Properties

Label 75.8.a.f.1.2
Level $75$
Weight $8$
Character 75.1
Self dual yes
Analytic conductor $23.429$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,8,Mod(1,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.4288769113\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{31}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.56776\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.1355 q^{2} -27.0000 q^{3} +101.084 q^{4} -408.659 q^{6} +198.897 q^{7} -407.384 q^{8} +729.000 q^{9} -5268.05 q^{11} -2729.27 q^{12} +1212.88 q^{13} +3010.42 q^{14} -19104.8 q^{16} -34583.5 q^{17} +11033.8 q^{18} +18611.2 q^{19} -5370.23 q^{21} -79734.7 q^{22} -33322.1 q^{23} +10999.4 q^{24} +18357.6 q^{26} -19683.0 q^{27} +20105.4 q^{28} -178577. q^{29} -237212. q^{31} -237015. q^{32} +142237. q^{33} -523440. q^{34} +73690.4 q^{36} +482947. q^{37} +281690. q^{38} -32747.9 q^{39} +293643. q^{41} -81281.3 q^{42} +443299. q^{43} -532517. q^{44} -504348. q^{46} -48179.6 q^{47} +515829. q^{48} -783983. q^{49} +933755. q^{51} +122603. q^{52} +1.66310e6 q^{53} -297913. q^{54} -81027.7 q^{56} -502501. q^{57} -2.70285e6 q^{58} +1.75081e6 q^{59} -3.15141e6 q^{61} -3.59033e6 q^{62} +144996. q^{63} -1.14194e6 q^{64} +2.15284e6 q^{66} +2.29198e6 q^{67} -3.49585e6 q^{68} +899697. q^{69} -2.71218e6 q^{71} -296983. q^{72} -2.67756e6 q^{73} +7.30965e6 q^{74} +1.88129e6 q^{76} -1.04780e6 q^{77} -495656. q^{78} +3.44864e6 q^{79} +531441. q^{81} +4.44444e6 q^{82} +1.71969e6 q^{83} -542846. q^{84} +6.70957e6 q^{86} +4.82157e6 q^{87} +2.14612e6 q^{88} +3.52224e6 q^{89} +241239. q^{91} -3.36834e6 q^{92} +6.40472e6 q^{93} -729223. q^{94} +6.39942e6 q^{96} +1.44653e7 q^{97} -1.18660e7 q^{98} -3.84041e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 54 q^{3} + 24 q^{4} - 216 q^{6} + 86 q^{7} + 1056 q^{8} + 1458 q^{9} - 4612 q^{11} - 648 q^{12} + 9018 q^{13} + 3816 q^{14} - 19680 q^{16} - 19948 q^{17} + 5832 q^{18} - 23934 q^{19} - 2322 q^{21}+ \cdots - 3362148 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 15.1355 1.33780 0.668902 0.743350i \(-0.266764\pi\)
0.668902 + 0.743350i \(0.266764\pi\)
\(3\) −27.0000 −0.577350
\(4\) 101.084 0.789721
\(5\) 0 0
\(6\) −408.659 −0.772382
\(7\) 198.897 0.219172 0.109586 0.993977i \(-0.465047\pi\)
0.109586 + 0.993977i \(0.465047\pi\)
\(8\) −407.384 −0.281313
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) −5268.05 −1.19337 −0.596686 0.802475i \(-0.703516\pi\)
−0.596686 + 0.802475i \(0.703516\pi\)
\(12\) −2729.27 −0.455945
\(13\) 1212.88 0.153115 0.0765574 0.997065i \(-0.475607\pi\)
0.0765574 + 0.997065i \(0.475607\pi\)
\(14\) 3010.42 0.293210
\(15\) 0 0
\(16\) −19104.8 −1.16606
\(17\) −34583.5 −1.70725 −0.853627 0.520885i \(-0.825602\pi\)
−0.853627 + 0.520885i \(0.825602\pi\)
\(18\) 11033.8 0.445935
\(19\) 18611.2 0.622495 0.311248 0.950329i \(-0.399253\pi\)
0.311248 + 0.950329i \(0.399253\pi\)
\(20\) 0 0
\(21\) −5370.23 −0.126539
\(22\) −79734.7 −1.59650
\(23\) −33322.1 −0.571065 −0.285532 0.958369i \(-0.592170\pi\)
−0.285532 + 0.958369i \(0.592170\pi\)
\(24\) 10999.4 0.162416
\(25\) 0 0
\(26\) 18357.6 0.204838
\(27\) −19683.0 −0.192450
\(28\) 20105.4 0.173085
\(29\) −178577. −1.35967 −0.679833 0.733367i \(-0.737948\pi\)
−0.679833 + 0.733367i \(0.737948\pi\)
\(30\) 0 0
\(31\) −237212. −1.43011 −0.715057 0.699066i \(-0.753599\pi\)
−0.715057 + 0.699066i \(0.753599\pi\)
\(32\) −237015. −1.27865
\(33\) 142237. 0.688993
\(34\) −523440. −2.28397
\(35\) 0 0
\(36\) 73690.4 0.263240
\(37\) 482947. 1.56745 0.783724 0.621109i \(-0.213318\pi\)
0.783724 + 0.621109i \(0.213318\pi\)
\(38\) 281690. 0.832777
\(39\) −32747.9 −0.0884009
\(40\) 0 0
\(41\) 293643. 0.665389 0.332694 0.943035i \(-0.392042\pi\)
0.332694 + 0.943035i \(0.392042\pi\)
\(42\) −81281.3 −0.169285
\(43\) 443299. 0.850271 0.425136 0.905130i \(-0.360226\pi\)
0.425136 + 0.905130i \(0.360226\pi\)
\(44\) −532517. −0.942430
\(45\) 0 0
\(46\) −504348. −0.763973
\(47\) −48179.6 −0.0676894 −0.0338447 0.999427i \(-0.510775\pi\)
−0.0338447 + 0.999427i \(0.510775\pi\)
\(48\) 515829. 0.673226
\(49\) −783983. −0.951963
\(50\) 0 0
\(51\) 933755. 0.985683
\(52\) 122603. 0.120918
\(53\) 1.66310e6 1.53445 0.767226 0.641377i \(-0.221636\pi\)
0.767226 + 0.641377i \(0.221636\pi\)
\(54\) −297913. −0.257461
\(55\) 0 0
\(56\) −81027.7 −0.0616560
\(57\) −502501. −0.359398
\(58\) −2.70285e6 −1.81897
\(59\) 1.75081e6 1.10983 0.554916 0.831907i \(-0.312750\pi\)
0.554916 + 0.831907i \(0.312750\pi\)
\(60\) 0 0
\(61\) −3.15141e6 −1.77767 −0.888835 0.458228i \(-0.848484\pi\)
−0.888835 + 0.458228i \(0.848484\pi\)
\(62\) −3.59033e6 −1.91321
\(63\) 144996. 0.0730575
\(64\) −1.14194e6 −0.544522
\(65\) 0 0
\(66\) 2.15284e6 0.921738
\(67\) 2.29198e6 0.931000 0.465500 0.885048i \(-0.345875\pi\)
0.465500 + 0.885048i \(0.345875\pi\)
\(68\) −3.49585e6 −1.34825
\(69\) 899697. 0.329704
\(70\) 0 0
\(71\) −2.71218e6 −0.899320 −0.449660 0.893200i \(-0.648455\pi\)
−0.449660 + 0.893200i \(0.648455\pi\)
