Properties

Label 240.4.v.c.17.1
Level $240$
Weight $4$
Character 240.17
Analytic conductor $14.160$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,4,Mod(17,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 240.v (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.1604584014\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.28356903014400.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 209x^{4} + 1600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.1
Root \(1.18766 + 1.18766i\) of defining polynomial
Character \(\chi\) \(=\) 240.17
Dual form 240.4.v.c.113.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.11173 - 0.932827i) q^{3} +(-2.48157 - 10.9015i) q^{5} +(13.3578 + 13.3578i) q^{7} +(25.2597 + 9.53673i) q^{9} -28.7164i q^{11} +(14.1789 - 14.1789i) q^{13} +(2.51595 + 58.0402i) q^{15} +(-18.5587 + 18.5587i) q^{17} -49.0735i q^{19} +(-55.8211 - 80.7421i) q^{21} +(-37.7738 - 37.7738i) q^{23} +(-112.684 + 54.1055i) q^{25} +(-120.225 - 72.3121i) q^{27} -125.854 q^{29} -247.367 q^{31} +(-26.7874 + 146.791i) q^{33} +(112.471 - 178.768i) q^{35} +(-127.463 - 127.463i) q^{37} +(-85.7053 + 59.2524i) q^{39} -390.328i q^{41} +(39.3993 - 39.3993i) q^{43} +(41.2806 - 299.033i) q^{45} +(124.560 - 124.560i) q^{47} +13.8625i q^{49} +(112.179 - 77.5549i) q^{51} +(160.441 + 160.441i) q^{53} +(-313.051 + 71.2618i) q^{55} +(-45.7770 + 250.850i) q^{57} -729.423 q^{59} +2.00000 q^{61} +(210.024 + 464.804i) q^{63} +(-189.757 - 119.385i) q^{65} +(329.987 + 329.987i) q^{67} +(157.853 + 228.326i) q^{69} -171.760i q^{71} +(-279.927 + 279.927i) q^{73} +(626.480 - 171.458i) q^{75} +(383.589 - 383.589i) q^{77} -48.0189i q^{79} +(547.102 + 481.789i) q^{81} +(144.451 + 144.451i) q^{83} +(248.371 + 156.262i) q^{85} +(643.334 + 117.400i) q^{87} -1417.21 q^{89} +378.799 q^{91} +(1264.48 + 230.751i) q^{93} +(-534.972 + 121.779i) q^{95} +(908.111 + 908.111i) q^{97} +(273.861 - 725.367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} + 16 q^{7} + 68 q^{13} - 90 q^{15} - 492 q^{21} - 220 q^{25} - 702 q^{27} - 616 q^{31} - 240 q^{33} - 1156 q^{37} - 548 q^{43} + 180 q^{45} + 852 q^{51} - 460 q^{55} + 684 q^{57} + 16 q^{61}+ \cdots + 1904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.11173 0.932827i −0.983754 0.179523i
\(4\) 0 0
\(5\) −2.48157 10.9015i −0.221958 0.975056i
\(6\) 0 0
\(7\) 13.3578 + 13.3578i 0.721254 + 0.721254i 0.968861 0.247606i \(-0.0796440\pi\)
−0.247606 + 0.968861i \(0.579644\pi\)
\(8\) 0 0
\(9\) 25.2597 + 9.53673i 0.935543 + 0.353212i
\(10\) 0 0
\(11\) 28.7164i 0.787121i −0.919299 0.393560i \(-0.871243\pi\)
0.919299 0.393560i \(-0.128757\pi\)
\(12\) 0 0
\(13\) 14.1789 14.1789i 0.302502 0.302502i −0.539490 0.841992i \(-0.681383\pi\)
0.841992 + 0.539490i \(0.181383\pi\)
\(14\) 0 0
\(15\) 2.51595 + 58.0402i 0.0433078 + 0.999062i
\(16\) 0 0
\(17\) −18.5587 + 18.5587i −0.264773 + 0.264773i −0.826990 0.562217i \(-0.809949\pi\)
0.562217 + 0.826990i \(0.309949\pi\)
\(18\) 0 0
\(19\) 49.0735i 0.592538i −0.955105 0.296269i \(-0.904258\pi\)
0.955105 0.296269i \(-0.0957425\pi\)
\(20\) 0 0
