Properties

Label 75.4.e.c.32.3
Level $75$
Weight $4$
Character 75.32
Analytic conductor $4.425$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,4,Mod(32,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.32"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 75.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,6,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.42514325043\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.28356903014400.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 209x^{4} + 1600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 32.3
Root \(1.18766 + 1.18766i\) of defining polynomial
Character \(\chi\) \(=\) 75.32
Dual form 75.4.e.c.68.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.18766 - 1.18766i) q^{2} +(-5.11173 - 0.932827i) q^{3} +5.17891i q^{4} +(-7.17891 + 4.96314i) q^{6} +(13.3578 + 13.3578i) q^{7} +(15.6521 + 15.6521i) q^{8} +(25.2597 + 9.53673i) q^{9} +28.7164i q^{11} +(4.83102 - 26.4732i) q^{12} +(-14.1789 + 14.1789i) q^{13} +31.7292 q^{14} -4.25236 q^{16} +(18.5587 - 18.5587i) q^{17} +(41.3264 - 18.6736i) q^{18} +49.0735i q^{19} +(-55.8211 - 80.7421i) q^{21} +(34.1055 + 34.1055i) q^{22} +(-37.7738 - 37.7738i) q^{23} +(-65.4088 - 94.6102i) q^{24} +33.6796i q^{26} +(-120.225 - 72.3121i) q^{27} +(-69.1789 + 69.1789i) q^{28} -125.854 q^{29} +247.367 q^{31} +(-130.267 + 130.267i) q^{32} +(26.7874 - 146.791i) q^{33} -44.0829i q^{34} +(-49.3898 + 130.818i) q^{36} +(127.463 + 127.463i) q^{37} +(58.2828 + 58.2828i) q^{38} +(85.7053 - 59.2524i) q^{39} -390.328i q^{41} +(-162.191 - 29.5978i) q^{42} +(39.3993 - 39.3993i) q^{43} -148.720 q^{44} -89.7251 q^{46} +(124.560 - 124.560i) q^{47} +(21.7369 + 3.96671i) q^{48} +13.8625i q^{49} +(-112.179 + 77.5549i) q^{51} +(-73.4313 - 73.4313i) q^{52} +(-160.441 - 160.441i) q^{53} +(-228.669 + 56.9040i) q^{54} +418.156i q^{56} +(45.7770 - 250.850i) q^{57} +(-149.473 + 149.473i) q^{58} +729.423 q^{59} +2.00000 q^{61} +(293.789 - 293.789i) q^{62} +(210.024 + 464.804i) q^{63} +275.409i q^{64} +(-142.524 - 206.153i) q^{66} +(329.987 + 329.987i) q^{67} +(96.1136 + 96.1136i) q^{68} +(157.853 + 228.326i) q^{69} +171.760i q^{71} +(246.097 + 544.637i) q^{72} +(279.927 - 279.927i) q^{73} +302.767 q^{74} -254.147 q^{76} +(-383.589 + 383.589i) q^{77} +(31.4172 - 172.161i) q^{78} +48.0189i q^{79} +(547.102 + 481.789i) q^{81} +(-463.578 - 463.578i) q^{82} +(144.451 + 144.451i) q^{83} +(418.156 - 289.092i) q^{84} -93.5862i q^{86} +(643.334 + 117.400i) q^{87} +(-449.473 + 449.473i) q^{88} -1417.21 q^{89} -378.799 q^{91} +(195.627 - 195.627i) q^{92} +(-1264.48 - 230.751i) q^{93} -295.872i q^{94} +(787.409 - 544.375i) q^{96} +(-908.111 - 908.111i) q^{97} +(16.4640 + 16.4640i) q^{98} +(-273.861 + 725.367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} - 12 q^{6} + 16 q^{7} - 132 q^{12} - 68 q^{13} + 284 q^{16} + 240 q^{18} - 492 q^{21} + 500 q^{22} - 702 q^{27} - 508 q^{28} + 616 q^{31} + 240 q^{33} - 804 q^{36} + 1156 q^{37} - 540 q^{42}+ \cdots - 1904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.18766 1.18766i 0.419903 0.419903i −0.465267 0.885170i \(-0.654042\pi\)
0.885170 + 0.465267i \(0.154042\pi\)
\(3\) −5.11173 0.932827i −0.983754 0.179523i
\(4\) 5.17891i 0.647364i
\(5\) 0 0
\(6\) −7.17891 + 4.96314i −0.488463 + 0.337699i
\(7\) 13.3578 + 13.3578i 0.721254 + 0.721254i 0.968861 0.247606i \(-0.0796440\pi\)
−0.247606 + 0.968861i \(0.579644\pi\)
\(8\) 15.6521 + 15.6521i 0.691732 + 0.691732i
\(9\) 25.2597 + 9.53673i 0.935543 + 0.353212i
\(10\) 0 0
\(11\) 28.7164i 0.787121i 0.919299 + 0.393560i \(0.128757\pi\)
−0.919299 + 0.393560i \(0.871243\pi\)
\(12\) 4.83102 26.4732i 0.116216 0.636846i
\(13\) −14.1789 + 14.1789i −0.302502 + 0.302502i −0.841992 0.539490i \(-0.818617\pi\)
0.539490 + 0.841992i \(0.318617\pi\)
\(14\) 31.7292 0.605713
\(15\) 0 0
\(16\) −4.25236 −0.0664431
\(17\) 18.5587 18.5587i 0.264773 0.264773i −0.562217 0.826990i \(-0.690051\pi\)
0.826990 + 0.562217i \(0.190051\pi\)
\(18\) 41.3264 18.6736i 0.541152 0.244522i
\(19\) 49.0735i 0.592538i 0.955105 + 0.296269i \(0.0957425\pi\)
−0.955105 + 0.296269i \(0.904258\pi\)
\(20\) 0 0
\(21\) −55.8211 80.7421i −0.580055 0.839018i
\(22\) 34.1055 + 34.1055i 0.330514 + 0.330514i
\(23\) −37.7738 37.7738i −0.342451 0.342451i 0.514837 0.857288i \(-0.327852\pi\)
−0.857288 + 0.514837i \(0.827852\pi\)
\(24\) −65.4088 94.6102i −0.556313 0.804676i
\(25\) 0 0
\(26\) 33.6796i 0.254042i
\(27\) −120.225 72.3121i −0.856935 0.515425i
\(28\) −69.1789 + 69.1789i −0.466914 + 0.466914i
\(29\) −125.854 −0.805882 −0.402941 0.915226i \(-0.632012\pi\)
−0.402941 + 0.915226i \(0.632012\pi\)
\(30\) 0 0
\(31\) 247.367 1.43318 0.716588 0.697496i \(-0.245703\pi\)
0.716588 + 0.697496i \(0.245703\pi\)
\(32\) −130.267 + 130.267i −0.719632 + 0.719632i
\(33\) 26.7874 146.791i 0.141306 0.774333i
\(34\) 44.0829i 0.222357i
\(35\) 0 0
\(36\) −49.3898 + 130.818i −0.228657 + 0.605637i
\(37\) 127.463 + 127.463i 0.566347 + 0.566347i 0.931103 0.364756i \(-0.118848\pi\)
−0.364756 + 0.931103i \(0.618848\pi\)
\(38\) 58.2828 + 58.2828i 0.248808 + 0.248808i
\(39\) 85.7053 59.2524i 0.351893 0.243281i
\(40\) 0 0
\(41\) 390.328i 1.48680i −0.668845 0.743402i \(-0.733211\pi\)
0.668845 0.743402i \(-0.266789\pi\)
\(42\) −162.191 29.5978i −0.595873 0.108739i
\(43\) 39.3993 39.3993i 0.139729 0.139729i −0.633783 0.773511i \(-0.718499\pi\)
0.773511 + 0.633783i \(0.218499\pi\)
\(44\) −148.720 −0.509553
\(45\) 0 0
\(46\) −89.7251 −0.287592
\(47\) 124.560 124.560i 0.386575 0.386575i −0.486889 0.873464i \(-0.661868\pi\)
0.873464 + 0.486889i \(0.161868\pi\)
\(48\) 21.7369 + 3.96671i 0.0653637 + 0.0119280i
\(49\) 13.8625i 0.0404155i
\(50\) 0 0
\(51\) −112.179 + 77.5549i −0.308004 + 0.212938i
\(52\) −73.4313 73.4313i −0.195829 0.195829i
\(53\) −160.441 160.441i −0.415816 0.415816i 0.467943 0.883759i \(-0.344995\pi\)
−0.883759 + 0.467943i \(0.844995\pi\)
\(54\) −228.669 + 56.9040i −0.576257 + 0.143401i
\(55\) 0 0
\(56\) 418.156i 0.997830i
\(57\) 45.7770 250.850i 0.106374 0.582912i
\(58\) −149.473 + 149.473i −0.338392 + 0.338392i
\(59\) 729.423 1.60954 0.804769 0.593588i \(-0.202289\pi\)
0.804769 + 0.593588i \(0.202289\pi\)
\(60\) 0 0
\(61\) 2.00000 0.00419793 0.00209897 0.999998i \(-0.499332\pi\)
0.00209897 + 0.999998i \(0.499332\pi\)
\(62\) 293.789 293.789i 0.601795 0.601795i
\(63\) 210.024 + 464.804i 0.420009 + 0.929520i
\(64\) 275.409i 0.537908i