\(72\) −296983. −0.0937709
\(73\) −2.67756e6 −0.805582 −0.402791 0.915292i \(-0.631960\pi\)
−0.402791 + 0.915292i \(0.631960\pi\)
\(74\) 7.30965e6 2.09694
\(75\) 0 0
\(76\) 1.88129e6 0.491597
\(77\) −1.04780e6 −0.261554
\(78\) −495656. −0.118263
\(79\) 3.44864e6 0.786960 0.393480 0.919333i \(-0.371271\pi\)
0.393480 + 0.919333i \(0.371271\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 4.44444e6 0.890160
\(83\) 1.71969e6 0.330123 0.165062 0.986283i \(-0.447218\pi\)
0.165062 + 0.986283i \(0.447218\pi\)
\(84\) −542846. −0.0999307
\(85\) 0 0
\(86\) 6.70957e6 1.13750
\(87\) 4.82157e6 0.785003
\(88\) 2.14612e6 0.335711
\(89\) 3.52224e6 0.529607 0.264804 0.964302i \(-0.414693\pi\)
0.264804 + 0.964302i \(0.414693\pi\)
\(90\) 0 0
\(91\) 241239. 0.0335586
\(92\) −3.36834e6 −0.450981
\(93\) 6.40472e6 0.825677
\(94\) −729223. −0.0905551
\(95\) 0 0
\(96\) 6.39942e6 0.738229
\(97\) 1.44653e7 1.60926 0.804632 0.593774i \(-0.202363\pi\)
0.804632 + 0.593774i \(0.202363\pi\)
\(98\) −1.18660e7 −1.27354
\(99\) −3.84041e6 −0.397790
\(100\) 0 0
\(101\) −1.03861e7 −1.00307 −0.501533 0.865138i \(-0.667230\pi\)
−0.501533 + 0.865138i \(0.667230\pi\)
\(102\) 1.41329e7 1.31865
\(103\) 5.74920e6 0.518414 0.259207 0.965822i \(-0.416539\pi\)
0.259207 + 0.965822i \(0.416539\pi\)
\(104\) −494110. −0.0430732
\(105\) 0 0
\(106\) 2.51719e7 2.05280
\(107\) 814648. 0.0642876 0.0321438 0.999483i \(-0.489767\pi\)
0.0321438 + 0.999483i \(0.489767\pi\)
\(108\) −1.98964e6 −0.151982
\(109\) 1.19570e6 0.0884362 0.0442181 0.999022i \(-0.485920\pi\)
0.0442181 + 0.999022i \(0.485920\pi\)
\(110\) 0 0
\(111\) −1.30396e7 −0.904967
\(112\) −3.79989e6 −0.255569
\(113\) −2.01650e7 −1.31469 −0.657345 0.753590i \(-0.728321\pi\)
−0.657345 + 0.753590i \(0.728321\pi\)
\(114\) −7.60562e6 −0.480804
\(115\) 0 0
\(116\) −1.80513e7 −1.07376
\(117\) 884192. 0.0510383
\(118\) 2.64994e7 1.48474
\(119\) −6.87857e6 −0.374183
\(120\) 0 0
\(121\) 8.26519e6 0.424135
\(122\) −4.76983e7 −2.37817
\(123\) −7.92835e6 −0.384162
\(124\) −2.39784e7 −1.12939
\(125\) 0 0
\(126\) 2.19459e6 0.0977366
\(127\) −3.18561e7 −1.38000 −0.690000 0.723809i \(-0.742389\pi\)
−0.690000 + 0.723809i \(0.742389\pi\)
\(128\) 1.30540e7 0.550187
\(129\) −1.19691e7 −0.490904
\(130\) 0 0
\(131\) −4.60762e7 −1.79072 −0.895359 0.445346i \(-0.853081\pi\)
−0.895359 + 0.445346i \(0.853081\pi\)
\(132\) 1.43780e7 0.544112
\(133\) 3.70171e6 0.136434
\(134\) 3.46904e7 1.24550
\(135\) 0 0
\(136\) 1.40888e7 0.480272
\(137\) −3.10405e7 −1.03135 −0.515676 0.856784i \(-0.672459\pi\)
−0.515676 + 0.856784i \(0.672459\pi\)
\(138\) 1.36174e7 0.441080
\(139\) 1.16619e7 0.368313 0.184157 0.982897i \(-0.441045\pi\)
0.184157 + 0.982897i \(0.441045\pi\)
\(140\) 0 0
\(141\) 1.30085e6 0.0390805
\(142\) −4.10503e7 −1.20311
\(143\) −6.38953e6 −0.182723
\(144\) −1.39274e7 −0.388687
\(145\) 0 0
\(146\) −4.05264e7 −1.07771
\(147\) 2.11675e7 0.549616
\(148\) 4.88183e7 1.23785
\(149\) −2.42032e7 −0.599406 −0.299703 0.954033i \(-0.596888\pi\)
−0.299703 + 0.954033i \(0.596888\pi\)
\(150\) 0 0
\(151\) 5.56277e6 0.131484 0.0657418 0.997837i \(-0.479059\pi\)
0.0657418 + 0.997837i \(0.479059\pi\)
\(152\) −7.58190e6 −0.175116
\(153\) −2.52114e7 −0.569084
\(154\) −1.58590e7 −0.349908
\(155\) 0 0
\(156\) −3.31029e6 −0.0698120
\(157\) 6.29132e7 1.29746 0.648729 0.761020i \(-0.275301\pi\)
0.648729 + 0.761020i \(0.275301\pi\)
\(158\) 5.21969e7 1.05280
\(159\) −4.49037e7 −0.885916
\(160\) 0 0
\(161\) −6.62768e6 −0.125162
\(162\) 8.04364e6 0.148645
\(163\) −6.99767e7 −1.26560 −0.632800 0.774315i \(-0.718095\pi\)
−0.632800 + 0.774315i \(0.718095\pi\)
\(164\) 2.96826e7 0.525471
\(165\) 0 0
\(166\) 2.60284e7 0.441640
\(167\) 4.69310e7 0.779744 0.389872 0.920869i \(-0.372519\pi\)
0.389872 + 0.920869i \(0.372519\pi\)
\(168\) 2.18775e6 0.0355971
\(169\) −6.12774e7 −0.976556
\(170\) 0 0
\(171\) 1.35675e7 0.207498
\(172\) 4.48106e7 0.671477
\(173\) −6.98991e7 −1.02638 −0.513192 0.858274i \(-0.671537\pi\)
−0.513192 + 0.858274i \(0.671537\pi\)
\(174\) 7.29771e7 1.05018
\(175\) 0 0
\(176\) 1.00645e8 1.39154
\(177\) −4.72719e7 −0.640761
\(178\) 5.33109e7 0.708511
\(179\) −7.07028e7 −0.921406 −0.460703 0.887554i \(-0.652403\pi\)
−0.460703 + 0.887554i \(0.652403\pi\)
\(180\) 0 0
\(181\) −1.13942e7 −0.142826 −0.0714130 0.997447i \(-0.522751\pi\)
−0.0714130 + 0.997447i \(0.522751\pi\)
\(182\) 3.65129e6 0.0448948
\(183\) 8.50882e7 1.02634
\(184\) 1.35749e7 0.160648
\(185\) 0 0
\(186\) 9.69389e7 1.10459
\(187\) 1.82188e8 2.03739
\(188\) −4.87019e6 −0.0534557
\(189\) −3.91490e6 −0.0421798
\(190\) 0 0
\(191\) 9.68535e7 1.00577 0.502885 0.864353i \(-0.332272\pi\)
0.502885 + 0.864353i \(0.332272\pi\)
\(192\) 3.08325e7 0.314380
\(193\) −1.75300e8 −1.75522 −0.877610 0.479375i \(-0.840863\pi\)
−0.877610 + 0.479375i \(0.840863\pi\)
\(194\) 2.18940e8 2.15288
\(195\) 0 0
\(196\) −7.92483e7 −0.751785
\(197\) −3.23559e7 −0.301524 −0.150762 0.988570i \(-0.548173\pi\)
−0.150762 + 0.988570i \(0.548173\pi\)