\(21\) −55.8211 80.7421i −0.580055 0.839018i
\(22\) 0 0
\(23\) −37.7738 37.7738i −0.342451 0.342451i 0.514837 0.857288i \(-0.327852\pi\)
−0.857288 + 0.514837i \(0.827852\pi\)
\(24\) 0 0
\(25\) −112.684 + 54.1055i −0.901469 + 0.432844i
\(26\) 0 0
\(27\) −120.225 72.3121i −0.856935 0.515425i
\(28\) 0 0
\(29\) −125.854 −0.805882 −0.402941 0.915226i \(-0.632012\pi\)
−0.402941 + 0.915226i \(0.632012\pi\)
\(30\) 0 0
\(31\) −247.367 −1.43318 −0.716588 0.697496i \(-0.754297\pi\)
−0.716588 + 0.697496i \(0.754297\pi\)
\(32\) 0 0
\(33\) −26.7874 + 146.791i −0.141306 + 0.774333i
\(34\) 0 0
\(35\) 112.471 178.768i 0.543175 0.863352i
\(36\) 0 0
\(37\) −127.463 127.463i −0.566347 0.566347i 0.364756 0.931103i \(-0.381152\pi\)
−0.931103 + 0.364756i \(0.881152\pi\)
\(38\) 0 0
\(39\) −85.7053 + 59.2524i −0.351893 + 0.243281i
\(40\) 0 0
\(41\) 390.328i 1.48680i −0.668845 0.743402i \(-0.733211\pi\)
0.668845 0.743402i \(-0.266789\pi\)
\(42\) 0 0
\(43\) 39.3993 39.3993i 0.139729 0.139729i −0.633783 0.773511i \(-0.718499\pi\)
0.773511 + 0.633783i \(0.218499\pi\)
\(44\) 0 0
\(45\) 41.2806 299.033i 0.136750 0.990606i
\(46\) 0 0
\(47\) 124.560 124.560i 0.386575 0.386575i −0.486889 0.873464i \(-0.661868\pi\)
0.873464 + 0.486889i \(0.161868\pi\)
\(48\) 0 0
\(49\) 13.8625i 0.0404155i
\(50\) 0 0
\(51\) 112.179 77.5549i 0.308004 0.212938i
\(52\) 0 0
\(53\) 160.441 + 160.441i 0.415816 + 0.415816i 0.883759 0.467943i \(-0.155005\pi\)
−0.467943 + 0.883759i \(0.655005\pi\)
\(54\) 0 0
\(55\) −313.051 + 71.2618i −0.767487 + 0.174708i
\(56\) 0 0
\(57\) −45.7770 + 250.850i −0.106374 + 0.582912i
\(58\) 0 0
\(59\) −729.423 −1.60954 −0.804769 0.593588i \(-0.797711\pi\)
−0.804769 + 0.593588i \(0.797711\pi\)
\(60\) 0 0
\(61\) 2.00000 0.00419793 0.00209897 0.999998i \(-0.499332\pi\)
0.00209897 + 0.999998i \(0.499332\pi\)
\(62\) 0 0
\(63\) 210.024 + 464.804i 0.420009 + 0.929520i
\(64\) 0 0
\(65\) −189.757 119.385i −0.362099 0.227813i
\(66\) 0 0
\(67\) 329.987 + 329.987i 0.601706 + 0.601706i 0.940765 0.339059i \(-0.110109\pi\)
−0.339059 + 0.940765i \(0.610109\pi\)
\(68\) 0 0
\(69\) 157.853 + 228.326i 0.275410 + 0.398365i
\(70\) 0 0
\(71\) 171.760i 0.287100i −0.989643 0.143550i \(-0.954148\pi\)
0.989643 0.143550i \(-0.0458518\pi\)
\(72\) 0 0
\(73\) −279.927 + 279.927i −0.448807 + 0.448807i −0.894958 0.446151i \(-0.852795\pi\)
0.446151 + 0.894958i \(0.352795\pi\)
\(74\) 0 0
\(75\) 626.480 171.458i 0.964529 0.263978i
\(76\) 0 0
\(77\) 383.589 383.589i 0.567714 0.567714i
\(78\) 0 0
\(79\) 48.0189i 0.0683866i −0.999415 0.0341933i \(-0.989114\pi\)
0.999415 0.0341933i \(-0.0108862\pi\)
\(80\) 0 0
\(81\) 547.102 + 481.789i 0.750483 + 0.660890i
\(82\) 0 0
\(83\) 144.451 + 144.451i 0.191031 + 0.191031i 0.796141 0.605111i \(-0.206871\pi\)
−0.605111 + 0.796141i \(0.706871\pi\)
\(84\) 0 0
\(85\) 248.371 + 156.262i 0.316937 + 0.199400i
\(86\) 0 0
\(87\) 643.334 + 117.400i 0.792789 + 0.144674i
\(88\) 0 0
\(89\) −1417.21 −1.68790 −0.843952 0.536419i \(-0.819777\pi\)
−0.843952 + 0.536419i \(0.819777\pi\)
\(90\) 0 0
\(91\) 378.799 0.436361
\(92\) 0 0