\(65\) 0 0
\(66\) −142.524 206.153i −0.265810 0.384479i
\(67\) 329.987 + 329.987i 0.601706 + 0.601706i 0.940765 0.339059i \(-0.110109\pi\)
−0.339059 + 0.940765i \(0.610109\pi\)
\(68\) 96.1136 + 96.1136i 0.171404 + 0.171404i
\(69\) 157.853 + 228.326i 0.275410 + 0.398365i
\(70\) 0 0
\(71\) 171.760i 0.287100i 0.989643 + 0.143550i \(0.0458518\pi\)
−0.989643 + 0.143550i \(0.954148\pi\)
\(72\) 246.097 + 544.637i 0.402817 + 0.891474i
\(73\) 279.927 279.927i 0.448807 0.448807i −0.446151 0.894958i \(-0.647205\pi\)
0.894958 + 0.446151i \(0.147205\pi\)
\(74\) 302.767 0.475621
\(75\) 0 0
\(76\) −254.147 −0.383587
\(77\) −383.589 + 383.589i −0.567714 + 0.567714i
\(78\) 31.4172 172.161i 0.0456064 0.249915i
\(79\) 48.0189i 0.0683866i 0.999415 + 0.0341933i \(0.0108862\pi\)
−0.999415 + 0.0341933i \(0.989114\pi\)
\(80\) 0 0
\(81\) 547.102 + 481.789i 0.750483 + 0.660890i
\(82\) −463.578 463.578i −0.624313 0.624313i
\(83\) 144.451 + 144.451i 0.191031 + 0.191031i 0.796141 0.605111i \(-0.206871\pi\)
−0.605111 + 0.796141i \(0.706871\pi\)
\(84\) 418.156 289.092i 0.543150 0.375507i
\(85\) 0 0
\(86\) 93.5862i 0.117345i
\(87\) 643.334 + 117.400i 0.792789 + 0.144674i
\(88\) −449.473 + 449.473i −0.544477 + 0.544477i
\(89\) −1417.21 −1.68790 −0.843952 0.536419i \(-0.819777\pi\)
−0.843952 + 0.536419i \(0.819777\pi\)
\(90\) 0 0
\(91\) −378.799 −0.436361
\(92\) 195.627 195.627i 0.221690 0.221690i
\(93\) −1264.48 230.751i −1.40989 0.257288i
\(94\) 295.872i 0.324647i
\(95\) 0 0
\(96\) 787.409 544.375i 0.837131 0.578751i
\(97\) −908.111 908.111i −0.950564 0.950564i 0.0482702 0.998834i \(-0.484629\pi\)
−0.998834 + 0.0482702i \(0.984629\pi\)
\(98\) 16.4640 + 16.4640i 0.0169706 + 0.0169706i
\(99\) −273.861 + 725.367i −0.278020 + 0.736385i
\(100\) 0 0
\(101\) 337.668i 0.332665i −0.986070 0.166333i \(-0.946807\pi\)
0.986070 0.166333i \(-0.0531926\pi\)
\(102\) −41.1217 + 225.340i −0.0399182 + 0.218745i
\(103\) 933.505 933.505i 0.893019 0.893019i −0.101787 0.994806i \(-0.532456\pi\)
0.994806 + 0.101787i \(0.0324561\pi\)
\(104\) −443.860 −0.418500
\(105\) 0 0
\(106\) −381.100 −0.349205
\(107\) −596.188 + 596.188i −0.538651 + 0.538651i −0.923133 0.384481i \(-0.874380\pi\)
0.384481 + 0.923133i \(0.374380\pi\)
\(108\) 374.498 622.632i 0.333667 0.554748i
\(109\) 2074.60i 1.82303i −0.411264 0.911516i \(-0.634913\pi\)
0.411264 0.911516i \(-0.365087\pi\)
\(110\) 0 0
\(111\) −532.657 770.460i −0.455474 0.658818i
\(112\) −56.8022 56.8022i −0.0479224 0.0479224i
\(113\) 271.193 + 271.193i 0.225767 + 0.225767i 0.810922 0.585154i \(-0.198966\pi\)
−0.585154 + 0.810922i \(0.698966\pi\)
\(114\) −243.558 352.294i −0.200099 0.289433i
\(115\) 0 0
\(116\) 651.788i 0.521698i
\(117\) −493.375 + 222.934i −0.389851 + 0.176156i
\(118\) 866.309 866.309i 0.675849 0.675849i
\(119\) 495.806 0.381937
\(120\) 0 0
\(121\) 506.367 0.380441
\(122\) 2.37533 2.37533i 0.00176272 0.00176272i
\(123\) −364.108 + 1995.25i −0.266915 + 1.46265i
\(124\) 1281.09i 0.927786i
\(125\) 0 0
\(126\) 801.469 + 302.593i 0.566671 + 0.213945i
\(127\) −105.588 105.588i −0.0737747 0.0737747i 0.669257 0.743031i \(-0.266613\pi\)
−0.743031 + 0.669257i \(0.766613\pi\)
\(128\) −715.045 715.045i −0.493763 0.493763i
\(129\) −238.151 + 164.646i −0.162543 + 0.112374i
\(130\) 0 0
\(131\) 1979.28i 1.32008i 0.751231 + 0.660039i \(0.229460\pi\)
−0.751231 + 0.660039i \(0.770540\pi\)
\(132\) 760.216 + 138.730i 0.501275 + 0.0914763i
\(133\) −655.514 + 655.514i −0.427371 + 0.427371i
\(134\) 783.827 0.505316
\(135\) 0 0
\(136\) 580.964 0.366304
\(137\) 507.451 507.451i 0.316456 0.316456i −0.530948 0.847404i \(-0.678164\pi\)
0.847404 + 0.530948i \(0.178164\pi\)
\(138\) 458.651 + 83.6979i 0.282920 + 0.0516293i
\(139\) 68.4333i 0.0417585i 0.999782 + 0.0208793i \(0.00664656\pi\)
−0.999782 + 0.0208793i \(0.993353\pi\)
\(140\) 0 0
\(141\) −752.913 + 520.527i −0.449693 + 0.310895i
\(142\) 203.993 + 203.993i 0.120554 + 0.120554i
\(143\) −407.167 407.167i −0.238105 0.238105i
\(144\) −107.413 40.5536i −0.0621604 0.0234685i
\(145\) 0 0
\(146\) 664.917i 0.376911i
\(147\) 12.9313 70.8616i 0.00725550 0.0397590i
\(148\) −660.121 + 660.121i −0.366632 + 0.366632i
\(149\) −363.356 −0.199780 −0.0998902 0.994998i \(-0.531849\pi\)
−0.0998902 + 0.994998i \(0.531849\pi\)
\(150\) 0 0
\(151\) −2083.14 −1.12267 −0.561337 0.827588i \(-0.689713\pi\)
−0.561337 + 0.827588i \(0.689713\pi\)
\(152\) −768.103 + 768.103i −0.409878 + 0.409878i
\(153\) 645.774 291.797i 0.341227 0.154185i
\(154\) 911.149i 0.476769i
\(155\) 0 0
\(156\) 306.863 + 443.860i 0.157491 + 0.227803i
\(157\) 1208.52 + 1208.52i 0.614333 + 0.614333i 0.944072 0.329739i \(-0.106961\pi\)
−0.329739 + 0.944072i \(0.606961\pi\)
\(158\) 57.0303 + 57.0303i 0.0287157 + 0.0287157i
\(159\) 670.468 + 969.795i 0.334412 + 0.483709i
\(160\) 0 0
\(161\) 1009.15i 0.493989i
\(162\) 1221.98 77.5696i 0.592639 0.0376200i
\(163\) −626.062 + 626.062i −0.300840 + 0.300840i −0.841343 0.540502i \(-0.818234\pi\)
0.540502 + 0.841343i \(0.318234\pi\)
\(164\) 2021.47 0.962502
\(165\) 0 0
\(166\) 343.119 0.160429
\(167\) 3009.65 3009.65i 1.39457 1.39457i 0.579848 0.814724i \(-0.303112\pi\)
0.814724 0.579848i \(-0.196888\pi\)
\(168\) 390.067 2137.50i 0.179133 0.981619i
\(169\) 1794.92i 0.816985i
\(170\) 0 0
\(171\) −468.000 + 1239.58i −0.209292 + 0.554345i
\(172\) 204.045 + 204.045i 0.0904552 + 0.0904552i
\(173\) 1839.23 + 1839.23i 0.808288 + 0.808288i 0.984375 0.176086i \(-0.0563438\pi\)
−0.176086 + 0.984375i \(0.556344\pi\)
\(174\) 903.497 624.633i 0.393643 0.272145i
\(175\) 0 0
\(176\) 122.113i 0.0522987i
\(177\) −3728.61 680.425i −1.58339 0.288948i
\(178\) −1683.16 + 1683.16i −0.708755 + 0.708755i
\(179\) 821.582 0.343061 0.171530 0.985179i \(-0.445129\pi\)
0.171530 + 0.985179i \(0.445129\pi\)
\(180\) 0 0
\(181\) 2314.20 0.950350 0.475175 0.879891i \(-0.342385\pi\)
0.475175 + 0.879891i \(0.342385\pi\)
\(182\) −449.885 + 449.885i −0.183229 + 0.183229i
\(183\) −10.2235 1.86565i −0.00412973 0.000753623i
\(184\) 1182.48i 0.473769i
\(185\) 0 0
\(186\) −1775.83 + 1227.72i −0.700053 + 0.483982i
\(187\) 532.938 + 532.938i 0.208408 + 0.208408i
\(188\) 645.087 + 645.087i 0.250254 + 0.250254i
\(189\) −640.007 2571.87i −0.246316 0.989820i
\(190\) 0 0
\(191\) 931.167i 0.352758i 0.984322 + 0.176379i \(0.0564385\pi\)
−0.984322 + 0.176379i \(0.943562\pi\)
\(192\) 256.909 1407.82i 0.0965666 0.529169i
\(193\) 2623.28 2623.28i 0.978382 0.978382i −0.0213891 0.999771i \(-0.506809\pi\)