\(198\) −5.81266e7 −0.532166
\(199\) 1.87609e8 1.68760 0.843798 0.536661i \(-0.180315\pi\)
0.843798 + 0.536661i \(0.180315\pi\)
\(200\) 0 0
\(201\) −6.18835e7 −0.537513
\(202\) −1.57200e8 −1.34191
\(203\) −3.55185e7 −0.298001
\(204\) 9.43879e7 0.778414
\(205\) 0 0
\(206\) 8.70172e7 0.693537
\(207\) −2.42918e7 −0.190355
\(208\) −2.31718e7 −0.178541
\(209\) −9.80445e7 −0.742868
\(210\) 0 0
\(211\) −2.34640e8 −1.71954 −0.859771 0.510680i \(-0.829394\pi\)
−0.859771 + 0.510680i \(0.829394\pi\)
\(212\) 1.68113e8 1.21179
\(213\) 7.32289e7 0.519223
\(214\) 1.23301e7 0.0860042
\(215\) 0 0
\(216\) 8.01855e6 0.0541387
\(217\) −4.71808e7 −0.313442
\(218\) 1.80976e7 0.118310
\(219\) 7.22943e7 0.465103
\(220\) 0 0
\(221\) −4.19458e7 −0.261406
\(222\) −1.97361e8 −1.21067
\(223\) −1.06824e8 −0.645061 −0.322530 0.946559i \(-0.604533\pi\)
−0.322530 + 0.946559i \(0.604533\pi\)
\(224\) −4.71418e7 −0.280245
\(225\) 0 0
\(226\) −3.05208e8 −1.75880
\(227\) −1.10477e8 −0.626876 −0.313438 0.949609i \(-0.601481\pi\)
−0.313438 + 0.949609i \(0.601481\pi\)
\(228\) −5.07950e7 −0.283824
\(229\) 7.64868e7 0.420884 0.210442 0.977606i \(-0.432510\pi\)
0.210442 + 0.977606i \(0.432510\pi\)
\(230\) 0 0
\(231\) 2.82906e7 0.151008
\(232\) 7.27494e7 0.382491
\(233\) 1.53071e8 0.792768 0.396384 0.918085i \(-0.370265\pi\)
0.396384 + 0.918085i \(0.370265\pi\)
\(234\) 1.33827e7 0.0682792
\(235\) 0 0
\(236\) 1.76979e8 0.876457
\(237\) −9.31132e7 −0.454352
\(238\) −1.04111e8 −0.500584
\(239\) 6.23039e7 0.295204 0.147602 0.989047i \(-0.452845\pi\)
0.147602 + 0.989047i \(0.452845\pi\)
\(240\) 0 0
\(241\) 2.48021e8 1.14138 0.570688 0.821167i \(-0.306677\pi\)
0.570688 + 0.821167i \(0.306677\pi\)
\(242\) 1.25098e8 0.567409
\(243\) −1.43489e7 −0.0641500
\(244\) −3.18558e8 −1.40386
\(245\) 0 0
\(246\) −1.20000e8 −0.513934
\(247\) 2.25732e7 0.0953132
\(248\) 9.66365e7 0.402309
\(249\) −4.64316e7 −0.190597
\(250\) 0 0
\(251\) 2.23677e7 0.0892819 0.0446409 0.999003i \(-0.485786\pi\)
0.0446409 + 0.999003i \(0.485786\pi\)
\(252\) 1.46568e7 0.0576950
\(253\) 1.75543e8 0.681492
\(254\) −4.82158e8 −1.84617
\(255\) 0 0
\(256\) 3.43749e8 1.28056
\(257\) 2.68205e8 0.985601 0.492800 0.870142i \(-0.335973\pi\)
0.492800 + 0.870142i \(0.335973\pi\)
\(258\) −1.81158e8 −0.656734
\(259\) 9.60568e7 0.343541
\(260\) 0 0
\(261\) −1.30182e8 −0.453222
\(262\) −6.97388e8 −2.39563
\(263\) 4.38844e8 1.48753 0.743763 0.668443i \(-0.233039\pi\)
0.743763 + 0.668443i \(0.233039\pi\)
\(264\) −5.79453e7 −0.193823
\(265\) 0 0
\(266\) 5.60274e7 0.182522
\(267\) −9.51005e7 −0.305769
\(268\) 2.31683e8 0.735229
\(269\) −4.50968e8 −1.41258 −0.706289 0.707923i \(-0.749632\pi\)
−0.706289 + 0.707923i \(0.749632\pi\)
\(270\) 0 0
\(271\) −3.75385e7 −0.114574 −0.0572868 0.998358i \(-0.518245\pi\)
−0.0572868 + 0.998358i \(0.518245\pi\)
\(272\) 6.60710e8 1.99076
\(273\) −6.51346e6 −0.0193750
\(274\) −4.69814e8 −1.37975
\(275\) 0 0
\(276\) 9.09452e7 0.260374
\(277\) 1.77406e7 0.0501521 0.0250760 0.999686i \(-0.492017\pi\)
0.0250760 + 0.999686i \(0.492017\pi\)
\(278\) 1.76509e8 0.492731
\(279\) −1.72928e8 −0.476705
\(280\) 0 0
\(281\) −2.17802e8 −0.585585 −0.292792 0.956176i \(-0.594585\pi\)
−0.292792 + 0.956176i \(0.594585\pi\)
\(282\) 1.96890e7 0.0522820
\(283\) 4.34127e8 1.13858 0.569291 0.822136i \(-0.307218\pi\)
0.569291 + 0.822136i \(0.307218\pi\)
\(284\) −2.74159e8 −0.710212
\(285\) 0 0
\(286\) −9.67089e7 −0.244447
\(287\) 5.84047e7 0.145835
\(288\) −1.72784e8 −0.426217
\(289\) 7.85681e8 1.91471
\(290\) 0 0
\(291\) −3.90564e8 −0.929109
\(292\) −2.70660e8 −0.636185
\(293\) −3.93901e8 −0.914850 −0.457425 0.889248i \(-0.651228\pi\)
−0.457425 + 0.889248i \(0.651228\pi\)
\(294\) 3.20382e8 0.735279
\(295\) 0 0
\(296\) −1.96745e8 −0.440943
\(297\) 1.03691e8 0.229664
\(298\) −3.66328e8 −0.801888
\(299\) −4.04159e7 −0.0874385
\(300\) 0 0
\(301\) 8.81711e7 0.186356
\(302\) 8.41955e7 0.175899
\(303\) 2.80426e8 0.579121
\(304\) −3.55562e8 −0.725868
\(305\) 0 0
\(306\) −3.81588e8 −0.761324
\(307\) −1.78228e8 −0.351554 −0.175777 0.984430i \(-0.556244\pi\)
−0.175777 + 0.984430i \(0.556244\pi\)
\(308\) −1.05916e8 −0.206555
\(309\) −1.55228e8 −0.299307
\(310\) 0 0
\(311\) 3.51118e8 0.661899 0.330949 0.943648i \(-0.392631\pi\)
0.330949 + 0.943648i \(0.392631\pi\)
\(312\) 1.33410e7 0.0248683
\(313\) 4.90233e8 0.903644 0.451822 0.892108i \(-0.350774\pi\)
0.451822 + 0.892108i \(0.350774\pi\)
\(314\) 9.52225e8 1.73574
\(315\) 0 0
\(316\) 3.48603e8 0.621478
\(317\) −9.76769e8 −1.72220 −0.861102 0.508433i \(-0.830225\pi\)
−0.861102 + 0.508433i \(0.830225\pi\)
\(318\) −6.79642e8 −1.18518
\(319\) 9.40752e8 1.62259
\(320\) 0 0
\(321\) −2.19955e7 −0.0371164
\(322\) −1.00313e8 −0.167442
\(323\) −6.43639e8 −1.06276
\(324\) 5.37203e7 0.0877467
\(325\) 0 0
\(326\) −1.05913e9 −1.69313
\(327\) −3.22840e7 −0.0510587
\(328\) −1.19625e8 −0.187182
\(329\) −9.58279e6 −0.0148356
\(330\) 0 0
\(331\) 1.09787e9 1.66400 0.831998 0.554779i \(-0.187197\pi\)
0.831998 + 0.554779i \(0.187197\pi\)