\(93\) 1264.48 + 230.751i 1.40989 + 0.257288i
\(94\) 0 0
\(95\) −534.972 + 121.779i −0.577758 + 0.131519i
\(96\) 0 0
\(97\) 908.111 + 908.111i 0.950564 + 0.950564i 0.998834 0.0482702i \(-0.0153708\pi\)
−0.0482702 + 0.998834i \(0.515371\pi\)
\(98\) 0 0
\(99\) 273.861 725.367i 0.278020 0.736385i
\(100\) 0 0
\(101\) 337.668i 0.332665i −0.986070 0.166333i \(-0.946807\pi\)
0.986070 0.166333i \(-0.0531926\pi\)
\(102\) 0 0
\(103\) 933.505 933.505i 0.893019 0.893019i −0.101787 0.994806i \(-0.532456\pi\)
0.994806 + 0.101787i \(0.0324561\pi\)
\(104\) 0 0
\(105\) −741.683 + 808.899i −0.689342 + 0.751814i
\(106\) 0 0
\(107\) −596.188 + 596.188i −0.538651 + 0.538651i −0.923133 0.384481i \(-0.874380\pi\)
0.384481 + 0.923133i \(0.374380\pi\)
\(108\) 0 0
\(109\) 2074.60i 1.82303i −0.411264 0.911516i \(-0.634913\pi\)
0.411264 0.911516i \(-0.365087\pi\)
\(110\) 0 0
\(111\) 532.657 + 770.460i 0.455474 + 0.658818i
\(112\) 0 0
\(113\) −271.193 271.193i −0.225767 0.225767i 0.585154 0.810922i \(-0.301034\pi\)
−0.810922 + 0.585154i \(0.801034\pi\)
\(114\) 0 0
\(115\) −318.051 + 505.527i −0.257899 + 0.409919i
\(116\) 0 0
\(117\) 493.375 222.934i 0.389851 0.176156i
\(118\) 0 0
\(119\) −495.806 −0.381937
\(120\) 0 0
\(121\) 506.367 0.380441
\(122\) 0 0
\(123\) −364.108 + 1995.25i −0.266915 + 1.46265i
\(124\) 0 0
\(125\) 869.461 + 1094.15i 0.622135 + 0.782910i
\(126\) 0 0
\(127\) −105.588 105.588i −0.0737747 0.0737747i 0.669257 0.743031i \(-0.266613\pi\)
−0.743031 + 0.669257i \(0.766613\pi\)
\(128\) 0 0
\(129\) −238.151 + 164.646i −0.162543 + 0.112374i
\(130\) 0 0
\(131\) 1979.28i 1.32008i −0.751231 0.660039i \(-0.770540\pi\)
0.751231 0.660039i \(-0.229460\pi\)
\(132\) 0 0
\(133\) 655.514 655.514i 0.427371 0.427371i
\(134\) 0 0
\(135\) −489.962 + 1490.07i −0.312364 + 0.949962i
\(136\) 0 0
\(137\) −507.451 + 507.451i −0.316456 + 0.316456i −0.847404 0.530948i \(-0.821836\pi\)
0.530948 + 0.847404i \(0.321836\pi\)
\(138\) 0 0
\(139\) 68.4333i 0.0417585i −0.999782 0.0208793i \(-0.993353\pi\)
0.999782 0.0208793i \(-0.00664656\pi\)
\(140\) 0 0
\(141\) −752.913 + 520.527i −0.449693 + 0.310895i
\(142\) 0 0
\(143\) −407.167 407.167i −0.238105 0.238105i
\(144\) 0 0
\(145\) 312.316 + 1372.00i 0.178872 + 0.785780i
\(146\) 0 0
\(147\) 12.9313 70.8616i 0.00725550 0.0397590i
\(148\) 0 0
\(149\) −363.356 −0.199780 −0.0998902 0.994998i \(-0.531849\pi\)
−0.0998902 + 0.994998i \(0.531849\pi\)
\(150\) 0 0
\(151\) 2083.14 1.12267 0.561337 0.827588i \(-0.310287\pi\)
0.561337 + 0.827588i \(0.310287\pi\)
\(152\) 0 0
\(153\) −645.774 + 291.797i −0.341227 + 0.154185i
\(154\) 0 0
\(155\) 613.859 + 2696.66i 0.318105 + 1.39743i
\(156\) 0 0
\(157\) −1208.52 1208.52i −0.614333 0.614333i 0.329739 0.944072i \(-0.393039\pi\)
−0.944072 + 0.329739i \(0.893039\pi\)
\(158\) 0 0
\(159\) −670.468 969.795i −0.334412 0.483709i
\(160\) 0 0
\(161\) 1009.15i 0.493989i
\(162\) 0 0
\(163\) −626.062 + 626.062i −0.300840 + 0.300840i −0.841343 0.540502i \(-0.818234\pi\)
0.540502 + 0.841343i \(0.318234\pi\)
\(164\) 0 0
\(165\) 1666.71 72.2492i 0.786382 0.0340884i
\(166\) 0 0