0.999771 + 0.0213891i \(0.00680888\pi\)
\(194\) −2157.06 −0.798289
\(195\) 0 0
\(196\) −71.7928 −0.0261636
\(197\) −2995.05 + 2995.05i −1.08319 + 1.08319i −0.0869796 + 0.996210i \(0.527721\pi\)
−0.996210 + 0.0869796i \(0.972279\pi\)
\(198\) 536.238 + 1186.75i 0.192469 + 0.425952i
\(199\) 109.458i 0.0389912i −0.999810 0.0194956i \(-0.993794\pi\)
0.999810 0.0194956i \(-0.00620603\pi\)
\(200\) 0 0
\(201\) −1378.98 1994.63i −0.483911 0.699951i
\(202\) −401.036 401.036i −0.139687 0.139687i
\(203\) −1681.14 1681.14i −0.581246 0.581246i
\(204\) −401.650 580.964i −0.137849 0.199390i
\(205\) 0 0
\(206\) 2217.38i 0.749962i
\(207\) −593.915 1314.39i −0.199420 0.441336i
\(208\) 60.2938 60.2938i 0.0200991 0.0200991i
\(209\) −1409.21 −0.466399
\(210\) 0 0
\(211\) 2714.94 0.885801 0.442901 0.896571i \(-0.353949\pi\)
0.442901 + 0.896571i \(0.353949\pi\)
\(212\) 830.909 830.909i 0.269184 0.269184i
\(213\) 160.222 877.989i 0.0515409 0.282436i
\(214\) 1416.14i 0.452362i
\(215\) 0 0
\(216\) −749.932 3013.61i −0.236233 0.949305i
\(217\) 3304.29 + 3304.29i 1.03368 + 1.03368i
\(218\) −2463.93 2463.93i −0.765496 0.765496i
\(219\) −1692.03 + 1169.79i −0.522087 + 0.360945i
\(220\) 0 0
\(221\) 526.283i 0.160188i
\(222\) −1547.67 282.429i −0.467894 0.0853847i
\(223\) −2830.49 + 2830.49i −0.849971 + 0.849971i −0.990129 0.140158i \(-0.955239\pi\)
0.140158 + 0.990129i \(0.455239\pi\)
\(224\) −3480.17 −1.03808
\(225\) 0 0
\(226\) 644.173 0.189601
\(227\) −1398.96 + 1398.96i −0.409042 + 0.409042i −0.881404 0.472362i \(-0.843401\pi\)
0.472362 + 0.881404i \(0.343401\pi\)
\(228\) 1299.13 + 237.075i 0.377356 + 0.0688626i
\(229\) 3930.38i 1.13418i −0.823656 0.567089i \(-0.808069\pi\)
0.823656 0.567089i \(-0.191931\pi\)
\(230\) 0 0
\(231\) 2318.63 1602.98i 0.660408 0.456573i
\(232\) −1969.89 1969.89i −0.557454 0.557454i
\(233\) −1980.71 1980.71i −0.556912 0.556912i 0.371515 0.928427i \(-0.378838\pi\)
−0.928427 + 0.371515i \(0.878838\pi\)
\(234\) −321.193 + 850.735i −0.0897309 + 0.237668i
\(235\) 0 0
\(236\) 3777.61i 1.04196i
\(237\) 44.7933 245.460i 0.0122769 0.0672756i
\(238\) 588.851 588.851i 0.160376 0.160376i
\(239\) 2976.20 0.805500 0.402750 0.915310i \(-0.368054\pi\)
0.402750 + 0.915310i \(0.368054\pi\)
\(240\) 0 0
\(241\) 1835.45 0.490587 0.245294 0.969449i \(-0.421116\pi\)
0.245294 + 0.969449i \(0.421116\pi\)
\(242\) 601.394 601.394i 0.159748 0.159748i
\(243\) −2347.21 2973.13i −0.619645 0.784882i
\(244\) 10.3578i 0.00271759i
\(245\) 0 0
\(246\) 1937.25 + 2802.13i 0.502092 + 0.726248i
\(247\) −695.808 695.808i −0.179244 0.179244i
\(248\) 3871.82 + 3871.82i 0.991374 + 0.991374i
\(249\) −603.648 873.143i −0.153633 0.222222i
\(250\) 0 0
\(251\) 1542.14i 0.387805i −0.981021 0.193902i \(-0.937885\pi\)
0.981021 0.193902i \(-0.0621145\pi\)
\(252\) −2407.18 + 1087.70i −0.601738 + 0.271898i
\(253\) 1084.73 1084.73i 0.269550 0.269550i
\(254\) −250.805 −0.0619564
\(255\) 0 0
\(256\) −3901.74 −0.952572
\(257\) −428.853 + 428.853i −0.104090 + 0.104090i −0.757234 0.653144i \(-0.773450\pi\)
0.653144 + 0.757234i \(0.273450\pi\)
\(258\) −87.2997 + 478.388i −0.0210660 + 0.115438i
\(259\) 3405.26i 0.816960i
\(260\) 0 0
\(261\) −3179.04 1200.24i −0.753937 0.284647i
\(262\) 2350.72 + 2350.72i 0.554304 + 0.554304i
\(263\) 5256.99 + 5256.99i 1.23255 + 1.23255i 0.962982 + 0.269565i \(0.0868798\pi\)
0.269565 + 0.962982i \(0.413120\pi\)
\(264\) 2716.87 1878.31i 0.633377 0.437885i
\(265\) 0 0
\(266\) 1557.06i 0.358908i
\(267\) 7244.38 + 1322.01i 1.66048 + 0.303017i
\(268\) −1708.97 + 1708.97i −0.389523 + 0.389523i
\(269\) 1930.34 0.437528 0.218764 0.975778i \(-0.429797\pi\)
0.218764 + 0.975778i \(0.429797\pi\)
\(270\) 0 0
\(271\) −3261.67 −0.731116 −0.365558 0.930789i \(-0.619122\pi\)
−0.365558 + 0.930789i \(0.619122\pi\)
\(272\) −78.9180 + 78.9180i −0.0175923 + 0.0175923i
\(273\) 1936.32 + 353.353i 0.429272 + 0.0783367i
\(274\) 1205.36i 0.265762i
\(275\) 0 0
\(276\) −1182.48 + 817.507i −0.257887 + 0.178290i
\(277\) −4865.57 4865.57i −1.05539 1.05539i −0.998373 0.0570194i \(-0.981840\pi\)
−0.0570194 0.998373i \(-0.518160\pi\)
\(278\) 81.2758 + 81.2758i 0.0175345 + 0.0175345i
\(279\) 6248.41 + 2359.07i 1.34080 + 0.506215i
\(280\) 0 0
\(281\) 3981.96i 0.845351i −0.906281 0.422676i \(-0.861091\pi\)
0.906281 0.422676i \(-0.138909\pi\)
\(282\) −275.997 + 1512.42i −0.0582815 + 0.319373i
\(283\) 4092.66 4092.66i 0.859658 0.859658i −0.131640 0.991298i \(-0.542024\pi\)
0.991298 + 0.131640i \(0.0420242\pi\)
\(284\) −889.527 −0.185858
\(285\) 0 0
\(286\) −967.156 −0.199962
\(287\) 5213.93 5213.93i 1.07236 1.07236i
\(288\) −4532.83 + 2048.19i −0.927429 + 0.419064i
\(289\) 4224.15i 0.859791i
\(290\) 0 0
\(291\) 3794.91 + 5489.13i 0.764473 + 1.10577i
\(292\) 1449.71 + 1449.71i 0.290541 + 0.290541i
\(293\) −4515.35 4515.35i −0.900305 0.900305i 0.0951570 0.995462i \(-0.469665\pi\)
−0.995462 + 0.0951570i \(0.969665\pi\)
\(294\) −68.8017 99.5179i −0.0136483 0.0197415i
\(295\) 0 0
\(296\) 3990.14i 0.783521i
\(297\) 2076.54 3452.42i 0.405701 0.674511i
\(298\) −431.545 + 431.545i −0.0838883 + 0.0838883i
\(299\) 1071.18 0.207184
\(300\) 0 0
\(301\) 1052.58 0.201560
\(302\) −2474.07 + 2474.07i −0.471413 + 0.471413i
\(303\) −314.986 + 1726.07i −0.0597210 + 0.327261i
\(304\) 208.678i 0.0393701i
\(305\) 0 0
\(306\) 420.406 1113.52i 0.0785393 0.208025i
\(307\) −1831.07 1831.07i −0.340406 0.340406i 0.516114 0.856520i \(-0.327378\pi\)
−0.856520 + 0.516114i \(0.827378\pi\)
\(308\) −1986.57 1986.57i −0.367517 0.367517i
\(309\) −5642.63 + 3901.03i −1.03883 + 0.718194i
\(310\) 0 0
\(311\) 4010.21i 0.731184i −0.930775 0.365592i \(-0.880866\pi\)
0.930775 0.365592i \(-0.119134\pi\)
\(312\) 2268.89 + 414.044i 0.411701 + 0.0751303i
\(313\) −6072.69 + 6072.69i −1.09664 + 1.09664i −0.101841 + 0.994801i \(0.532473\pi\)
−0.994801 + 0.101841i \(0.967527\pi\)
\(314\) 2870.63 0.515920
\(315\) 0 0
\(316\) −248.685 −0.0442710
\(317\) 3112.10 3112.10i 0.551397 0.551397i −0.375447 0.926844i \(-0.622511\pi\)
0.926844 + 0.375447i \(0.122511\pi\)
\(318\) 1948.08 + 355.500i 0.343531 + 0.0626901i
\(319\) 3614.09i 0.634326i
\(320\) 0 0
\(321\) 3603.70 2491.42i 0.626600 0.433200i
\(322\) −1198.53 1198.53i −0.207427 0.207427i
\(323\) 910.737 + 910.737i 0.156888 + 0.156888i
\(324\) −2495.14 + 2833.39i −0.427836 + 0.485835i
\(325\) 0 0
\(326\) 1487.10i 0.252647i
\(327\) −1935.24 + 10604.8i −0.327275 + 1.79342i