\(332\) 1.73833e8 0.260705
\(333\) 3.52068e8 0.522483
\(334\) 7.10326e8 1.04315
\(335\) 0 0
\(336\) 1.02597e8 0.147553
\(337\) −3.75517e8 −0.534472 −0.267236 0.963631i \(-0.586110\pi\)
−0.267236 + 0.963631i \(0.586110\pi\)
\(338\) −9.27466e8 −1.30644
\(339\) 5.44455e8 0.759036
\(340\) 0 0
\(341\) 1.24964e9 1.70666
\(342\) 2.05352e8 0.277592
\(343\) −3.19733e8 −0.427817
\(344\) −1.80593e8 −0.239192
\(345\) 0 0
\(346\) −1.05796e9 −1.37310
\(347\) 3.19461e8 0.410454 0.205227 0.978714i \(-0.434207\pi\)
0.205227 + 0.978714i \(0.434207\pi\)
\(348\) 4.87385e8 0.619933
\(349\) −4.55816e8 −0.573985 −0.286992 0.957933i \(-0.592655\pi\)
−0.286992 + 0.957933i \(0.592655\pi\)
\(350\) 0 0
\(351\) −2.38732e7 −0.0294670
\(352\) 1.24861e9 1.52590
\(353\) 4.26817e8 0.516452 0.258226 0.966085i \(-0.416862\pi\)
0.258226 + 0.966085i \(0.416862\pi\)
\(354\) −7.15485e8 −0.857214
\(355\) 0 0
\(356\) 3.56043e8 0.418242
\(357\) 1.85721e8 0.216035
\(358\) −1.07012e9 −1.23266
\(359\) 4.26515e7 0.0486524 0.0243262 0.999704i \(-0.492256\pi\)
0.0243262 + 0.999704i \(0.492256\pi\)
\(360\) 0 0
\(361\) −5.47496e8 −0.612500
\(362\) −1.72457e8 −0.191073
\(363\) −2.23160e8 −0.244874
\(364\) 2.43855e7 0.0265019
\(365\) 0 0
\(366\) 1.28785e9 1.37304
\(367\) 1.37406e9 1.45102 0.725509 0.688212i \(-0.241604\pi\)
0.725509 + 0.688212i \(0.241604\pi\)
\(368\) 6.36611e8 0.665897
\(369\) 2.14065e8 0.221796
\(370\) 0 0
\(371\) 3.30787e8 0.336310
\(372\) 6.47417e8 0.652054
\(373\) −1.55411e8 −0.155060 −0.0775302 0.996990i \(-0.524703\pi\)
−0.0775302 + 0.996990i \(0.524703\pi\)
\(374\) 2.75751e9 2.72563
\(375\) 0 0
\(376\) 1.96276e7 0.0190419
\(377\) −2.16593e8 −0.208185
\(378\) −5.92540e7 −0.0564283
\(379\) −1.37612e9 −1.29844 −0.649218 0.760603i \(-0.724904\pi\)
−0.649218 + 0.760603i \(0.724904\pi\)
\(380\) 0 0
\(381\) 8.60114e8 0.796743
\(382\) 1.46593e9 1.34552
\(383\) −1.45533e9 −1.32362 −0.661812 0.749669i \(-0.730212\pi\)
−0.661812 + 0.749669i \(0.730212\pi\)
\(384\) −3.52459e8 −0.317650
\(385\) 0 0
\(386\) −2.65326e9 −2.34814
\(387\) 3.23165e8 0.283424
\(388\) 1.46222e9 1.27087
\(389\) −8.43958e8 −0.726938 −0.363469 0.931606i \(-0.618408\pi\)
−0.363469 + 0.931606i \(0.618408\pi\)
\(390\) 0 0
\(391\) 1.15240e9 0.974952
\(392\) 3.19382e8 0.267799
\(393\) 1.24406e9 1.03387
\(394\) −4.89724e8 −0.403380
\(395\) 0 0
\(396\) −3.88205e8 −0.314143
\(397\) −1.62020e8 −0.129958 −0.0649788 0.997887i \(-0.520698\pi\)
−0.0649788 + 0.997887i \(0.520698\pi\)
\(398\) 2.83957e9 2.25767
\(399\) −9.99462e7 −0.0787701
\(400\) 0 0
\(401\) 9.76942e8 0.756595 0.378298 0.925684i \(-0.376510\pi\)
0.378298 + 0.925684i \(0.376510\pi\)
\(402\) −9.36640e8 −0.719087
\(403\) −2.87710e8 −0.218972
\(404\) −1.04988e9 −0.792142
\(405\) 0 0
\(406\) −5.37591e8 −0.398667
\(407\) −2.54419e9 −1.87055
\(408\) −3.80397e8 −0.277285
\(409\) −2.23718e9 −1.61685 −0.808426 0.588598i \(-0.799680\pi\)
−0.808426 + 0.588598i \(0.799680\pi\)
\(410\) 0 0
\(411\) 8.38094e8 0.595451
\(412\) 5.81153e8 0.409403
\(413\) 3.48232e8 0.243244
\(414\) −3.67670e8 −0.254658
\(415\) 0 0
\(416\) −2.87472e8 −0.195780
\(417\) −3.14871e8 −0.212646
\(418\) −1.48396e9 −0.993812
\(419\) 2.75074e9 1.82684 0.913421 0.407016i \(-0.133431\pi\)
0.913421 + 0.407016i \(0.133431\pi\)
\(420\) 0 0
\(421\) −2.91092e9 −1.90126 −0.950632 0.310320i \(-0.899564\pi\)
−0.950632 + 0.310320i \(0.899564\pi\)
\(422\) −3.55140e9 −2.30041
\(423\) −3.51229e7 −0.0225631
\(424\) −6.77522e8 −0.431661
\(425\) 0 0
\(426\) 1.10836e9 0.694619
\(427\) −6.26808e8 −0.389616
\(428\) 8.23481e7 0.0507692
\(429\) 1.72517e8 0.105495
\(430\) 0 0
\(431\) 3.53062e8 0.212412 0.106206 0.994344i \(-0.466130\pi\)
0.106206 + 0.994344i \(0.466130\pi\)
\(432\) 3.76039e8 0.224409
\(433\) 3.53908e8 0.209499 0.104750 0.994499i \(-0.466596\pi\)
0.104750 + 0.994499i \(0.466596\pi\)
\(434\) −7.14107e8 −0.419324
\(435\) 0 0
\(436\) 1.20867e8 0.0698399
\(437\) −6.20163e8 −0.355485
\(438\) 1.09421e9 0.622217
\(439\) 1.69079e9 0.953812 0.476906 0.878954i \(-0.341758\pi\)
0.476906 + 0.878954i \(0.341758\pi\)
\(440\) 0 0
\(441\) −5.71523e8 −0.317321
\(442\) −6.34872e8 −0.349710
\(443\) −2.84211e9 −1.55320 −0.776601 0.629993i \(-0.783058\pi\)
−0.776601 + 0.629993i \(0.783058\pi\)
\(444\) −1.31809e9 −0.714671
\(445\) 0 0
\(446\) −1.61683e9 −0.862965
\(447\) 6.53487e8 0.346067
\(448\) −2.27130e8 −0.119344
\(449\) −2.35632e9 −1.22849 −0.614245 0.789115i \(-0.710539\pi\)
−0.614245 + 0.789115i \(0.710539\pi\)
\(450\) 0 0
\(451\) −1.54692e9 −0.794056
\(452\) −2.03836e9 −1.03824
\(453\) −1.50195e8 −0.0759121
\(454\) −1.67213e9 −0.838638
\(455\) 0 0
\(456\) 2.04711e8 0.101103
\(457\) −2.00995e9 −0.985094 −0.492547 0.870286i \(-0.663934\pi\)
−0.492547 + 0.870286i \(0.663934\pi\)
\(458\) 1.15767e9 0.563061
\(459\) 6.80707e8 0.328561
\(460\) 0 0
\(461\) −2.79024e9 −1.32644 −0.663222 0.748423i \(-0.730811\pi\)
−0.663222 + 0.748423i \(0.730811\pi\)
\(462\) 4.28194e8 0.202020
\(463\) 8.25871e8 0.386704 0.193352 0.981129i \(-0.438064\pi\)