\(167\) 3009.65 3009.65i 1.39457 1.39457i 0.579848 0.814724i \(-0.303112\pi\)
0.814724 0.579848i \(-0.196888\pi\)
\(168\) 0 0
\(169\) 1794.92i 0.816985i
\(170\) 0 0
\(171\) 468.000 1239.58i 0.209292 0.554345i
\(172\) 0 0
\(173\) −1839.23 1839.23i −0.808288 0.808288i 0.176086 0.984375i \(-0.443656\pi\)
−0.984375 + 0.176086i \(0.943656\pi\)
\(174\) 0 0
\(175\) −2227.94 782.476i −0.962379 0.337998i
\(176\) 0 0
\(177\) 3728.61 + 680.425i 1.58339 + 0.288948i
\(178\) 0 0
\(179\) −821.582 −0.343061 −0.171530 0.985179i \(-0.554871\pi\)
−0.171530 + 0.985179i \(0.554871\pi\)
\(180\) 0 0
\(181\) 2314.20 0.950350 0.475175 0.879891i \(-0.342385\pi\)
0.475175 + 0.879891i \(0.342385\pi\)
\(182\) 0 0
\(183\) −10.2235 1.86565i −0.00412973 0.000753623i
\(184\) 0 0
\(185\) −1073.23 + 1705.84i −0.426515 + 0.677925i
\(186\) 0 0
\(187\) 532.938 + 532.938i 0.208408 + 0.208408i
\(188\) 0 0
\(189\) −640.007 2571.87i −0.246316 0.989820i
\(190\) 0 0
\(191\) 931.167i 0.352758i −0.984322 0.176379i \(-0.943562\pi\)
0.984322 0.176379i \(-0.0564385\pi\)
\(192\) 0 0
\(193\) −2623.28 + 2623.28i −0.978382 + 0.978382i −0.999771 0.0213891i \(-0.993191\pi\)
0.0213891 + 0.999771i \(0.493191\pi\)
\(194\) 0 0
\(195\) 858.621 + 787.274i 0.315319 + 0.289117i
\(196\) 0 0
\(197\) 2995.05 2995.05i 1.08319 1.08319i 0.0869796 0.996210i \(-0.472279\pi\)
0.996210 0.0869796i \(-0.0277215\pi\)
\(198\) 0 0
\(199\) 109.458i 0.0389912i 0.999810 + 0.0194956i \(0.00620603\pi\)
−0.999810 + 0.0194956i \(0.993794\pi\)
\(200\) 0 0
\(201\) −1378.98 1994.63i −0.483911 0.699951i
\(202\) 0 0
\(203\) −1681.14 1681.14i −0.581246 0.581246i
\(204\) 0 0
\(205\) −4255.14 + 968.625i −1.44972 + 0.330008i
\(206\) 0 0
\(207\) −593.915 1314.39i −0.199420 0.441336i
\(208\) 0 0
\(209\) −1409.21 −0.466399
\(210\) 0 0
\(211\) −2714.94 −0.885801 −0.442901 0.896571i \(-0.646051\pi\)
−0.442901 + 0.896571i \(0.646051\pi\)
\(212\) 0 0
\(213\) −160.222 + 877.989i −0.0515409 + 0.282436i
\(214\) 0 0
\(215\) −527.281 331.737i −0.167257 0.105229i
\(216\) 0 0
\(217\) −3304.29 3304.29i −1.03368 1.03368i
\(218\) 0 0
\(219\) 1692.03 1169.79i 0.522087 0.360945i
\(220\) 0 0
\(221\) 526.283i 0.160188i
\(222\) 0 0
\(223\) −2830.49 + 2830.49i −0.849971 + 0.849971i −0.990129 0.140158i \(-0.955239\pi\)
0.140158 + 0.990129i \(0.455239\pi\)
\(224\) 0 0
\(225\) −3362.34 + 292.053i −0.996249 + 0.0865343i
\(226\) 0 0
\(227\) −1398.96 + 1398.96i −0.409042 + 0.409042i −0.881404 0.472362i \(-0.843401\pi\)
0.472362 + 0.881404i \(0.343401\pi\)
\(228\) 0 0
\(229\) 3930.38i 1.13418i −0.823656 0.567089i \(-0.808069\pi\)
0.823656 0.567089i \(-0.191931\pi\)
\(230\) 0 0
\(231\) −2318.63 + 1602.98i −0.660408 + 0.456573i
\(232\) 0 0
\(233\) 1980.71 + 1980.71i 0.556912 + 0.556912i 0.928427 0.371515i \(-0.121162\pi\)
−0.371515 + 0.928427i \(0.621162\pi\)
\(234\) 0 0
\(235\) −1667.00 1048.79i −0.462736 0.291129i
\(236\) 0 0
\(237\) −44.7933 + 245.460i −0.0122769 + 0.0672756i
\(238\) 0 0
\(239\) −2976.20 −0.805500 −0.402750 0.915310i \(-0.631946\pi\)
−0.402750 + 0.915310i \(0.631946\pi\)
\(240\) 0 0