\(328\) 6109.45 6109.45i 1.02847 1.02847i
\(329\) 3327.71 0.557637
\(330\) 0 0
\(331\) −9589.47 −1.59240 −0.796201 0.605033i \(-0.793160\pi\)
−0.796201 + 0.605033i \(0.793160\pi\)
\(332\) −748.099 + 748.099i −0.123666 + 0.123666i
\(333\) 2004.10 + 4435.26i 0.329801 + 0.729883i
\(334\) 7148.90i 1.17117i
\(335\) 0 0
\(336\) 237.371 + 343.345i 0.0385407 + 0.0557470i
\(337\) 2561.34 + 2561.34i 0.414021 + 0.414021i 0.883137 0.469115i \(-0.155427\pi\)
−0.469115 + 0.883137i \(0.655427\pi\)
\(338\) 2131.76 + 2131.76i 0.343054 + 0.343054i
\(339\) −1133.29 1639.24i −0.181569 0.262630i
\(340\) 0 0
\(341\) 7103.50i 1.12808i
\(342\) 916.377 + 2028.03i 0.144889 + 0.320653i
\(343\) 4396.56 4396.56i 0.692104 0.692104i
\(344\) 1233.36 0.193310
\(345\) 0 0
\(346\) 4368.77 0.678805
\(347\) −8177.44 + 8177.44i −1.26509 + 1.26509i −0.316503 + 0.948592i \(0.602509\pi\)
−0.948592 + 0.316503i \(0.897491\pi\)
\(348\) −608.005 + 3331.77i −0.0936566 + 0.513223i
\(349\) 2766.04i 0.424249i 0.977243 + 0.212124i \(0.0680382\pi\)
−0.977243 + 0.212124i \(0.931962\pi\)
\(350\) 0 0
\(351\) 2729.96 679.347i 0.415141 0.103307i
\(352\) −3740.81 3740.81i −0.566437 0.566437i
\(353\) −6338.53 6338.53i −0.955711 0.955711i 0.0433491 0.999060i \(-0.486197\pi\)
−0.999060 + 0.0433491i \(0.986197\pi\)
\(354\) −5236.46 + 3620.23i −0.786199 + 0.543539i
\(355\) 0 0
\(356\) 7339.58i 1.09269i
\(357\) −2534.43 462.501i −0.375732 0.0685663i
\(358\) 975.763 975.763i 0.144052 0.144052i
\(359\) −8827.47 −1.29776 −0.648880 0.760890i \(-0.724762\pi\)
−0.648880 + 0.760890i \(0.724762\pi\)
\(360\) 0 0
\(361\) 4450.80 0.648899
\(362\) 2748.50 2748.50i 0.399055 0.399055i
\(363\) −2588.42 472.353i −0.374261 0.0682978i
\(364\) 1961.76i 0.282484i
\(365\) 0 0
\(366\) −14.3578 + 9.92628i −0.00205053 + 0.00141764i
\(367\) −6191.27 6191.27i −0.880605 0.880605i 0.112991 0.993596i \(-0.463957\pi\)
−0.993596 + 0.112991i \(0.963957\pi\)
\(368\) 160.628 + 160.628i 0.0227535 + 0.0227535i
\(369\) 3722.45 9859.55i 0.525157 1.39097i
\(370\) 0 0
\(371\) 4286.28i 0.599818i
\(372\) 1195.04 6548.60i 0.166559 0.912713i
\(373\) −3584.46 + 3584.46i −0.497577 + 0.497577i −0.910683 0.413106i \(-0.864444\pi\)
0.413106 + 0.910683i \(0.364444\pi\)
\(374\) 1265.90 0.175022
\(375\) 0 0
\(376\) 3899.27 0.534812
\(377\) 1784.48 1784.48i 0.243781 0.243781i
\(378\) −3814.63 2294.40i −0.519057 0.312200i
\(379\) 7110.48i 0.963695i −0.876255 0.481848i \(-0.839966\pi\)
0.876255 0.481848i \(-0.160034\pi\)
\(380\) 0 0
\(381\) 441.241 + 638.231i 0.0593319 + 0.0858203i
\(382\) 1105.91 + 1105.91i 0.148124 + 0.148124i
\(383\) 1695.77 + 1695.77i 0.226240 + 0.226240i 0.811120 0.584880i \(-0.198858\pi\)
−0.584880 + 0.811120i \(0.698858\pi\)
\(384\) 2988.11 + 4322.14i 0.397100 + 0.574383i
\(385\) 0 0
\(386\) 6231.15i 0.821650i
\(387\) 1370.95 619.472i 0.180076 0.0813683i
\(388\) 4703.02 4703.02i 0.615361 0.615361i
\(389\) −12362.2 −1.61128 −0.805640 0.592405i \(-0.798178\pi\)
−0.805640 + 0.592405i \(0.798178\pi\)
\(390\) 0 0
\(391\) −1402.06 −0.181343
\(392\) −216.978 + 216.978i −0.0279567 + 0.0279567i
\(393\) 1846.32 10117.5i 0.236984 1.29863i
\(394\) 7114.22i 0.909668i
\(395\) 0 0
\(396\) −3756.61 1418.30i −0.476709 0.179980i
\(397\) 1340.12 + 1340.12i 0.169417 + 0.169417i 0.786723 0.617306i \(-0.211776\pi\)
−0.617306 + 0.786723i \(0.711776\pi\)
\(398\) −129.999 129.999i −0.0163725 0.0163725i
\(399\) 3962.30 2739.33i 0.497150 0.343705i
\(400\) 0 0
\(401\) 2281.30i 0.284096i 0.989860 + 0.142048i \(0.0453688\pi\)
−0.989860 + 0.142048i \(0.954631\pi\)
\(402\) −4006.72 731.175i −0.497107 0.0907156i
\(403\) −3507.40 + 3507.40i −0.433538 + 0.433538i
\(404\) 1748.75 0.215356
\(405\) 0 0
\(406\) −3993.26 −0.488133
\(407\) −3660.29 + 3660.29i −0.445783 + 0.445783i
\(408\) −2969.74 541.939i −0.360352 0.0657597i
\(409\) 4614.82i 0.557917i 0.960303 + 0.278959i \(0.0899892\pi\)
−0.960303 + 0.278959i \(0.910011\pi\)
\(410\) 0 0
\(411\) −3067.32 + 2120.59i −0.368126 + 0.254504i
\(412\) 4834.54 + 4834.54i 0.578108 + 0.578108i
\(413\) 9743.49 + 9743.49i 1.16089 + 1.16089i
\(414\) −2266.43 855.683i −0.269055 0.101581i
\(415\) 0 0
\(416\) 3694.10i 0.435380i
\(417\) 63.8364 349.813i 0.00749660 0.0410801i
\(418\) −1673.67 + 1673.67i −0.195842 + 0.195842i
\(419\) −2142.28 −0.249779 −0.124889 0.992171i \(-0.539858\pi\)
−0.124889 + 0.992171i \(0.539858\pi\)
\(420\) 0 0
\(421\) −8889.30 −1.02907 −0.514534 0.857470i \(-0.672035\pi\)
−0.514534 + 0.857470i \(0.672035\pi\)
\(422\) 3224.43 3224.43i 0.371950 0.371950i
\(423\) 4334.26 1958.46i 0.498200 0.225115i
\(424\) 5022.48i 0.575267i
\(425\) 0 0
\(426\) −852.466 1233.05i −0.0969534 0.140238i
\(427\) 26.7156 + 26.7156i 0.00302778 + 0.00302778i
\(428\) −3087.60 3087.60i −0.348703 0.348703i
\(429\) 1701.52 + 2461.15i 0.191492 + 0.276982i
\(430\) 0 0
\(431\) 15707.3i 1.75543i 0.479179 + 0.877717i \(0.340935\pi\)
−0.479179 + 0.877717i \(0.659065\pi\)
\(432\) 511.238 + 307.497i 0.0569374 + 0.0342464i
\(433\) −5430.81 + 5430.81i −0.602744 + 0.602744i −0.941040 0.338296i \(-0.890149\pi\)
0.338296 + 0.941040i \(0.390149\pi\)
\(434\) 7848.76 0.868094
\(435\) 0 0
\(436\) 10744.2 1.18016
\(437\) 1853.69 1853.69i 0.202915 0.202915i
\(438\) −620.253 + 3398.88i −0.0676640 + 0.370787i
\(439\) 8221.92i 0.893874i 0.894565 + 0.446937i \(0.147485\pi\)
−0.894565 + 0.446937i \(0.852515\pi\)
\(440\) 0 0
\(441\) −132.203 + 350.163i −0.0142753 + 0.0378105i
\(442\) 625.047 + 625.047i 0.0672635 + 0.0672635i
\(443\) 1960.53 + 1960.53i 0.210265 + 0.210265i 0.804380 0.594115i \(-0.202498\pi\)
−0.594115 + 0.804380i \(0.702498\pi\)
\(444\) 3990.14 2758.58i 0.426495 0.294857i
\(445\) 0 0
\(446\) 6723.34i 0.713810i
\(447\) 1857.38 + 338.948i 0.196535 + 0.0358651i
\(448\) −3678.86 + 3678.86i −0.387968 + 0.387968i
\(449\) 17849.2 1.87607 0.938036 0.346537i \(-0.112643\pi\)
0.938036 + 0.346537i \(0.112643\pi\)
\(450\) 0 0
\(451\) 11208.8 1.17029
\(452\) −1404.49 + 1404.49i −0.146154 + 0.146154i
\(453\) 10648.5 + 1943.21i 1.10443 + 0.201545i
\(454\) 3323.00i 0.343516i
\(455\) 0 0
\(456\) 4642.85 3209.83i 0.476801 0.329636i
\(457\) 6346.80 + 6346.80i 0.649652 + 0.649652i 0.952909 0.303257i \(-0.0980740\pi\)
−0.303257 + 0.952909i \(0.598074\pi\)
\(458\) −4667.97 4667.97i −0.476245 0.476245i
\(459\) −3573.22 + 889.192i −0.363363 + 0.0904225i
\(460\) 0 0
\(461\) 8848.20i 0.893930i 0.894552 + 0.446965i \(0.147495\pi\)
−0.894552 + 0.446965i \(0.852505\pi\)
