18.2289 + 31.5735i −0.586203 + 1.01533i 0.408521 + 0.912749i \(0.366045\pi\)
−0.994724 + 0.102585i \(0.967289\pi\)
\(968\) 0 0
\(969\) 12.1225 16.0437i 0.389432 0.515399i
\(970\) 0 0
\(971\) 17.2735 0.554332 0.277166 0.960822i \(-0.410605\pi\)
0.277166 + 0.960822i \(0.410605\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 72.8216 96.3767i 2.33216 3.08652i
\(976\) 0 0
\(977\) −4.51775 + 7.82497i −0.144536 + 0.250343i −0.929200 0.369578i \(-0.879502\pi\)
0.784664 + 0.619921i \(0.212835\pi\)
\(978\) 0 0
\(979\) −5.06868 8.77921i −0.161996 0.280585i
\(980\) 0 0
\(981\) −9.60567 33.8306i −0.306686 1.08013i
\(982\) 0 0
\(983\) −11.4286 19.7950i −0.364517 0.631362i 0.624182 0.781279i \(-0.285432\pi\)
−0.988698 + 0.149918i \(0.952099\pi\)
\(984\) 0 0
\(985\) −0.334715 + 0.579743i −0.0106649 + 0.0184722i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −23.4010 −0.744109
\(990\) 0 0
\(991\) 8.75768 0.278197 0.139098 0.990279i \(-0.455580\pi\)
0.139098 + 0.990279i \(0.455580\pi\)
\(992\) 0 0
\(993\) 34.2496 + 4.25051i 1.08688 + 0.134886i
\(994\) 0 0
\(995\) −51.4584 + 89.1285i −1.63134 + 2.82556i
\(996\) 0 0
\(997\) 3.46535 + 6.00216i 0.109749 + 0.190090i 0.915668 0.401934i \(-0.131662\pi\)
−0.805920 + 0.592025i \(0.798329\pi\)
\(998\) 0 0
\(999\) −25.6645 9.96668i −0.811990 0.315332i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.j.h.589.5 14
3.2 odd 2 5292.2.j.g.1765.1 14
7.2 even 3 1764.2.l.i.949.5 14
7.3 odd 6 252.2.i.b.121.7 yes 14
7.4 even 3 1764.2.i.i.373.1 14
7.5 odd 6 252.2.l.b.193.3 yes 14
7.6 odd 2 1764.2.j.g.589.3 14
9.2 odd 6 5292.2.j.g.3529.1 14
9.7 even 3 inner 1764.2.j.h.1177.5 14
21.2 odd 6 5292.2.l.i.361.7 14
21.5 even 6 756.2.l.b.361.1 14
21.11 odd 6 5292.2.i.i.1549.1 14
21.17 even 6 756.2.i.b.37.7 14
21.20 even 2 5292.2.j.h.1765.7 14
28.3 even 6 1008.2.q.j.625.1 14
28.19 even 6 1008.2.t.j.193.5 14
63.2 odd 6 5292.2.i.i.2125.1 14
63.5 even 6 2268.2.k.f.1621.7 14
63.11 odd 6 5292.2.l.i.3313.7 14
63.16 even 3 1764.2.i.i.1537.1 14
63.20 even 6 5292.2.j.h.3529.7 14
63.25 even 3 1764.2.l.i.961.5 14
63.31 odd 6 2268.2.k.e.1297.1 14
63.34 odd 6 1764.2.j.g.1177.3 14
63.38 even 6 756.2.l.b.289.1 14
63.40 odd 6 2268.2.k.e.1621.1 14
63.47 even 6 756.2.i.b.613.7 14
63.52 odd 6 252.2.l.b.205.3 yes 14
63.59 even 6 2268.2.k.f.1297.7 14
63.61 odd 6 252.2.i.b.25.7 14
84.47 odd 6 3024.2.t.j.1873.1 14
84.59 odd 6 3024.2.q.j.2305.7 14
252.47 odd 6 3024.2.q.j.2881.7 14
252.115 even 6 1008.2.t.j.961.5 14
252.187 even 6 1008.2.q.j.529.1 14
252.227 odd 6 3024.2.t.j.289.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.7 14 63.61 odd 6
252.2.i.b.121.7 yes 14 7.3 odd 6
252.2.l.b.193.3 yes 14 7.5 odd 6
252.2.l.b.205.3 yes 14 63.52 odd 6
756.2.i.b.37.7 14 21.17 even 6
756.2.i.b.613.7 14 63.47 even 6
756.2.l.b.289.1 14 63.38 even 6
756.2.l.b.361.1 14 21.5 even 6
1008.2.q.j.529.1 14 252.187 even 6
1008.2.q.j.625.1 14 28.3 even 6
1008.2.t.j.193.5 14 28.19 even 6
1008.2.t.j.961.5 14 252.115 even 6
1764.2.i.i.373.1 14 7.4 even 3
1764.2.i.i.1537.1 14 63.16 even 3
1764.2.j.g.589.3 14 7.6 odd 2
1764.2.j.g.1177.3 14 63.34 odd 6
1764.2.j.h.589.5 14 1.1 even 1 trivial
1764.2.j.h.1177.5 14 9.7 even 3 inner
1764.2.l.i.949.5 14 7.2 even 3
1764.2.l.i.961.5 14 63.25 even 3
2268.2.k.e.1297.1 14 63.31 odd 6
2268.2.k.e.1621.1 14 63.40 odd 6
2268.2.k.f.1297.7 14 63.59 even 6
2268.2.k.f.1621.7 14 63.5 even 6
3024.2.q.j.2305.7 14 84.59 odd 6
3024.2.q.j.2881.7 14 252.47 odd 6
3024.2.t.j.289.1 14 252.227 odd 6
3024.2.t.j.1873.1 14 84.47 odd 6
5292.2.i.i.1549.1 14 21.11 odd 6
5292.2.i.i.2125.1 14 63.2 odd 6
5292.2.j.g.1765.1 14 3.2 odd 2
5292.2.j.g.3529.1 14 9.2 odd 6
5292.2.j.h.1765.7 14 21.20 even 2
5292.2.j.h.3529.7 14 63.20 even 6
5292.2.l.i.361.7 14 21.2 odd 6
5292.2.l.i.3313.7 14 63.11 odd 6