\(241\) 1835.45 0.490587 0.245294 0.969449i \(-0.421116\pi\)
0.245294 + 0.969449i \(0.421116\pi\)
\(242\) 0 0
\(243\) −2347.21 2973.13i −0.619645 0.784882i
\(244\) 0 0
\(245\) 151.122 34.4008i 0.0394074 0.00897057i
\(246\) 0 0
\(247\) −695.808 695.808i −0.179244 0.179244i
\(248\) 0 0
\(249\) −603.648 873.143i −0.153633 0.222222i
\(250\) 0 0
\(251\) 1542.14i 0.387805i 0.981021 + 0.193902i \(0.0621145\pi\)
−0.981021 + 0.193902i \(0.937885\pi\)
\(252\) 0 0
\(253\) −1084.73 + 1084.73i −0.269550 + 0.269550i
\(254\) 0 0
\(255\) −1123.84 1030.46i −0.275991 0.253057i
\(256\) 0 0
\(257\) 428.853 428.853i 0.104090 0.104090i −0.653144 0.757234i \(-0.726550\pi\)
0.757234 + 0.653144i \(0.226550\pi\)
\(258\) 0 0
\(259\) 3405.26i 0.816960i
\(260\) 0 0
\(261\) −3179.04 1200.24i −0.753937 0.284647i
\(262\) 0 0
\(263\) 5256.99 + 5256.99i 1.23255 + 1.23255i 0.962982 + 0.269565i \(0.0868798\pi\)
0.269565 + 0.962982i \(0.413120\pi\)
\(264\) 0 0
\(265\) 1350.89 2147.18i 0.313150 0.497738i
\(266\) 0 0
\(267\) 7244.38 + 1322.01i 1.66048 + 0.303017i
\(268\) 0 0
\(269\) 1930.34 0.437528 0.218764 0.975778i \(-0.429797\pi\)
0.218764 + 0.975778i \(0.429797\pi\)
\(270\) 0 0
\(271\) 3261.67 0.731116 0.365558 0.930789i \(-0.380878\pi\)
0.365558 + 0.930789i \(0.380878\pi\)
\(272\) 0 0
\(273\) −1936.32 353.353i −0.429272 0.0783367i
\(274\) 0 0
\(275\) 1553.72 + 3235.87i 0.340700 + 0.709565i
\(276\) 0 0
\(277\) 4865.57 + 4865.57i 1.05539 + 1.05539i 0.998373 + 0.0570194i \(0.0181597\pi\)
0.0570194 + 0.998373i \(0.481840\pi\)
\(278\) 0 0
\(279\) −6248.41 2359.07i −1.34080 0.506215i
\(280\) 0 0
\(281\) 3981.96i 0.845351i −0.906281 0.422676i \(-0.861091\pi\)
0.906281 0.422676i \(-0.138909\pi\)
\(282\) 0 0
\(283\) 4092.66 4092.66i 0.859658 0.859658i −0.131640 0.991298i \(-0.542024\pi\)
0.991298 + 0.131640i \(0.0420242\pi\)
\(284\) 0 0
\(285\) 2848.24 123.467i 0.591982 0.0256615i
\(286\) 0 0
\(287\) 5213.93 5213.93i 1.07236 1.07236i
\(288\) 0 0
\(289\) 4224.15i 0.859791i
\(290\) 0 0
\(291\) −3794.91 5489.13i −0.764473 1.10577i
\(292\) 0 0
\(293\) 4515.35 + 4515.35i 0.900305 + 0.900305i 0.995462 0.0951570i \(-0.0303353\pi\)
−0.0951570 + 0.995462i \(0.530335\pi\)
\(294\) 0 0
\(295\) 1810.11 + 7951.77i 0.357250 + 1.56939i
\(296\) 0 0
\(297\) −2076.54 + 3452.42i −0.405701 + 0.674511i
\(298\) 0 0
\(299\) −1071.18 −0.207184
\(300\) 0 0
\(301\) 1052.58 0.201560
\(302\) 0 0
\(303\) −314.986 + 1726.07i −0.0597210 + 0.327261i
\(304\) 0 0
\(305\) −4.96314 21.8029i −0.000931766 0.00409322i
\(306\) 0 0
\(307\) −1831.07 1831.07i −0.340406 0.340406i 0.516114 0.856520i \(-0.327378\pi\)
−0.856520 + 0.516114i \(0.827378\pi\)
\(308\) 0 0
\(309\) −5642.63 + 3901.03i −1.03883 + 0.718194i
\(310\) 0 0
\(311\) 4010.21i 0.731184i 0.930775 + 0.365592i \(0.119134\pi\)
−0.930775 + 0.365592i \(0.880866\pi\)
\(312\) 0 0
\(313\) 6072.69 6072.69i 1.09664 1.09664i 0.101841 0.994801i \(-0.467527\pi\)
0.994801 0.101841i \(-0.0324733\pi\)
\(314\) 0 0
\(315\) 4545.85 3443.01i 0.813110 0.615847i
\(316\) 0 0
\(317\) −3112.10 + 3112.10i −0.551397 + 0.551397i −0.926844 0.375447i \(-0.877489\pi\)