0.193352 + 0.981129i \(0.438064\pi\)
\(464\) 3.41167e9 1.58545
\(465\) 0 0
\(466\) 2.31681e9 1.06057
\(467\) 1.39293e8 0.0632878 0.0316439 0.999499i \(-0.489926\pi\)
0.0316439 + 0.999499i \(0.489926\pi\)
\(468\) 8.93779e7 0.0403060
\(469\) 4.55869e8 0.204049
\(470\) 0 0
\(471\) −1.69866e9 −0.749087
\(472\) −7.13253e8 −0.312210
\(473\) −2.33532e9 −1.01469
\(474\) −1.40932e9 −0.607833
\(475\) 0 0
\(476\) −6.95315e8 −0.295500
\(477\) 1.21240e9 0.511484
\(478\) 9.43002e8 0.394925
\(479\) −4.59217e9 −1.90917 −0.954583 0.297946i \(-0.903699\pi\)
−0.954583 + 0.297946i \(0.903699\pi\)
\(480\) 0 0
\(481\) 5.85758e8 0.240000
\(482\) 3.75393e9 1.52694
\(483\) 1.78947e8 0.0722621
\(484\) 8.35480e8 0.334948
\(485\) 0 0
\(486\) −2.17178e8 −0.0858202
\(487\) 3.28997e9 1.29075 0.645373 0.763867i \(-0.276702\pi\)
0.645373 + 0.763867i \(0.276702\pi\)
\(488\) 1.28384e9 0.500081
\(489\) 1.88937e9 0.730695
\(490\) 0 0
\(491\) 4.19357e9 1.59882 0.799409 0.600787i \(-0.205146\pi\)
0.799409 + 0.600787i \(0.205146\pi\)
\(492\) −8.01431e8 −0.303381
\(493\) 6.17581e9 2.32129
\(494\) 3.41657e8 0.127510
\(495\) 0 0
\(496\) 4.53188e9 1.66760
\(497\) −5.39446e8 −0.197106
\(498\) −7.02766e8 −0.254981
\(499\) 4.22173e8 0.152103 0.0760517 0.997104i \(-0.475769\pi\)
0.0760517 + 0.997104i \(0.475769\pi\)
\(500\) 0 0
\(501\) −1.26714e9 −0.450186
\(502\) 3.38547e8 0.119442
\(503\) −2.35612e9 −0.825487 −0.412743 0.910847i \(-0.635429\pi\)
−0.412743 + 0.910847i \(0.635429\pi\)
\(504\) −5.90692e7 −0.0205520
\(505\) 0 0
\(506\) 2.65693e9 0.911703
\(507\) 1.65449e9 0.563815
\(508\) −3.22015e9 −1.08981
\(509\) 3.48158e9 1.17021 0.585105 0.810957i \(-0.301053\pi\)
0.585105 + 0.810957i \(0.301053\pi\)
\(510\) 0 0
\(511\) −5.32561e8 −0.176561
\(512\) 3.53190e9 1.16296
\(513\) −3.66323e8 −0.119799
\(514\) 4.05943e9 1.31854
\(515\) 0 0
\(516\) −1.20989e9 −0.387677
\(517\) 2.53812e8 0.0807785
\(518\) 1.45387e9 0.459591
\(519\) 1.88728e9 0.592584
\(520\) 0 0
\(521\) −1.50714e9 −0.466898 −0.233449 0.972369i \(-0.575001\pi\)
−0.233449 + 0.972369i \(0.575001\pi\)
\(522\) −1.97038e9 −0.606322
\(523\) 2.71312e9 0.829302 0.414651 0.909981i \(-0.363904\pi\)
0.414651 + 0.909981i \(0.363904\pi\)
\(524\) −4.65758e9 −1.41417
\(525\) 0 0
\(526\) 6.64213e9 1.99002
\(527\) 8.20362e9 2.44157
\(528\) −2.71741e9 −0.803409
\(529\) −2.29446e9 −0.673885
\(530\) 0 0
\(531\) 1.27634e9 0.369944
\(532\) 3.74185e8 0.107745
\(533\) 3.56154e8 0.101881
\(534\) −1.43940e9 −0.409059
\(535\) 0 0
\(536\) −9.33718e8 −0.261902
\(537\) 1.90898e9 0.531974
\(538\) −6.82564e9 −1.88975
\(539\) 4.13006e9 1.13605
\(540\) 0 0
\(541\) −5.65472e8 −0.153540 −0.0767699 0.997049i \(-0.524461\pi\)
−0.0767699 + 0.997049i \(0.524461\pi\)
\(542\) −5.68165e8 −0.153277
\(543\) 3.07642e8 0.0824607
\(544\) 8.19683e9 2.18298
\(545\) 0 0
\(546\) −9.85847e7 −0.0259200
\(547\) −6.12811e9 −1.60092 −0.800462 0.599383i \(-0.795413\pi\)
−0.800462 + 0.599383i \(0.795413\pi\)
\(548\) −3.13771e9 −0.814480
\(549\) −2.29738e9 −0.592556
\(550\) 0 0
\(551\) −3.32352e9 −0.846385
\(552\) −3.66523e8 −0.0927500
\(553\) 6.85925e8 0.172480
\(554\) 2.68513e8 0.0670936
\(555\) 0 0
\(556\) 1.17883e9 0.290864
\(557\) 1.99978e9 0.490329 0.245165 0.969481i \(-0.421158\pi\)
0.245165 + 0.969481i \(0.421158\pi\)
\(558\) −2.61735e9 −0.637738
\(559\) 5.37670e8 0.130189
\(560\) 0 0
\(561\) −4.91907e9 −1.17629
\(562\) −3.29655e9 −0.783398
\(563\) −3.80780e9 −0.899279 −0.449639 0.893210i \(-0.648448\pi\)
−0.449639 + 0.893210i \(0.648448\pi\)
\(564\) 1.31495e8 0.0308626
\(565\) 0 0
\(566\) 6.57074e9 1.52320
\(567\) 1.05702e8 0.0243525
\(568\) 1.10490e9 0.252990
\(569\) −5.48649e9 −1.24854 −0.624269 0.781210i \(-0.714603\pi\)
−0.624269 + 0.781210i \(0.714603\pi\)
\(570\) 0 0
\(571\) −5.09068e9 −1.14433 −0.572163 0.820140i \(-0.693895\pi\)
−0.572163 + 0.820140i \(0.693895\pi\)
\(572\) −6.45881e8 −0.144300
\(573\) −2.61505e9 −0.580682
\(574\) 8.83987e8 0.195099
\(575\) 0 0
\(576\) −8.32478e8 −0.181507
\(577\) 3.65448e8 0.0791972 0.0395986 0.999216i \(-0.487392\pi\)
0.0395986 + 0.999216i \(0.487392\pi\)
\(578\) 1.18917e10 2.56151
\(579\) 4.73310e9 1.01338
\(580\) 0 0
\(581\) 3.42041e8 0.0723539
\(582\) −5.91139e9 −1.24297
\(583\) −8.76130e9 −1.83117
\(584\) 1.09080e9 0.226621
\(585\) 0 0
\(586\) −5.96189e9 −1.22389
\(587\) 1.71450e9 0.349867 0.174934 0.984580i \(-0.444029\pi\)
0.174934 + 0.984580i \(0.444029\pi\)
\(588\) 2.13970e9 0.434043
\(589\) −4.41479e9 −0.890239
\(590\) 0 0
\(591\) 8.73609e8 0.174085
\(592\) −9.22658e9 −1.82774
\(593\) 4.03168e9 0.793952 0.396976 0.917829i \(-0.370060\pi\)
0.396976 + 0.917829i \(0.370060\pi\)
\(594\) 1.56942e9 0.307246
\(595\) 0 0
\(596\) −2.44656e9 −0.473363
\(597\) −5.06545e9 −0.974334
\(598\) −6.11715e8 −0.116976
\(599\) 6.61745e9 1.25805 0.629024 0.777386i \(-0.283455\pi\)
0.629024 + 0.777386i \(0.283455\pi\)
\(600\) 0 0
\(601\) −3.15832e9 −0.593465 −0.296732 0.954961i \(-0.595897\pi\)
−0.296732 + 0.954961i \(0.595897\pi\)