\(462\) 849.944 4657.55i 0.0855908 0.469024i
\(463\) −1329.43 + 1329.43i −0.133443 + 0.133443i −0.770673 0.637230i \(-0.780080\pi\)
0.637230 + 0.770673i \(0.280080\pi\)
\(464\) 535.178 0.0535453
\(465\) 0 0
\(466\) −4704.83 −0.467697
\(467\) 1479.96 1479.96i 0.146647 0.146647i −0.629971 0.776618i \(-0.716933\pi\)
0.776618 + 0.629971i \(0.216933\pi\)
\(468\) −1154.56 2555.14i −0.114037 0.252375i
\(469\) 8815.81i 0.867966i
\(470\) 0 0
\(471\) −5050.29 7304.96i −0.494066 0.714639i
\(472\) 11417.0 + 11417.0i 1.11337 + 1.11337i
\(473\) 1131.41 + 1131.41i 0.109983 + 0.109983i
\(474\) −238.324 344.723i −0.0230941 0.0334043i
\(475\) 0 0
\(476\) 2567.73i 0.247252i
\(477\) −2522.60 5582.76i −0.242143 0.535885i
\(478\) 3534.73 3534.73i 0.338231 0.338231i
\(479\) −5039.60 −0.480720 −0.240360 0.970684i \(-0.577266\pi\)
−0.240360 + 0.970684i \(0.577266\pi\)
\(480\) 0 0
\(481\) −3614.58 −0.342642
\(482\) 2179.89 2179.89i 0.205999 0.205999i
\(483\) −941.362 + 5158.51i −0.0886821 + 0.485963i
\(484\) 2622.43i 0.246284i
\(485\) 0 0
\(486\) −6318.78 743.377i −0.589765 0.0693833i
\(487\) −1292.93 1292.93i −0.120305 0.120305i 0.644391 0.764696i \(-0.277111\pi\)
−0.764696 + 0.644391i \(0.777111\pi\)
\(488\) 31.3042 + 31.3042i 0.00290384 + 0.00290384i
\(489\) 3784.27 2616.26i 0.349961 0.241945i
\(490\) 0 0
\(491\) 13865.7i 1.27444i −0.770681 0.637221i \(-0.780084\pi\)
0.770681 0.637221i \(-0.219916\pi\)
\(492\) −10333.2 1885.68i −0.946865 0.172791i
\(493\) −2335.69 + 2335.69i −0.213375 + 0.213375i
\(494\) −1652.77 −0.150530
\(495\) 0 0
\(496\) −1051.89 −0.0952247
\(497\) −2294.33 + 2294.33i −0.207072 + 0.207072i
\(498\) −1753.93 320.070i −0.157822 0.0288006i
\(499\) 10884.3i 0.976453i −0.872717 0.488226i \(-0.837644\pi\)
0.872717 0.488226i \(-0.162356\pi\)
\(500\) 0 0
\(501\) −18192.0 + 12577.0i −1.62227 + 1.12156i
\(502\) −1831.54 1831.54i −0.162840 0.162840i
\(503\) −7880.86 7880.86i −0.698589 0.698589i 0.265517 0.964106i \(-0.414457\pi\)
−0.964106 + 0.265517i \(0.914457\pi\)
\(504\) −3987.84 + 10562.5i −0.352445 + 0.933513i
\(505\) 0 0
\(506\) 2576.58i 0.226370i
\(507\) 1674.35 9175.14i 0.146667 0.803713i
\(508\) 546.829 546.829i 0.0477590 0.0477590i
\(509\) −1788.46 −0.155741 −0.0778704 0.996963i \(-0.524812\pi\)
−0.0778704 + 0.996963i \(0.524812\pi\)
\(510\) 0 0
\(511\) 7478.42 0.647408
\(512\) 1086.41 1086.41i 0.0937754 0.0937754i
\(513\) 3548.60 5899.84i 0.305409 0.507766i
\(514\) 1018.67i 0.0874153i
\(515\) 0 0
\(516\) −852.686 1233.36i −0.0727469 0.105224i
\(517\) 3576.93 + 3576.93i 0.304281 + 0.304281i
\(518\) 4044.31 + 4044.31i 0.343044 + 0.343044i
\(519\) −7685.96 11117.3i −0.650051 0.940263i
\(520\) 0 0
\(521\) 18251.6i 1.53478i −0.641183 0.767388i \(-0.721556\pi\)
0.641183 0.767388i \(-0.278444\pi\)
\(522\) −5201.11 + 2350.15i −0.436104 + 0.197056i
\(523\) 2125.69 2125.69i 0.177725 0.177725i −0.612639 0.790363i \(-0.709892\pi\)
0.790363 + 0.612639i \(0.209892\pi\)
\(524\) −10250.5 −0.854570
\(525\) 0 0
\(526\) 12487.1 1.03510
\(527\) 4590.80 4590.80i 0.379466 0.379466i
\(528\) −113.910 + 624.207i −0.00938880 + 0.0514491i
\(529\) 9313.29i 0.765455i
\(530\) 0 0
\(531\) 18425.0 + 6956.30i 1.50579 + 0.568508i
\(532\) −3394.85 3394.85i −0.276664 0.276664i
\(533\) 5534.42 + 5534.42i 0.449761 + 0.449761i
\(534\) 10174.0 7033.79i 0.824478 0.570003i
\(535\) 0 0
\(536\) 10330.0i 0.832439i
\(537\) −4199.71 766.393i −0.337488 0.0615872i
\(538\) 2292.60 2292.60i 0.183719 0.183719i
\(539\) −398.082 −0.0318119
\(540\) 0 0
\(541\) −2214.16 −0.175960 −0.0879798 0.996122i \(-0.528041\pi\)
−0.0879798 + 0.996122i \(0.528041\pi\)
\(542\) −3873.77 + 3873.77i −0.306998 + 0.306998i
\(543\) −11829.6 2158.75i −0.934911 0.170609i
\(544\) 4835.17i 0.381078i
\(545\) 0 0
\(546\) 2719.36 1880.03i 0.213146 0.147359i
\(547\) −12385.1 12385.1i −0.968098 0.968098i 0.0314090 0.999507i \(-0.490001\pi\)
−0.999507 + 0.0314090i \(0.990001\pi\)
\(548\) 2628.04 + 2628.04i 0.204862 + 0.204862i
\(549\) 50.5193 + 19.0735i 0.00392735 + 0.00148276i
\(550\) 0 0
\(551\) 6176.11i 0.477516i
\(552\) −1103.05 + 6044.52i −0.0850522 + 0.466072i
\(553\) −641.427 + 641.427i −0.0493242 + 0.0493242i
\(554\) −11557.3 −0.886324
\(555\) 0 0
\(556\) −354.410 −0.0270329
\(557\) −8716.96 + 8716.96i −0.663105 + 0.663105i −0.956111 0.293006i \(-0.905344\pi\)
0.293006 + 0.956111i \(0.405344\pi\)
\(558\) 10222.8 4619.23i 0.775566 0.350444i
\(559\) 1117.28i 0.0845363i
\(560\) 0 0
\(561\) −2227.10 3221.38i −0.167608 0.242436i
\(562\) −4729.23 4729.23i −0.354965 0.354965i
\(563\) −11697.0 11697.0i −0.875615 0.875615i 0.117462 0.993077i \(-0.462524\pi\)
−0.993077 + 0.117462i \(0.962524\pi\)
\(564\) −2695.76 3899.27i −0.201262 0.291115i
\(565\) 0 0
\(566\) 9721.40i 0.721945i
\(567\) 872.435 + 13743.7i 0.0646188 + 1.01796i
\(568\) −2688.40 + 2688.40i −0.198596 + 0.198596i
\(569\) 11517.5 0.848576 0.424288 0.905527i \(-0.360524\pi\)
0.424288 + 0.905527i \(0.360524\pi\)
\(570\) 0 0
\(571\) −11093.9 −0.813072 −0.406536 0.913635i \(-0.633263\pi\)
−0.406536 + 0.913635i \(0.633263\pi\)
\(572\) 2108.68 2108.68i 0.154141 0.154141i
\(573\) 868.617 4759.88i 0.0633281 0.347027i
\(574\) 12384.8i 0.900577i
\(575\) 0 0
\(576\) −2626.50 + 6956.73i −0.189995 + 0.503236i
\(577\) 14119.4 + 14119.4i 1.01871 + 1.01871i 0.999822 + 0.0188920i \(0.00601387\pi\)
0.0188920 + 0.999822i \(0.493986\pi\)
\(578\) 5016.87 + 5016.87i 0.361028 + 0.361028i
\(579\) −15856.6 + 10962.4i −1.13813 + 0.786846i
\(580\) 0 0
\(581\) 3859.10i 0.275564i
\(582\) 11026.3 + 2012.16i 0.785320 + 0.143311i
\(583\) 4607.29 4607.29i 0.327297 0.327297i
\(584\) 8762.89 0.620909
\(585\) 0 0
\(586\) −10725.4 −0.756081
\(587\) −8524.33 + 8524.33i −0.599381 + 0.599381i −0.940148 0.340767i \(-0.889313\pi\)
0.340767 + 0.940148i \(0.389313\pi\)
\(588\) 366.986 + 66.9702i 0.0257385 + 0.00469695i
\(589\) 12139.2i 0.849211i
\(590\) 0 0
\(591\) 18103.8 12516.0i 1.26005 0.871135i
\(592\) −542.020 542.020i −0.0376298 0.0376298i
\(593\) 4580.53 + 4580.53i 0.317200 + 0.317200i 0.847691 0.530491i \(-0.177992\pi\)
−0.530491 + 0.847691i \(0.677992\pi\)
\(594\) −1634.08 6566.55i −0.112874 0.453584i
\(595\) 0 0
\(596\) 1881.79i 0.129331i
\(597\) −102.105 + 559.518i −0.00699979 + 0.0383577i
\(598\) 1272.20 1272.20i 0.0869971 0.0869971i
\(599\) −10195.8 −0.695477 −0.347738 0.937592i \(-0.613050\pi\)
−0.347738 + 0.937592i \(0.613050\pi\)
\(600\) 0 0
\(601\) 18915.8 1.28385 0.641923 0.766769i \(-0.278137\pi\)