0.375447 + 0.926844i \(0.377489\pi\)
\(318\) 0 0
\(319\) 3614.09i 0.634326i
\(320\) 0 0
\(321\) 3603.70 2491.42i 0.626600 0.433200i
\(322\) 0 0
\(323\) 910.737 + 910.737i 0.156888 + 0.156888i
\(324\) 0 0
\(325\) −830.574 + 2364.89i −0.141760 + 0.403632i
\(326\) 0 0
\(327\) −1935.24 + 10604.8i −0.327275 + 1.79342i
\(328\) 0 0
\(329\) 3327.71 0.557637
\(330\) 0 0
\(331\) 9589.47 1.59240 0.796201 0.605033i \(-0.206840\pi\)
0.796201 + 0.605033i \(0.206840\pi\)
\(332\) 0 0
\(333\) −2004.10 4435.26i −0.329801 0.729883i
\(334\) 0 0
\(335\) 2778.45 4416.22i 0.453144 0.720251i
\(336\) 0 0
\(337\) −2561.34 2561.34i −0.414021 0.414021i 0.469115 0.883137i \(-0.344573\pi\)
−0.883137 + 0.469115i \(0.844573\pi\)
\(338\) 0 0
\(339\) 1133.29 + 1639.24i 0.181569 + 0.262630i
\(340\) 0 0
\(341\) 7103.50i 1.12808i
\(342\) 0 0
\(343\) 4396.56 4396.56i 0.692104 0.692104i
\(344\) 0 0
\(345\) 2097.36 2287.44i 0.327299 0.356960i
\(346\) 0 0
\(347\) −8177.44 + 8177.44i −1.26509 + 1.26509i −0.316503 + 0.948592i \(0.602509\pi\)
−0.948592 + 0.316503i \(0.897491\pi\)
\(348\) 0 0
\(349\) 2766.04i 0.424249i 0.977243 + 0.212124i \(0.0680382\pi\)
−0.977243 + 0.212124i \(0.931962\pi\)
\(350\) 0 0
\(351\) −2729.96 + 679.347i −0.415141 + 0.103307i
\(352\) 0 0
\(353\) 6338.53 + 6338.53i 0.955711 + 0.955711i 0.999060 0.0433491i \(-0.0138028\pi\)
−0.0433491 + 0.999060i \(0.513803\pi\)
\(354\) 0 0
\(355\) −1872.43 + 426.233i −0.279939 + 0.0637242i
\(356\) 0 0
\(357\) 2534.43 + 462.501i 0.375732 + 0.0685663i
\(358\) 0 0
\(359\) 8827.47 1.29776 0.648880 0.760890i \(-0.275238\pi\)
0.648880 + 0.760890i \(0.275238\pi\)
\(360\) 0 0
\(361\) 4450.80 0.648899
\(362\) 0 0
\(363\) −2588.42 472.353i −0.374261 0.0682978i
\(364\) 0 0
\(365\) 3746.27 + 2356.95i 0.537229 + 0.337996i
\(366\) 0 0
\(367\) −6191.27 6191.27i −0.880605 0.880605i 0.112991 0.993596i \(-0.463957\pi\)
−0.993596 + 0.112991i \(0.963957\pi\)
\(368\) 0 0
\(369\) 3722.45 9859.55i 0.525157 1.39097i
\(370\) 0 0
\(371\) 4286.28i 0.599818i
\(372\) 0 0
\(373\) 3584.46 3584.46i 0.497577 0.497577i −0.413106 0.910683i \(-0.635556\pi\)
0.910683 + 0.413106i \(0.135556\pi\)
\(374\) 0 0
\(375\) −3423.80 6404.06i −0.471478 0.881878i
\(376\) 0 0
\(377\) −1784.48 + 1784.48i −0.243781 + 0.243781i
\(378\) 0 0
\(379\) 7110.48i 0.963695i 0.876255 + 0.481848i \(0.160034\pi\)
−0.876255 + 0.481848i \(0.839966\pi\)
\(380\) 0 0
\(381\) 441.241 + 638.231i 0.0593319 + 0.0858203i
\(382\) 0 0
\(383\) 1695.77 + 1695.77i 0.226240 + 0.226240i 0.811120 0.584880i \(-0.198858\pi\)
−0.584880 + 0.811120i \(0.698858\pi\)
\(384\) 0 0
\(385\) −5133.58 3229.77i −0.679562 0.427544i
\(386\) 0 0
\(387\) 1370.95 619.472i 0.180076 0.0813683i
\(388\) 0 0
\(389\) −12362.2 −1.61128 −0.805640 0.592405i \(-0.798178\pi\)
−0.805640 + 0.592405i \(0.798178\pi\)
\(390\) 0 0
\(391\) 1402.06 0.181343
\(392\) 0 0
\(393\) −1846.32 + 10117.5i −0.236984 + 1.29863i
\(394\) 0 0
\(395\) −523.476 + 119.162i −0.0666808 + 0.0151790i
\(396\) 0 0
\(397\) −1340.12 1340.12i −0.169417 0.169417i 0.617306 0.786723i \(-0.288224\pi\)
−0.786723 + 0.617306i \(0.788224\pi\)