\(602\) 1.33452e9 0.249308
\(603\) 1.67086e9 0.310333
\(604\) 5.62308e8 0.103835
\(605\) 0 0
\(606\) 4.24440e9 0.774750
\(607\) 6.46297e9 1.17293 0.586464 0.809975i \(-0.300519\pi\)
0.586464 + 0.809975i \(0.300519\pi\)
\(608\) −4.41113e9 −0.795953
\(609\) 9.58998e8 0.172051
\(610\) 0 0
\(611\) −5.84362e7 −0.0103642
\(612\) −2.54847e9 −0.449418
\(613\) 7.34328e9 1.28759 0.643796 0.765197i \(-0.277358\pi\)
0.643796 + 0.765197i \(0.277358\pi\)
\(614\) −2.69758e9 −0.470311
\(615\) 0 0
\(616\) 4.26858e8 0.0735785
\(617\) −2.52089e9 −0.432071 −0.216036 0.976385i \(-0.569313\pi\)
−0.216036 + 0.976385i \(0.569313\pi\)
\(618\) −2.34946e9 −0.400414
\(619\) 5.86398e9 0.993746 0.496873 0.867823i \(-0.334482\pi\)
0.496873 + 0.867823i \(0.334482\pi\)
\(620\) 0 0
\(621\) 6.55879e8 0.109901
\(622\) 5.31436e9 0.885491
\(623\) 7.00564e8 0.116075
\(624\) 6.25640e8 0.103081
\(625\) 0 0
\(626\) 7.41993e9 1.20890
\(627\) 2.64720e9 0.428895
\(628\) 6.35953e9 1.02463
\(629\) −1.67020e10 −2.67603
\(630\) 0 0
\(631\) −9.56879e8 −0.151619 −0.0758096 0.997122i \(-0.524154\pi\)
−0.0758096 + 0.997122i \(0.524154\pi\)
\(632\) −1.40492e9 −0.221382
\(633\) 6.33527e9 0.992778
\(634\) −1.47839e10 −2.30397
\(635\) 0 0
\(636\) −4.53906e9 −0.699626
\(637\) −9.50880e8 −0.145760
\(638\) 1.42388e10 2.17070
\(639\) −1.97718e9 −0.299773
\(640\) 0 0
\(641\) 6.36740e9 0.954902 0.477451 0.878658i \(-0.341561\pi\)
0.477451 + 0.878658i \(0.341561\pi\)
\(642\) −3.32914e8 −0.0496545
\(643\) −5.80000e9 −0.860378 −0.430189 0.902739i \(-0.641553\pi\)
−0.430189 + 0.902739i \(0.641553\pi\)
\(644\) −6.69954e8 −0.0988427
\(645\) 0 0
\(646\) −9.74182e9 −1.42176
\(647\) −2.28138e9 −0.331156 −0.165578 0.986197i \(-0.552949\pi\)
−0.165578 + 0.986197i \(0.552949\pi\)
\(648\) −2.16501e8 −0.0312570
\(649\) −9.22336e9 −1.32444
\(650\) 0 0
\(651\) 1.27388e9 0.180966
\(652\) −7.07354e9 −0.999471
\(653\) −7.78616e9 −1.09428 −0.547138 0.837042i \(-0.684283\pi\)
−0.547138 + 0.837042i \(0.684283\pi\)
\(654\) −4.88635e8 −0.0683065
\(655\) 0 0
\(656\) −5.60997e9 −0.775885
\(657\) −1.95194e9 −0.268527
\(658\) −1.45041e8 −0.0198472
\(659\) −5.97501e9 −0.813279 −0.406640 0.913589i \(-0.633300\pi\)
−0.406640 + 0.913589i \(0.633300\pi\)
\(660\) 0 0
\(661\) −5.31993e9 −0.716475 −0.358237 0.933631i \(-0.616622\pi\)
−0.358237 + 0.933631i \(0.616622\pi\)
\(662\) 1.66168e10 2.22610
\(663\) 1.13254e9 0.150923
\(664\) −7.00574e8 −0.0928679
\(665\) 0 0
\(666\) 5.32874e9 0.698980
\(667\) 5.95056e9 0.776457
\(668\) 4.74399e9 0.615780
\(669\) 2.88424e9 0.372426
\(670\) 0 0
\(671\) 1.66018e10 2.12142
\(672\) 1.27283e9 0.161799
\(673\) −5.24622e9 −0.663427 −0.331714 0.943380i \(-0.607627\pi\)
−0.331714 + 0.943380i \(0.607627\pi\)
\(674\) −5.68365e9 −0.715019
\(675\) 0 0
\(676\) −6.19418e9 −0.771206
\(677\) −6.58821e9 −0.816032 −0.408016 0.912975i \(-0.633779\pi\)
−0.408016 + 0.912975i \(0.633779\pi\)
\(678\) 8.24061e9 1.01544
\(679\) 2.87712e9 0.352706
\(680\) 0 0
\(681\) 2.98288e9 0.361927
\(682\) 1.89140e10 2.28317
\(683\) −5.44287e9 −0.653666 −0.326833 0.945082i \(-0.605981\pi\)
−0.326833 + 0.945082i \(0.605981\pi\)
\(684\) 1.37146e9 0.163866
\(685\) 0 0
\(686\) −4.83932e9 −0.572335
\(687\) −2.06514e9 −0.242998
\(688\) −8.46913e9 −0.991469
\(689\) 2.01715e9 0.234947
\(690\) 0 0
\(691\) 2.06828e9 0.238472 0.119236 0.992866i \(-0.461956\pi\)
0.119236 + 0.992866i \(0.461956\pi\)
\(692\) −7.06570e9 −0.810557
\(693\) −7.63847e8 −0.0871847
\(694\) 4.83521e9 0.549107
\(695\) 0 0
\(696\) −1.96423e9 −0.220831
\(697\) −1.01552e10 −1.13599
\(698\) −6.89902e9 −0.767880
\(699\) −4.13291e9 −0.457705
\(700\) 0 0
\(701\) 4.56061e9 0.500045 0.250023 0.968240i \(-0.419562\pi\)
0.250023 + 0.968240i \(0.419562\pi\)
\(702\) −3.61333e8 −0.0394210
\(703\) 8.98820e9 0.975729
\(704\) 6.01582e9 0.649816
\(705\) 0 0
\(706\) 6.46010e9 0.690912
\(707\) −2.06578e9 −0.219845
\(708\) −4.77844e9 −0.506023
\(709\) −1.07854e9 −0.113652 −0.0568259 0.998384i \(-0.518098\pi\)
−0.0568259 + 0.998384i \(0.518098\pi\)
\(710\) 0 0
\(711\) 2.51406e9 0.262320
\(712\) −1.43491e9 −0.148985
\(713\) 7.90441e9 0.816687
\(714\) 2.81099e9 0.289012
\(715\) 0 0
\(716\) −7.14694e9 −0.727653
\(717\) −1.68221e9 −0.170436
\(718\) 6.45553e8 0.0650873
\(719\) 1.63222e10 1.63767 0.818835 0.574029i \(-0.194620\pi\)
0.818835 + 0.574029i \(0.194620\pi\)
\(720\) 0 0
\(721\) 1.14350e9 0.113622
\(722\) −8.28665e9 −0.819405
\(723\) −6.69656e9 −0.658973
\(724\) −1.15177e9 −0.112793
\(725\) 0 0
\(726\) −3.37765e9 −0.327594
\(727\) 1.01395e8 0.00978689 0.00489344 0.999988i \(-0.498442\pi\)
0.00489344 + 0.999988i \(0.498442\pi\)
\(728\) −9.82772e7 −0.00944045
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) −1.53309e10 −1.45163
\(732\) 8.60107e9 0.810520
\(733\) −1.10496e10 −1.03630 −0.518148 0.855291i \(-0.673378\pi\)
−0.518148 + 0.855291i \(0.673378\pi\)
\(734\) 2.07971e10 1.94118
\(735\) 0 0
\(736\) 7.89786e9 0.730192
\(737\) −1.20743e10 −1.11103
\(738\) 3.23999e9 0.296720