0.641923 + 0.766769i \(0.278137\pi\)
\(602\) 1250.11 1250.11i 0.0846355 0.0846355i
\(603\) 5188.36 + 11482.4i 0.350392 + 0.775452i
\(604\) 10788.4i 0.726778i
\(605\) 0 0
\(606\) 1675.89 + 2424.09i 0.112341 + 0.162495i
\(607\) −12758.2 12758.2i −0.853113 0.853113i 0.137402 0.990515i \(-0.456125\pi\)
−0.990515 + 0.137402i \(0.956125\pi\)
\(608\) −6392.67 6392.67i −0.426409 0.426409i
\(609\) 7025.33 + 10161.8i 0.467456 + 0.676149i
\(610\) 0 0
\(611\) 3532.26i 0.233879i
\(612\) 1511.19 + 3344.41i 0.0998140 + 0.220898i
\(613\) −7340.02 + 7340.02i −0.483622 + 0.483622i −0.906286 0.422664i \(-0.861095\pi\)
0.422664 + 0.906286i \(0.361095\pi\)
\(614\) −4349.39 −0.285875
\(615\) 0 0
\(616\) −12007.9 −0.785412
\(617\) 17118.9 17118.9i 1.11698 1.11698i 0.124803 0.992182i \(-0.460170\pi\)
0.992182 0.124803i \(-0.0398299\pi\)
\(618\) −2068.43 + 11334.7i −0.134635 + 0.737778i
\(619\) 3176.16i 0.206237i 0.994669 + 0.103118i \(0.0328820\pi\)
−0.994669 + 0.103118i \(0.967118\pi\)
\(620\) 0 0
\(621\) 1809.84 + 7272.84i 0.116950 + 0.469966i
\(622\) −4762.79 4762.79i −0.307026 0.307026i
\(623\) −18930.8 18930.8i −1.21741 1.21741i
\(624\) −364.450 + 251.962i −0.0233809 + 0.0161644i
\(625\) 0 0
\(626\) 14424.6i 0.920965i
\(627\) 7203.53 + 1314.55i 0.458822 + 0.0837291i
\(628\) −6258.80 + 6258.80i −0.397697 + 0.397697i
\(629\) 4731.09 0.299906
\(630\) 0 0
\(631\) −11467.2 −0.723459 −0.361729 0.932283i \(-0.617814\pi\)
−0.361729 + 0.932283i \(0.617814\pi\)
\(632\) −751.597 + 751.597i −0.0473052 + 0.0473052i
\(633\) −13878.0 2532.57i −0.871410 0.159021i
\(634\) 7392.26i 0.463066i
\(635\) 0 0
\(636\) −5022.48 + 3472.29i −0.313136 + 0.216486i
\(637\) −196.556 196.556i −0.0122258 0.0122258i
\(638\) −4292.32 4292.32i −0.266355 0.266355i
\(639\) −1638.02 + 4338.59i −0.101407 + 0.268595i
\(640\) 0 0
\(641\) 12383.2i 0.763035i 0.924362 + 0.381518i \(0.124598\pi\)
−0.924362 + 0.381518i \(0.875402\pi\)
\(642\) 1321.02 7238.95i 0.0812092 0.445013i
\(643\) 11142.9 11142.9i 0.683413 0.683413i −0.277354 0.960768i \(-0.589458\pi\)
0.960768 + 0.277354i \(0.0894576\pi\)
\(644\) 5226.29 0.319790
\(645\) 0 0
\(646\) 2163.30 0.131755
\(647\) 2391.21 2391.21i 0.145299 0.145299i −0.630716 0.776014i \(-0.717239\pi\)
0.776014 + 0.630716i \(0.217239\pi\)
\(648\) 1022.28 + 16104.3i 0.0619738 + 0.976292i
\(649\) 20946.4i 1.26690i
\(650\) 0 0
\(651\) −13808.3 19973.0i −0.831322 1.20246i
\(652\) −3242.32 3242.32i −0.194753 0.194753i
\(653\) 16623.3 + 16623.3i 0.996201 + 0.996201i 0.999993 0.00379136i \(-0.00120683\pi\)
−0.00379136 + 0.999993i \(0.501207\pi\)
\(654\) 10296.5 + 14893.4i 0.615636 + 0.890484i
\(655\) 0 0
\(656\) 1659.81i 0.0987878i
\(657\) 9740.43 4401.27i 0.578403 0.261354i
\(658\) 3952.20 3952.20i 0.234153 0.234153i
\(659\) 20089.8 1.18754 0.593768 0.804636i \(-0.297640\pi\)
0.593768 + 0.804636i \(0.297640\pi\)
\(660\) 0 0
\(661\) 541.434 0.0318598 0.0159299 0.999873i \(-0.494929\pi\)
0.0159299 + 0.999873i \(0.494929\pi\)
\(662\) −11389.1 + 11389.1i −0.668654 + 0.668654i
\(663\) 490.931 2690.22i 0.0287574 0.157586i
\(664\) 4521.93i 0.264284i
\(665\) 0 0
\(666\) 7647.80 + 2887.41i 0.444964 + 0.167995i
\(667\) 4753.99 + 4753.99i 0.275975 + 0.275975i
\(668\) 15586.7 + 15586.7i 0.902796 + 0.902796i
\(669\) 17109.1 11828.3i 0.988751 0.683573i
\(670\) 0 0
\(671\) 57.4328i 0.00330428i
\(672\) 17789.7 + 3246.40i 1.02121 + 0.186358i
\(673\) 24314.3 24314.3i 1.39264 1.39264i 0.573288 0.819354i \(-0.305668\pi\)
0.819354 0.573288i \(-0.194332\pi\)
\(674\) 6084.03 0.347697
\(675\) 0 0
\(676\) −9295.71 −0.528887
\(677\) 14662.4 14662.4i 0.832380 0.832380i −0.155462 0.987842i \(-0.549687\pi\)
0.987842 + 0.155462i \(0.0496867\pi\)
\(678\) −3292.84 600.902i −0.186520 0.0340376i
\(679\) 24260.8i 1.37120i
\(680\) 0 0
\(681\) 8456.13 5846.14i 0.475829 0.328964i
\(682\) 8436.57 + 8436.57i 0.473685 + 0.473685i
\(683\) 15981.2 + 15981.2i 0.895320 + 0.895320i 0.995018 0.0996976i \(-0.0317875\pi\)
−0.0996976 + 0.995018i \(0.531788\pi\)
\(684\) −6419.67 2423.73i −0.358863 0.135488i
\(685\) 0 0
\(686\) 10443.3i 0.581233i
\(687\) −3666.36 + 20091.1i −0.203611 + 1.11575i
\(688\) −167.540 + 167.540i −0.00928400 + 0.00928400i
\(689\) 4549.75 0.251570
\(690\) 0 0
\(691\) −16714.9 −0.920209 −0.460105 0.887865i \(-0.652188\pi\)
−0.460105 + 0.887865i \(0.652188\pi\)
\(692\) −9525.19 + 9525.19i −0.523256 + 0.523256i
\(693\) −13347.5 + 6031.14i −0.731645 + 0.330598i
\(694\) 19424.1i 1.06243i
\(695\) 0 0
\(696\) 8231.98 + 11907.1i 0.448322 + 0.648474i
\(697\) −7243.96 7243.96i −0.393665 0.393665i
\(698\) 3285.13 + 3285.13i 0.178143 + 0.178143i
\(699\) 8277.19 + 11972.5i 0.447886 + 0.647842i
\(700\) 0 0
\(701\) 6990.49i 0.376643i 0.982107 + 0.188322i \(0.0603048\pi\)
−0.982107 + 0.188322i \(0.939695\pi\)
\(702\) 2435.44 4049.11i 0.130940 0.217698i
\(703\) −6255.06 + 6255.06i −0.335582 + 0.335582i
\(704\) −7908.75 −0.423398
\(705\) 0 0
\(706\) −15056.1 −0.802611
\(707\) 4510.51 4510.51i 0.239936 0.239936i
\(708\) 3523.86 19310.2i 0.187055 1.02503i
\(709\) 28175.0i 1.49243i −0.665705 0.746215i \(-0.731869\pi\)
0.665705 0.746215i \(-0.268131\pi\)
\(710\) 0 0
\(711\) −457.943 + 1212.94i −0.0241550 + 0.0639787i
\(712\) −22182.3 22182.3i −1.16758 1.16758i
\(713\) −9343.99 9343.99i −0.490793 0.490793i
\(714\) −3559.35 + 2460.75i −0.186562 + 0.128980i
\(715\) 0 0
\(716\) 4254.90i 0.222085i
\(717\) −15213.6 2776.28i −0.792414 0.144605i
\(718\) −10484.1 + 10484.1i −0.544933 + 0.544933i
\(719\) −20143.8 −1.04484 −0.522418 0.852690i \(-0.674970\pi\)
−0.522418 + 0.852690i \(0.674970\pi\)
\(720\) 0 0
\(721\) 24939.2 1.28819
\(722\) 5286.05 5286.05i 0.272474 0.272474i
\(723\) −9382.32 1712.15i −0.482617 0.0880715i
\(724\) 11985.0i 0.615222i
\(725\) 0 0
\(726\) −3635.16 + 2513.17i −0.185831 + 0.128475i
\(727\) 9805.90 + 9805.90i 0.500249 + 0.500249i 0.911515 0.411267i \(-0.134913\pi\)
−0.411267 + 0.911515i \(0.634913\pi\)
\(728\) −5929.00 5929.00i −0.301845 0.301845i
\(729\) 9224.92 + 17387.4i 0.468674 + 0.883371i
\(730\) 0 0
\(731\) 1462.39i 0.0739926i
\(732\) 9.66205 52.9464i 0.000487868 0.00267344i
\(733\) −16533.1 + 16533.1i −0.833100 + 0.833100i −0.987940 0.154840i \(-0.950514\pi\)
0.154840 + 0.987940i \(0.450514\pi\)
\(734\) −14706.3 −0.739536
\(735\) 0 0
\(736\) 9841.37 0.492877
\(737\) −9476.04 + 9476.04i −0.473615 + 0.473615i
\(738\) −7288.81 16130.8i −0.363557 0.804586i
