Properties

Label 75.8.a.f
Level $75$
Weight $8$
Character orbit 75.a
Self dual yes
Analytic conductor $23.429$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,8,Mod(1,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.4288769113\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{31}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{31}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 4) q^{2} - 27 q^{3} + (8 \beta + 12) q^{4} + ( - 27 \beta - 108) q^{6} + (14 \beta + 43) q^{7} + ( - 84 \beta + 528) q^{8} + 729 q^{9} + ( - 266 \beta - 2306) q^{11} + ( - 216 \beta - 324) q^{12}+ \cdots + ( - 193914 \beta - 1681074) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 54 q^{3} + 24 q^{4} - 216 q^{6} + 86 q^{7} + 1056 q^{8} + 1458 q^{9} - 4612 q^{11} - 648 q^{12} + 9018 q^{13} + 3816 q^{14} - 19680 q^{16} - 19948 q^{17} + 5832 q^{18} - 23934 q^{19} - 2322 q^{21}+ \cdots - 3362148 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.56776
5.56776
−7.13553 −27.0000 −77.0842 0 192.659 −112.897 1463.38 729.000 0
1.2 15.1355 −27.0000 101.084 0 −408.659 198.897 −407.384 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.8.a.f yes 2
3.b odd 2 1 225.8.a.l 2
5.b even 2 1 75.8.a.d 2
5.c odd 4 2 75.8.b.e 4
15.d odd 2 1 225.8.a.u 2
15.e even 4 2 225.8.b.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.8.a.d 2 5.b even 2 1
75.8.a.f yes 2 1.a even 1 1 trivial
75.8.b.e 4 5.c odd 4 2
225.8.a.l 2 3.b odd 2 1
225.8.a.u 2 15.d odd 2 1
225.8.b.o 4 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 8T_{2} - 108 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(75))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 8T - 108 \) Copy content Toggle raw display
$3$ \( (T + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 86T - 22455 \) Copy content Toggle raw display
$11$ \( T^{2} + 4612 T - 3456108 \) Copy content Toggle raw display
$13$ \( T^{2} - 9018 T + 9466697 \) Copy content Toggle raw display
$17$ \( T^{2} + 19948 T - 506147724 \) Copy content Toggle raw display
$19$ \( T^{2} + 23934 T - 791814895 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 1770541740 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 29988616500 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 25626949575 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 205209213980 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 186336929520 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 285507233321 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 19283408964 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 1554251453280 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 1475873866620 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 8423736487399 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 5094434196801 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 284467184496 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 3729052906820 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 9582807148800 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 12878345203452 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 45203910693120 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 42934761529441 \) Copy content Toggle raw display
show more
show less