\(739\) 2.04328e10 1.86239 0.931197 0.364515i \(-0.118765\pi\)
0.931197 + 0.364515i \(0.118765\pi\)
\(740\) 0 0
\(741\) −6.09476e8 −0.0550291
\(742\) 5.00663e9 0.449916
\(743\) −6.12561e9 −0.547884 −0.273942 0.961746i \(-0.588328\pi\)
−0.273942 + 0.961746i \(0.588328\pi\)
\(744\) −2.60918e9 −0.232273
\(745\) 0 0
\(746\) −2.35223e9 −0.207440
\(747\) 1.25365e9 0.110041
\(748\) 1.84163e10 1.60897
\(749\) 1.62031e8 0.0140901
\(750\) 0 0
\(751\) 2.22759e10 1.91909 0.959544 0.281558i \(-0.0908510\pi\)
0.959544 + 0.281558i \(0.0908510\pi\)
\(752\) 9.20459e8 0.0789300
\(753\) −6.03928e8 −0.0515469
\(754\) −3.27825e9 −0.278511
\(755\) 0 0
\(756\) −3.95734e8 −0.0333102
\(757\) −3.89337e8 −0.0326205 −0.0163102 0.999867i \(-0.505192\pi\)
−0.0163102 + 0.999867i \(0.505192\pi\)
\(758\) −2.08284e10 −1.73705
\(759\) −4.73965e9 −0.393460
\(760\) 0 0
\(761\) −1.53303e10 −1.26097 −0.630483 0.776203i \(-0.717143\pi\)
−0.630483 + 0.776203i \(0.717143\pi\)
\(762\) 1.30183e10 1.06589
\(763\) 2.37822e8 0.0193828
\(764\) 9.79036e9 0.794277
\(765\) 0 0
\(766\) −2.20271e10 −1.77075
\(767\) 2.12353e9 0.169932
\(768\) −9.28122e9 −0.739334
\(769\) 6.57649e8 0.0521497 0.0260749 0.999660i \(-0.491699\pi\)
0.0260749 + 0.999660i \(0.491699\pi\)
\(770\) 0 0
\(771\) −7.24154e9 −0.569037
\(772\) −1.77201e10 −1.38613
\(773\) 2.59174e9 0.201819 0.100910 0.994896i \(-0.467825\pi\)
0.100910 + 0.994896i \(0.467825\pi\)
\(774\) 4.89128e9 0.379166
\(775\) 0 0
\(776\) −5.89295e9 −0.452706
\(777\) −2.59353e9 −0.198344
\(778\) −1.27738e10 −0.972501
\(779\) 5.46503e9 0.414201
\(780\) 0 0
\(781\) 1.42879e10 1.07322
\(782\) 1.74421e10 1.30429
\(783\) 3.51493e9 0.261668
\(784\) 1.49778e10 1.11005
\(785\) 0 0
\(786\) 1.88295e10 1.38312
\(787\) 4.52650e9 0.331017 0.165509 0.986208i \(-0.447073\pi\)
0.165509 + 0.986208i \(0.447073\pi\)
\(788\) −3.27067e9 −0.238120
\(789\) −1.18488e10 −0.858824
\(790\) 0 0
\(791\) −4.01076e9 −0.288144
\(792\) 1.56452e9 0.111904
\(793\) −3.82230e9 −0.272188
\(794\) −2.45226e9 −0.173858
\(795\) 0 0
\(796\) 1.89643e10 1.33273
\(797\) 2.39388e9 0.167494 0.0837468 0.996487i \(-0.473311\pi\)
0.0837468 + 0.996487i \(0.473311\pi\)
\(798\) −1.51274e9 −0.105379
\(799\) 1.66622e9 0.115563
\(800\) 0 0
\(801\) 2.56771e9 0.176536
\(802\) 1.47865e10 1.01218
\(803\) 1.41055e10 0.961359
\(804\) −6.25545e9 −0.424485
\(805\) 0 0
\(806\) −4.35465e9 −0.292941
\(807\) 1.21761e10 0.815552
\(808\) 4.23115e9 0.282175
\(809\) −5.76341e9 −0.382701 −0.191350 0.981522i \(-0.561287\pi\)
−0.191350 + 0.981522i \(0.561287\pi\)
\(810\) 0 0
\(811\) 2.15723e10 1.42012 0.710059 0.704142i \(-0.248668\pi\)
0.710059 + 0.704142i \(0.248668\pi\)
\(812\) −3.59036e9 −0.235338
\(813\) 1.01354e9 0.0661490
\(814\) −3.85076e10 −2.50243
\(815\) 0 0
\(816\) −1.78392e10 −1.14937
\(817\) 8.25032e9 0.529290
\(818\) −3.38610e10 −2.16303
\(819\) 1.75864e8 0.0111862
\(820\) 0 0
\(821\) 1.56091e10 0.984414 0.492207 0.870478i \(-0.336190\pi\)
0.492207 + 0.870478i \(0.336190\pi\)
\(822\) 1.26850e10 0.796597
\(823\) 9.41194e9 0.588545 0.294273 0.955722i \(-0.404923\pi\)
0.294273 + 0.955722i \(0.404923\pi\)
\(824\) −2.34213e9 −0.145837
\(825\) 0 0
\(826\) 5.27067e9 0.325414
\(827\) −8.53219e9 −0.524555 −0.262278 0.964992i \(-0.584474\pi\)
−0.262278 + 0.964992i \(0.584474\pi\)
\(828\) −2.45552e9 −0.150327
\(829\) 2.01245e10 1.22683 0.613413 0.789762i \(-0.289796\pi\)
0.613413 + 0.789762i \(0.289796\pi\)
\(830\) 0 0
\(831\) −4.78996e8 −0.0289553
\(832\) −1.38505e9 −0.0833744
\(833\) 2.71129e10 1.62524
\(834\) −4.76574e9 −0.284478
\(835\) 0 0
\(836\) −9.91076e9 −0.586658
\(837\) 4.66904e9 0.275226
\(838\) 4.16340e10 2.44396
\(839\) −6.92191e9 −0.404631 −0.202316 0.979320i \(-0.564847\pi\)
−0.202316 + 0.979320i \(0.564847\pi\)
\(840\) 0 0
\(841\) 1.46398e10 0.848690
\(842\) −4.40583e10 −2.54352
\(843\) 5.88066e9 0.338088
\(844\) −2.37184e10 −1.35796
\(845\) 0 0
\(846\) −5.31604e8 −0.0301850
\(847\) 1.64392e9 0.0929587
\(848\) −3.17732e10 −1.78927
\(849\) −1.17214e10 −0.657360
\(850\) 0 0
\(851\) −1.60928e10 −0.895114
\(852\) 7.40229e9 0.410041
\(853\) 2.25584e10 1.24447 0.622237 0.782829i \(-0.286224\pi\)
0.622237 + 0.782829i \(0.286224\pi\)
\(854\) −9.48707e9 −0.521230
\(855\) 0 0
\(856\) −3.31875e8 −0.0180849
\(857\) 1.21039e10 0.656889 0.328444 0.944523i \(-0.393476\pi\)
0.328444 + 0.944523i \(0.393476\pi\)
\(858\) 2.61114e9 0.141132
\(859\) 4.57575e9 0.246312 0.123156 0.992387i \(-0.460698\pi\)
0.123156 + 0.992387i \(0.460698\pi\)
\(860\) 0 0
\(861\) −1.57693e9 −0.0841978
\(862\) 5.34377e9 0.284166
\(863\) 1.10973e10 0.587730 0.293865 0.955847i \(-0.405058\pi\)
0.293865 + 0.955847i \(0.405058\pi\)
\(864\) 4.66517e9 0.246076
\(865\) 0 0
\(866\) 5.35658e9 0.280269
\(867\) −2.12134e10 −1.10546
\(868\) −4.76924e9 −0.247531
\(869\) −1.81676e10 −0.939135
\(870\) 0 0
\(871\) 2.77991e9 0.142550
\(872\) −4.87110e8 −0.0248782
\(873\) 1.05452e10 0.536421
\(874\) −9.38650e9 −0.475569
\(875\) 0 0
\(876\) 7.30781e9 0.367302
\(877\) −1.63401e10 −0.818008 −0.409004 0.912533i \(-0.634124\pi\)