\(739\) 15250.1i 0.759114i −0.925168 0.379557i \(-0.876076\pi\)
0.925168 0.379557i \(-0.123924\pi\)
\(740\) 0 0
\(741\) 2907.72 + 4205.85i 0.144153 + 0.208510i
\(742\) −5090.66 5090.66i −0.251865 0.251865i
\(743\) 5438.49 + 5438.49i 0.268531 + 0.268531i 0.828508 0.559977i \(-0.189190\pi\)
−0.559977 + 0.828508i \(0.689190\pi\)
\(744\) −16180.0 23403.5i −0.797294 1.15324i
\(745\) 0 0
\(746\) 8514.27i 0.417868i
\(747\) 2271.20 + 5026.38i 0.111243 + 0.246192i
\(748\) −2760.04 + 2760.04i −0.134916 + 0.134916i
\(749\) −15927.5 −0.777009
\(750\) 0 0
\(751\) 2087.82 0.101446 0.0507228 0.998713i \(-0.483848\pi\)
0.0507228 + 0.998713i \(0.483848\pi\)
\(752\) −529.676 + 529.676i −0.0256852 + 0.0256852i
\(753\) −1438.55 + 7883.01i −0.0696197 + 0.381505i
\(754\) 4238.72i 0.204728i
\(755\) 0 0
\(756\) 13319.5 3314.54i 0.640774 0.159456i
\(757\) 10258.6 + 10258.6i 0.492546 + 0.492546i 0.909107 0.416562i \(-0.136765\pi\)
−0.416562 + 0.909107i \(0.636765\pi\)
\(758\) −8444.86 8444.86i −0.404658 0.404658i
\(759\) −6556.70 + 4532.98i −0.313561 + 0.216781i
\(760\) 0 0
\(761\) 26879.5i 1.28040i −0.768210 0.640198i \(-0.778852\pi\)
0.768210 0.640198i \(-0.221148\pi\)
\(762\) 1282.05 + 233.958i 0.0609498 + 0.0111226i
\(763\) 27712.1 27712.1i 1.31487 1.31487i
\(764\) −4822.43 −0.228363
\(765\) 0 0
\(766\) 4028.02 0.189998
\(767\) −10342.4 + 10342.4i −0.486888 + 0.486888i
\(768\) 19944.6 + 3639.64i 0.937097 + 0.171008i
\(769\) 25180.9i 1.18082i 0.807105 + 0.590408i \(0.201033\pi\)
−0.807105 + 0.590408i \(0.798967\pi\)
\(770\) 0 0
\(771\) 2592.23 1792.14i 0.121085 0.0837124i
\(772\) 13585.7 + 13585.7i 0.633369 + 0.633369i
\(773\) −18871.2 18871.2i −0.878072 0.878072i 0.115263 0.993335i \(-0.463229\pi\)
−0.993335 + 0.115263i \(0.963229\pi\)
\(774\) 892.506 2363.96i 0.0414476 0.109781i
\(775\) 0 0
\(776\) 28427.7i 1.31507i
\(777\) 3176.52 17406.8i 0.146663 0.803688i
\(778\) −14682.1 + 14682.1i −0.676581 + 0.676581i
\(779\) 19154.7 0.880988
\(780\) 0 0
\(781\) −4932.32 −0.225982
\(782\) −1665.18 + 1665.18i −0.0761465 + 0.0761465i
\(783\) 15130.8 + 9100.79i 0.690588 + 0.415371i
\(784\) 58.9485i 0.00268533i
\(785\) 0 0
\(786\) −9823.43 14209.0i −0.445789 0.644809i
\(787\) −14716.0 14716.0i −0.666542 0.666542i 0.290372 0.956914i \(-0.406221\pi\)
−0.956914 + 0.290372i \(0.906221\pi\)
\(788\) −15511.1 15511.1i −0.701217 0.701217i
\(789\) −21968.5 31776.2i −0.991253 1.43379i
\(790\) 0 0
\(791\) 7245.10i 0.325672i
\(792\) −15640.0 + 7067.03i −0.701697 + 0.317066i
\(793\) −28.3578 + 28.3578i −0.00126988 + 0.00126988i
\(794\) 3183.22 0.142277
\(795\) 0 0
\(796\) 566.871 0.0252415
\(797\) −17463.9 + 17463.9i −0.776163 + 0.776163i −0.979176 0.203013i \(-0.934927\pi\)
0.203013 + 0.979176i \(0.434927\pi\)
\(798\) 1452.47 7959.28i 0.0644321 0.353077i
\(799\) 4623.35i 0.204709i
\(800\) 0 0
\(801\) −35798.1 13515.5i −1.57911 0.596188i
\(802\) 2709.42 + 2709.42i 0.119293 + 0.119293i
\(803\) 8038.49 + 8038.49i 0.353265 + 0.353265i
\(804\) 10330.0 7141.64i 0.453122 0.313266i
\(805\) 0 0
\(806\) 8331.22i 0.364088i
\(807\) −9867.40 1800.68i −0.430420 0.0785462i
\(808\) 5285.22 5285.22i 0.230115 0.230115i
\(809\) −24097.9 −1.04727 −0.523633 0.851944i \(-0.675424\pi\)
−0.523633 + 0.851944i \(0.675424\pi\)
\(810\) 0 0
\(811\) 25302.7 1.09556 0.547780 0.836622i \(-0.315473\pi\)
0.547780 + 0.836622i \(0.315473\pi\)
\(812\) 8706.47 8706.47i 0.376277 0.376277i
\(813\) 16672.8 + 3042.57i 0.719238 + 0.131252i
\(814\) 8694.39i 0.374371i
\(815\) 0 0
\(816\) 477.025 329.791i 0.0204647 0.0141483i
\(817\) 1933.46 + 1933.46i 0.0827945 + 0.0827945i
\(818\) 5480.85 + 5480.85i 0.234271 + 0.234271i
\(819\) −9568.33 3612.50i −0.408235 0.154128i
\(820\) 0 0
\(821\) 27925.3i 1.18709i 0.804802 + 0.593544i \(0.202272\pi\)
−0.804802 + 0.593544i \(0.797728\pi\)
\(822\) −1124.39 + 6161.50i −0.0477102 + 0.261444i
\(823\) −997.907 + 997.907i −0.0422659 + 0.0422659i −0.727924 0.685658i \(-0.759515\pi\)
0.685658 + 0.727924i \(0.259515\pi\)
\(824\) 29222.6 1.23546
\(825\) 0 0
\(826\) 23144.0 0.974918
\(827\) 18683.3 18683.3i 0.785590 0.785590i −0.195178 0.980768i \(-0.562529\pi\)
0.980768 + 0.195178i \(0.0625285\pi\)
\(828\) 6807.11 3075.83i 0.285705 0.129097i
\(829\) 21146.9i 0.885962i −0.896531 0.442981i \(-0.853921\pi\)
0.896531 0.442981i \(-0.146079\pi\)
\(830\) 0 0
\(831\) 20332.8 + 29410.2i 0.848780 + 1.22771i
\(832\) −3904.99 3904.99i −0.162718 0.162718i
\(833\) 257.270 + 257.270i 0.0107009 + 0.0107009i
\(834\) −339.644 491.276i −0.0141018 0.0203975i
\(835\) 0 0
\(836\) 7298.19i 0.301930i
\(837\) −29739.6 17887.6i −1.22814 0.738695i
\(838\) −2544.31 + 2544.31i −0.104883 + 0.104883i
\(839\) 30903.4 1.27164 0.635820 0.771838i \(-0.280662\pi\)
0.635820 + 0.771838i \(0.280662\pi\)
\(840\) 0 0
\(841\) −8549.68 −0.350555
\(842\) −10557.5 + 10557.5i −0.432109 + 0.432109i
\(843\) −3714.48 + 20354.7i −0.151760 + 0.831618i
\(844\) 14060.4i 0.573435i
\(845\) 0 0
\(846\) 2821.65 7473.63i 0.114669 0.303722i
\(847\) 6763.96 + 6763.96i 0.274395 + 0.274395i
\(848\) 682.252 + 682.252i 0.0276281 + 0.0276281i
\(849\) −24738.3 + 17102.8i −1.00002 + 0.691364i
\(850\) 0 0
\(851\) 9629.53i 0.387892i
\(852\) 4547.02 + 829.774i 0.182839 + 0.0333657i
\(853\) −181.224 + 181.224i −0.00727432 + 0.00727432i −0.710735 0.703460i \(-0.751637\pi\)
0.703460 + 0.710735i \(0.251637\pi\)
\(854\) 63.4584 0.00254274
\(855\) 0 0
\(856\) −18663.2 −0.745205
\(857\) 13852.9 13852.9i 0.552167 0.552167i −0.374899 0.927066i \(-0.622323\pi\)
0.927066 + 0.374899i \(0.122323\pi\)
\(858\) 4943.85 + 902.189i 0.196713 + 0.0358977i
\(859\) 8910.47i 0.353925i 0.984218 + 0.176962i \(0.0566271\pi\)
−0.984218 + 0.176962i \(0.943373\pi\)
\(860\) 0 0
\(861\) −31515.9 + 21788.5i −1.24746 + 0.862428i
\(862\) 18655.0 + 18655.0i 0.737112 + 0.737112i
\(863\) 6487.75 + 6487.75i 0.255905 + 0.255905i 0.823386 0.567481i \(-0.192082\pi\)
−0.567481 + 0.823386i \(0.692082\pi\)
\(864\) 25081.2 6241.43i 0.987594 0.245761i
\(865\) 0 0
\(866\) 12900.0i 0.506187i
\(867\) 3940.40 21592.8i 0.154352 0.845823i
\(868\) −17112.6 + 17112.6i −0.669170 + 0.669170i
\(869\) −1378.93 −0.0538285
\(870\) 0 0
\(871\) −9357.71 −0.364034
\(872\) 32471.9 32471.9i 1.26105 1.26105i
\(873\) −14278.2 31599.0i −0.553543 1.22504i
\(874\) 4403.12i 0.170409i
\(875\) 0 0
\(876\) −6058.22 8762.89i −0.233662 0.337980i
\(877\) 20231.6 + 20231.6i 0.778987 + 0.778987i 0.979659 0.200672i \(-0.0643124\pi\)
−0.200672 + 0.979659i \(0.564312\pi\)