\(398\) 0 0
\(399\) −3962.30 + 2739.33i −0.497150 + 0.343705i
\(400\) 0 0
\(401\) 2281.30i 0.284096i 0.989860 + 0.142048i \(0.0453688\pi\)
−0.989860 + 0.142048i \(0.954631\pi\)
\(402\) 0 0
\(403\) −3507.40 + 3507.40i −0.433538 + 0.433538i
\(404\) 0 0
\(405\) 3894.53 7159.80i 0.477829 0.878453i
\(406\) 0 0
\(407\) −3660.29 + 3660.29i −0.445783 + 0.445783i
\(408\) 0 0
\(409\) 4614.82i 0.557917i 0.960303 + 0.278959i \(0.0899892\pi\)
−0.960303 + 0.278959i \(0.910011\pi\)
\(410\) 0 0
\(411\) 3067.32 2120.59i 0.368126 0.254504i
\(412\) 0 0
\(413\) −9743.49 9743.49i −1.16089 1.16089i
\(414\) 0 0
\(415\) 1216.26 1933.19i 0.143865 0.228667i
\(416\) 0 0
\(417\) −63.8364 + 349.813i −0.00749660 + 0.0410801i
\(418\) 0 0
\(419\) 2142.28 0.249779 0.124889 0.992171i \(-0.460142\pi\)
0.124889 + 0.992171i \(0.460142\pi\)
\(420\) 0 0
\(421\) −8889.30 −1.02907 −0.514534 0.857470i \(-0.672035\pi\)
−0.514534 + 0.857470i \(0.672035\pi\)
\(422\) 0 0
\(423\) 4334.26 1958.46i 0.498200 0.225115i
\(424\) 0 0
\(425\) 1087.13 3095.38i 0.124079 0.353289i
\(426\) 0 0
\(427\) 26.7156 + 26.7156i 0.00302778 + 0.00302778i
\(428\) 0 0
\(429\) 1701.52 + 2461.15i 0.191492 + 0.276982i
\(430\) 0 0
\(431\) 15707.3i 1.75543i −0.479179 0.877717i \(-0.659065\pi\)
0.479179 0.877717i \(-0.340935\pi\)
\(432\) 0 0
\(433\) 5430.81 5430.81i 0.602744 0.602744i −0.338296 0.941040i \(-0.609851\pi\)
0.941040 + 0.338296i \(0.109851\pi\)
\(434\) 0 0
\(435\) −316.644 7304.62i −0.0349009 0.805126i
\(436\) 0 0
\(437\) −1853.69 + 1853.69i −0.202915 + 0.202915i
\(438\) 0 0
\(439\) 8221.92i 0.893874i −0.894565 0.446937i \(-0.852515\pi\)
0.894565 0.446937i \(-0.147485\pi\)
\(440\) 0 0
\(441\) −132.203 + 350.163i −0.0142753 + 0.0378105i
\(442\) 0 0
\(443\) 1960.53 + 1960.53i 0.210265 + 0.210265i 0.804380 0.594115i \(-0.202498\pi\)
−0.594115 + 0.804380i \(0.702498\pi\)
\(444\) 0 0
\(445\) 3516.89 + 15449.6i 0.374644 + 1.64580i
\(446\) 0 0
\(447\) 1857.38 + 338.948i 0.196535 + 0.0358651i
\(448\) 0 0
\(449\) 17849.2 1.87607 0.938036 0.346537i \(-0.112643\pi\)
0.938036 + 0.346537i \(0.112643\pi\)
\(450\) 0 0
\(451\) −11208.8 −1.17029
\(452\) 0 0
\(453\) −10648.5 1943.21i −1.10443 0.201545i
\(454\) 0 0
\(455\) −940.015 4129.46i −0.0968540 0.425477i
\(456\) 0 0
\(457\) −6346.80 6346.80i −0.649652 0.649652i 0.303257 0.952909i \(-0.401926\pi\)
−0.952909 + 0.303257i \(0.901926\pi\)
\(458\) 0 0
\(459\) 3573.22 889.192i 0.363363 0.0904225i
\(460\) 0 0
\(461\) 8848.20i 0.893930i 0.894552 + 0.446965i \(0.147495\pi\)
−0.894552 + 0.446965i \(0.852505\pi\)
\(462\) 0 0
\(463\) −1329.43 + 1329.43i −0.133443 + 0.133443i −0.770673 0.637230i \(-0.780080\pi\)
0.637230 + 0.770673i \(0.280080\pi\)
\(464\) 0 0
\(465\) −622.365 14357.3i −0.0620677 1.43183i
\(466\) 0 0
\(467\) 1479.96 1479.96i 0.146647 0.146647i −0.629971 0.776618i \(-0.716933\pi\)
0.776618 + 0.629971i \(0.216933\pi\)
\(468\) 0 0
\(469\) 8815.81i 0.867966i
\(470\) 0 0
\(471\) 5050.29 + 7304.96i 0.494066 + 0.714639i
\(472\) 0 0
\(473\) −1131.41 1131.41i −0.109983 0.109983i
\(474\) 0 0
\(475\) 2655.14 + 5529.77i 0.256476 + 0.534155i