−0.409004 + 0.912533i \(0.634124\pi\)
\(878\) 2.55909e10 1.27601
\(879\) 1.06353e10 0.528189
\(880\) 0 0
\(881\) −6.59279e9 −0.324828 −0.162414 0.986723i \(-0.551928\pi\)
−0.162414 + 0.986723i \(0.551928\pi\)
\(882\) −8.65031e9 −0.424514
\(883\) −1.56099e10 −0.763025 −0.381512 0.924364i \(-0.624597\pi\)
−0.381512 + 0.924364i \(0.624597\pi\)
\(884\) −4.24006e9 −0.206438
\(885\) 0 0
\(886\) −4.30169e10 −2.07788
\(887\) −4.43368e9 −0.213320 −0.106660 0.994296i \(-0.534016\pi\)
−0.106660 + 0.994296i \(0.534016\pi\)
\(888\) 5.31211e9 0.254579
\(889\) −6.33609e9 −0.302458
\(890\) 0 0
\(891\) −2.79966e9 −0.132597
\(892\) −1.07982e10 −0.509418
\(893\) −8.96678e8 −0.0421363
\(894\) 9.89086e9 0.462970
\(895\) 0 0
\(896\) 2.59641e9 0.120586
\(897\) 1.09123e9 0.0504826
\(898\) −3.56641e10 −1.64348
\(899\) 4.23605e10 1.94448
\(900\) 0 0
\(901\) −5.75159e10 −2.61970
\(902\) −2.34135e10 −1.06229
\(903\) −2.38062e9 −0.107593
\(904\) 8.21490e9 0.369839
\(905\) 0 0
\(906\) −2.27328e9 −0.101556
\(907\) 3.50279e10 1.55879 0.779397 0.626530i \(-0.215525\pi\)
0.779397 + 0.626530i \(0.215525\pi\)
\(908\) −1.11675e10 −0.495057
\(909\) −7.57150e9 −0.334355
\(910\) 0 0
\(911\) 1.11229e10 0.487421 0.243711 0.969848i \(-0.421635\pi\)
0.243711 + 0.969848i \(0.421635\pi\)
\(912\) 9.60017e9 0.419080
\(913\) −9.05940e9 −0.393960
\(914\) −3.04216e10 −1.31786
\(915\) 0 0
\(916\) 7.73161e9 0.332381
\(917\) −9.16444e9 −0.392476
\(918\) 1.03029e10 0.439550
\(919\) −1.12769e10 −0.479274 −0.239637 0.970863i \(-0.577028\pi\)
−0.239637 + 0.970863i \(0.577028\pi\)
\(920\) 0 0
\(921\) 4.81216e9 0.202970
\(922\) −4.22318e10 −1.77452
\(923\) −3.28956e9 −0.137699
\(924\) 2.85974e9 0.119254
\(925\) 0 0
\(926\) 1.25000e10 0.517334
\(927\) 4.19117e9 0.172805
\(928\) 4.23255e10 1.73854
\(929\) 2.38263e10 0.974994 0.487497 0.873125i \(-0.337910\pi\)
0.487497 + 0.873125i \(0.337910\pi\)
\(930\) 0 0
\(931\) −1.45908e10 −0.592593
\(932\) 1.54730e10 0.626065
\(933\) −9.48018e9 −0.382147
\(934\) 2.10827e9 0.0846667
\(935\) 0 0
\(936\) −3.60206e8 −0.0143577
\(937\) −2.68304e10 −1.06546 −0.532731 0.846285i \(-0.678834\pi\)
−0.532731 + 0.846285i \(0.678834\pi\)
\(938\) 6.89982e9 0.272978
\(939\) −1.32363e10 −0.521719
\(940\) 0 0
\(941\) −2.71249e10 −1.06122 −0.530610 0.847616i \(-0.678037\pi\)
−0.530610 + 0.847616i \(0.678037\pi\)
\(942\) −2.57101e10 −1.00213
\(943\) −9.78479e9 −0.379980
\(944\) −3.34488e10 −1.29413
\(945\) 0 0
\(946\) −3.53464e10 −1.35746
\(947\) −1.61557e10 −0.618158 −0.309079 0.951036i \(-0.600021\pi\)
−0.309079 + 0.951036i \(0.600021\pi\)
\(948\) −9.41228e9 −0.358811
\(949\) −3.24757e9 −0.123347
\(950\) 0 0
\(951\) 2.63728e10 0.994314
\(952\) 2.80222e9 0.105262
\(953\) 2.62529e10 0.982543 0.491271 0.871007i \(-0.336532\pi\)
0.491271 + 0.871007i \(0.336532\pi\)
\(954\) 1.83503e10 0.684266
\(955\) 0 0
\(956\) 6.29794e9 0.233129
\(957\) −2.54003e10 −0.936800
\(958\) −6.95049e10 −2.55409
\(959\) −6.17388e9 −0.226044
\(960\) 0 0
\(961\) 2.87569e10 1.04523
\(962\) 8.86576e9 0.321073
\(963\) 5.93879e8 0.0214292
\(964\) 2.50710e10 0.901368
\(965\) 0 0
\(966\) 2.70846e9 0.0966726
\(967\) 1.93702e10 0.688878 0.344439 0.938809i \(-0.388069\pi\)
0.344439 + 0.938809i \(0.388069\pi\)
\(968\) −3.36711e9 −0.119315
\(969\) 1.73783e10 0.613583
\(970\) 0 0
\(971\) 1.24120e10 0.435086 0.217543 0.976051i \(-0.430196\pi\)
0.217543 + 0.976051i \(0.430196\pi\)
\(972\) −1.45045e9 −0.0506606
\(973\) 2.31952e9 0.0807241
\(974\) 4.97955e10 1.72677
\(975\) 0 0
\(976\) 6.02070e10 2.07287
\(977\) 2.77251e10 0.951134 0.475567 0.879679i \(-0.342243\pi\)
0.475567 + 0.879679i \(0.342243\pi\)
\(978\) 2.85966e10 0.977526
\(979\) −1.85553e10 −0.632018
\(980\) 0 0
\(981\) 8.71667e8 0.0294787
\(982\) 6.34720e10 2.13891
\(983\) 4.14298e8 0.0139115 0.00695577 0.999976i \(-0.497786\pi\)
0.00695577 + 0.999976i \(0.497786\pi\)
\(984\) 3.22989e9 0.108070
\(985\) 0 0
\(986\) 9.34742e10 3.10544
\(987\) 2.58735e8 0.00856536
\(988\) 2.28179e9 0.0752708
\(989\) −1.47717e10 −0.485560
\(990\) 0 0
\(991\) −4.38575e10 −1.43148 −0.715741 0.698366i \(-0.753911\pi\)
−0.715741 + 0.698366i \(0.753911\pi\)
\(992\) 5.62229e10 1.82862
\(993\) −2.96424e10 −0.960708
\(994\) −8.16480e9 −0.263690
\(995\) 0 0
\(996\) −4.69350e9 −0.150518
\(997\) 9.42882e9 0.301317 0.150659 0.988586i \(-0.451861\pi\)
0.150659 + 0.988586i \(0.451861\pi\)
\(998\) 6.38982e9 0.203485
\(999\) −9.50584e9 −0.301656
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.8.a.f.1.2 yes 2
3.2 odd 2 225.8.a.l.1.1 2
5.2 odd 4 75.8.b.e.49.4 4
5.3 odd 4 75.8.b.e.49.1 4
5.4 even 2 75.8.a.d.1.1 2
15.2 even 4 225.8.b.o.199.1 4
15.8 even 4 225.8.b.o.199.4 4
15.14 odd 2 225.8.a.u.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.8.a.d.1.1 2 5.4 even 2
75.8.a.f.1.2 yes 2 1.1 even 1 trivial
75.8.b.e.49.1 4 5.3 odd 4
75.8.b.e.49.4 4 5.2 odd 4
225.8.a.l.1.1 2 3.2 odd 2
225.8.a.u.1.2 2 15.14 odd 2
225.8.b.o.199.1 4 15.2 even 4
225.8.b.o.199.4 4 15.8 even 4