\(878\) 9764.88 + 9764.88i 0.375340 + 0.375340i
\(879\) 18869.2 + 27293.3i 0.724054 + 1.04730i
\(880\) 0 0
\(881\) 33209.0i 1.26996i −0.772527 0.634982i \(-0.781007\pi\)
0.772527 0.634982i \(-0.218993\pi\)
\(882\) 258.863 + 572.889i 0.00988251 + 0.0218709i
\(883\) −26984.3 + 26984.3i −1.02842 + 1.02842i −0.0288331 + 0.999584i \(0.509179\pi\)
−0.999584 + 0.0288331i \(0.990821\pi\)
\(884\) −2725.57 −0.103700
\(885\) 0 0
\(886\) 4656.90 0.176582
\(887\) −24008.9 + 24008.9i −0.908838 + 0.908838i −0.996179 0.0873406i \(-0.972163\pi\)
0.0873406 + 0.996179i \(0.472163\pi\)
\(888\) 3722.11 20396.5i 0.140660 0.770792i
\(889\) 2820.84i 0.106421i
\(890\) 0 0
\(891\) −13835.3 + 15710.8i −0.520200 + 0.590720i
\(892\) −14658.8 14658.8i −0.550240 0.550240i
\(893\) 6112.61 + 6112.61i 0.229060 + 0.229060i
\(894\) 2608.50 1803.39i 0.0975853 0.0674656i
\(895\) 0 0
\(896\) 19102.9i 0.712258i
\(897\) −5475.59 999.226i −0.203818 0.0371942i
\(898\) 21198.9 21198.9i 0.787768 0.787768i
\(899\) −31132.2 −1.15497
\(900\) 0 0
\(901\) −5955.13 −0.220193
\(902\) 13312.3 13312.3i 0.491409 0.491409i
\(903\) −5380.49 981.871i −0.198285 0.0361845i
\(904\) 8489.50i 0.312341i
\(905\) 0 0
\(906\) 14954.7 10338.9i 0.548384 0.379125i
\(907\) 23026.7 + 23026.7i 0.842989 + 0.842989i 0.989246 0.146258i \(-0.0467229\pi\)
−0.146258 + 0.989246i \(0.546723\pi\)
\(908\) −7245.11 7245.11i −0.264799 0.264799i
\(909\) 3220.25 8529.38i 0.117501 0.311223i
\(910\) 0 0
\(911\) 33422.1i 1.21550i 0.794127 + 0.607752i \(0.207929\pi\)
−0.794127 + 0.607752i \(0.792071\pi\)
\(912\) −194.660 + 1066.71i −0.00706781 + 0.0387304i
\(913\) −4148.12 + 4148.12i −0.150364 + 0.150364i
\(914\) 15075.7 0.545581
\(915\) 0 0
\(916\) 20355.1 0.734226
\(917\) −26438.8 + 26438.8i −0.952112 + 0.952112i
\(918\) −3187.73 + 5299.85i −0.114609 + 0.190546i
\(919\) 42542.2i 1.52703i 0.645792 + 0.763513i \(0.276527\pi\)
−0.645792 + 0.763513i \(0.723473\pi\)
\(920\) 0 0
\(921\) 7651.86 + 11068.0i 0.273765 + 0.395986i
\(922\) 10508.7 + 10508.7i 0.375363 + 0.375363i
\(923\) −2435.36 2435.36i −0.0868482 0.0868482i
\(924\) 8301.70 + 12007.9i 0.295569 + 0.427524i
\(925\) 0 0
\(926\) 3157.84i 0.112066i
\(927\) 32482.6 14677.4i 1.15088 0.520033i
\(928\) 16394.7 16394.7i 0.579938 0.579938i
\(929\) 5721.21 0.202053 0.101026 0.994884i \(-0.467787\pi\)
0.101026 + 0.994884i \(0.467787\pi\)
\(930\) 0 0
\(931\) −680.282 −0.0239477
\(932\) 10257.9 10257.9i 0.360524 0.360524i
\(933\) −3740.83 + 20499.1i −0.131264 + 0.719305i
\(934\) 3515.38i 0.123155i
\(935\) 0 0
\(936\) −11211.8 4232.97i −0.391525 0.147819i
\(937\) −1344.01 1344.01i −0.0468589 0.0468589i 0.683289 0.730148i \(-0.260549\pi\)
−0.730148 + 0.683289i \(0.760549\pi\)
\(938\) 10470.2 + 10470.2i 0.364461 + 0.364461i
\(939\) 36706.8 25377.2i 1.27570 0.881953i
\(940\) 0 0
\(941\) 9625.77i 0.333466i 0.986002 + 0.166733i \(0.0533217\pi\)
−0.986002 + 0.166733i \(0.946678\pi\)
\(942\) −14673.9 2677.80i −0.507538 0.0926192i
\(943\) −14744.1 + 14744.1i −0.509157 + 0.509157i
\(944\) −3101.77 −0.106943
\(945\) 0 0
\(946\) 2687.46 0.0923645
\(947\) 2234.24 2234.24i 0.0766664 0.0766664i −0.667734 0.744400i \(-0.732736\pi\)
0.744400 + 0.667734i \(0.232736\pi\)
\(948\) 1271.21 + 231.980i 0.0435518 + 0.00794765i
\(949\) 7938.11i 0.271530i
\(950\) 0 0
\(951\) −18811.3 + 13005.2i −0.641427 + 0.443451i
\(952\) 7760.41 + 7760.41i 0.264198 + 0.264198i
\(953\) −6457.14 6457.14i −0.219483 0.219483i 0.588798 0.808281i \(-0.299602\pi\)
−0.808281 + 0.588798i \(0.799602\pi\)
\(954\) −9626.45 3634.44i −0.326696 0.123343i
\(955\) 0 0
\(956\) 15413.5i 0.521451i
\(957\) −3371.32 + 18474.3i −0.113876 + 0.624021i
\(958\) −5985.35 + 5985.35i −0.201856 + 0.201856i
\(959\) 13556.9 0.456491
\(960\) 0 0
\(961\) 31399.6 1.05399
\(962\) −4292.91 + 4292.91i −0.143876 + 0.143876i
\(963\) −20745.2 + 9373.84i −0.694190 + 0.313674i
\(964\) 9505.61i 0.317588i
\(965\) 0 0
\(966\) 5008.55 + 7244.59i 0.166819 + 0.241295i
\(967\) −13166.9 13166.9i −0.437869 0.437869i 0.453425 0.891294i \(-0.350202\pi\)
−0.891294 + 0.453425i \(0.850202\pi\)
\(968\) 7925.72 + 7925.72i 0.263163 + 0.263163i
\(969\) −3805.89 5505.01i −0.126174 0.182504i
\(970\) 0 0
\(971\) 21504.3i 0.710716i 0.934730 + 0.355358i \(0.115641\pi\)
−0.934730 + 0.355358i \(0.884359\pi\)
\(972\) 15397.6 12156.0i 0.508104 0.401136i
\(973\) −914.119 + 914.119i −0.0301185 + 0.0301185i
\(974\) −3071.14 −0.101032
\(975\) 0 0
\(976\) −8.50472 −0.000278924
\(977\) 8996.19 8996.19i 0.294589 0.294589i −0.544301 0.838890i \(-0.683205\pi\)
0.838890 + 0.544301i \(0.183205\pi\)
\(978\) 1387.21 7601.68i 0.0453559 0.248543i
\(979\) 40697.1i 1.32858i
\(980\) 0 0
\(981\) 19784.9 52403.7i 0.643917 1.70553i
\(982\) −16467.8 16467.8i −0.535142 0.535142i
\(983\) 16337.3 + 16337.3i 0.530090 + 0.530090i 0.920599 0.390509i \(-0.127701\pi\)
−0.390509 + 0.920599i \(0.627701\pi\)
\(984\) −36929.0 + 25530.8i −1.19639 + 0.827128i
\(985\) 0 0
\(986\) 5548.02i 0.179194i
\(987\) −17010.4 3104.18i −0.548578 0.100108i
\(988\) 3603.53 3603.53i 0.116036 0.116036i
\(989\) −2976.52 −0.0957004
\(990\) 0 0
\(991\) −18296.9 −0.586500 −0.293250 0.956036i \(-0.594737\pi\)
−0.293250 + 0.956036i \(0.594737\pi\)
\(992\) −32223.9 + 32223.9i −1.03136 + 1.03136i
\(993\) 49018.8 + 8945.31i 1.56653 + 0.285872i
\(994\) 5449.79i 0.173900i
\(995\) 0 0
\(996\) 4521.93 3126.24i 0.143858 0.0994564i
\(997\) −20406.0 20406.0i −0.648210 0.648210i 0.304350 0.952560i \(-0.401561\pi\)
−0.952560 + 0.304350i \(0.901561\pi\)
\(998\) −12926.9 12926.9i −0.410015 0.410015i
\(999\) −6107.09 24541.4i −0.193413 0.777232i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.4.e.c.32.3 8
3.2 odd 2 inner 75.4.e.c.32.2 8
5.2 odd 4 15.4.e.a.8.3 yes 8
5.3 odd 4 inner 75.4.e.c.68.2 8
5.4 even 2 15.4.e.a.2.2 8
15.2 even 4 15.4.e.a.8.2 yes 8
15.8 even 4 inner 75.4.e.c.68.3 8
15.14 odd 2 15.4.e.a.2.3 yes 8
20.7 even 4 240.4.v.c.113.2 8
20.19 odd 2 240.4.v.c.17.1 8
60.47 odd 4 240.4.v.c.113.1 8
60.59 even 2 240.4.v.c.17.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.4.e.a.2.2 8 5.4 even 2
15.4.e.a.2.3 yes 8 15.14 odd 2
15.4.e.a.8.2 yes 8 15.2 even 4
15.4.e.a.8.3 yes 8 5.2 odd 4
75.4.e.c.32.2 8 3.2 odd 2 inner
75.4.e.c.32.3 8 1.1 even 1 trivial
75.4.e.c.68.2 8 5.3 odd 4 inner
75.4.e.c.68.3 8 15.8 even 4 inner
240.4.v.c.17.1 8 20.19 odd 2
240.4.v.c.17.2 8 60.59 even 2
240.4.v.c.113.1 8 60.47 odd 4
240.4.v.c.113.2 8 20.7 even 4