Properties

Label 75.4
Level 75
Weight 4
Dimension 394
Nonzero newspaces 6
Newform subspaces 17
Sturm bound 1600
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 17 \)
Sturm bound: \(1600\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(75))\).

Total New Old
Modular forms 656 434 222
Cusp forms 544 394 150
Eisenstein series 112 40 72

Trace form

\( 394 q - 8 q^{2} + 2 q^{3} + 28 q^{4} - 6 q^{5} - 18 q^{6} + 20 q^{7} + 72 q^{8} + 26 q^{9} + 76 q^{10} + 112 q^{11} - 226 q^{12} - 348 q^{13} - 528 q^{14} - 184 q^{15} - 132 q^{16} + 560 q^{17} + 578 q^{18}+ \cdots - 2016 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(75))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
75.4.a \(\chi_{75}(1, \cdot)\) 75.4.a.a 1 1
75.4.a.b 1
75.4.a.c 2
75.4.a.d 2
75.4.a.e 2
75.4.a.f 2
75.4.b \(\chi_{75}(49, \cdot)\) 75.4.b.a 2 1
75.4.b.b 2
75.4.b.c 4
75.4.e \(\chi_{75}(32, \cdot)\) 75.4.e.a 4 2
75.4.e.b 4
75.4.e.c 8
75.4.e.d 16
75.4.g \(\chi_{75}(16, \cdot)\) 75.4.g.a 28 4
75.4.g.b 28
75.4.i \(\chi_{75}(4, \cdot)\) 75.4.i.a 64 4
75.4.l \(\chi_{75}(2, \cdot)\) 75.4.l.a 224 8

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(75))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(75)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)