\(476\) 0 0
\(477\) 2522.60 + 5582.76i 0.242143 + 0.535885i
\(478\) 0 0
\(479\) 5039.60 0.480720 0.240360 0.970684i \(-0.422734\pi\)
0.240360 + 0.970684i \(0.422734\pi\)
\(480\) 0 0
\(481\) −3614.58 −0.342642
\(482\) 0 0
\(483\) −941.362 + 5158.51i −0.0886821 + 0.485963i
\(484\) 0 0
\(485\) 7646.20 12153.3i 0.715868 1.13784i
\(486\) 0 0
\(487\) −1292.93 1292.93i −0.120305 0.120305i 0.644391 0.764696i \(-0.277111\pi\)
−0.764696 + 0.644391i \(0.777111\pi\)
\(488\) 0 0
\(489\) 3784.27 2616.26i 0.349961 0.241945i
\(490\) 0 0
\(491\) 13865.7i 1.27444i 0.770681 + 0.637221i \(0.219916\pi\)
−0.770681 + 0.637221i \(0.780084\pi\)
\(492\) 0 0
\(493\) 2335.69 2335.69i 0.213375 0.213375i
\(494\) 0 0
\(495\) −8587.17 1185.43i −0.779726 0.107639i
\(496\) 0 0
\(497\) 2294.33 2294.33i 0.207072 0.207072i
\(498\) 0 0
\(499\) 10884.3i 0.976453i 0.872717 + 0.488226i \(0.162356\pi\)
−0.872717 + 0.488226i \(0.837644\pi\)
\(500\) 0 0
\(501\) −18192.0 + 12577.0i −1.62227 + 1.12156i
\(502\) 0 0
\(503\) −7880.86 7880.86i −0.698589 0.698589i 0.265517 0.964106i \(-0.414457\pi\)
−0.964106 + 0.265517i \(0.914457\pi\)
\(504\) 0 0
\(505\) −3681.07 + 837.946i −0.324368 + 0.0738379i
\(506\) 0 0
\(507\) 1674.35 9175.14i 0.146667 0.803713i
\(508\) 0 0
\(509\) −1788.46 −0.155741 −0.0778704 0.996963i \(-0.524812\pi\)
−0.0778704 + 0.996963i \(0.524812\pi\)
\(510\) 0 0
\(511\) −7478.42 −0.647408
\(512\) 0 0
\(513\) −3548.60 + 5899.84i −0.305409 + 0.507766i
\(514\) 0 0
\(515\) −12493.1 7860.01i −1.06896 0.672531i
\(516\) 0 0
\(517\) −3576.93 3576.93i −0.304281 0.304281i
\(518\) 0 0
\(519\) 7685.96 + 11117.3i 0.650051 + 0.940263i
\(520\) 0 0
\(521\) 18251.6i 1.53478i −0.641183 0.767388i \(-0.721556\pi\)
0.641183 0.767388i \(-0.278444\pi\)
\(522\) 0 0
\(523\) 2125.69 2125.69i 0.177725 0.177725i −0.612639 0.790363i \(-0.709892\pi\)
0.790363 + 0.612639i \(0.209892\pi\)
\(524\) 0 0
\(525\) 10658.7 + 6078.09i 0.886066 + 0.505276i
\(526\) 0 0
\(527\) 4590.80 4590.80i 0.379466 0.379466i
\(528\) 0 0
\(529\) 9313.29i 0.765455i
\(530\) 0 0
\(531\) −18425.0 6956.30i −1.50579 0.568508i
\(532\) 0 0
\(533\) −5534.42 5534.42i −0.449761 0.449761i
\(534\) 0 0
\(535\) 7978.81 + 5019.84i 0.644774 + 0.405657i
\(536\) 0 0
\(537\) 4199.71 + 766.393i 0.337488 + 0.0615872i
\(538\) 0 0
\(539\) 398.082 0.0318119
\(540\) 0 0
\(541\) −2214.16 −0.175960 −0.0879798 0.996122i \(-0.528041\pi\)
−0.0879798 + 0.996122i \(0.528041\pi\)
\(542\) 0 0
\(543\) −11829.6 2158.75i −0.934911 0.170609i
\(544\) 0 0
\(545\) −22616.2 + 5148.26i −1.77756 + 0.404637i
\(546\) 0 0
\(547\) −12385.1 12385.1i −0.968098 0.968098i 0.0314090 0.999507i \(-0.490001\pi\)
−0.999507 + 0.0314090i \(0.990001\pi\)
\(548\) 0 0
\(549\) 50.5193 + 19.0735i 0.00392735 + 0.00148276i
\(550\) 0 0
\(551\) 6176.11i 0.477516i
\(552\) 0 0
\(553\) 641.427 641.427i 0.0493242 0.0493242i
\(554\) 0 0
\(555\) 7077.31 7718.69i 0.541288 0.590343i
\(556\) 0 0
\(557\) 8716.96 8716.96i 0.663105 0.663105i −0.293006 0.956111i \(-0.594656\pi\)
0.956111 + 0.293006i \(0.0946555\pi\)
\(558\) 0 0
\(559\) 1117.28i 0.0845363i
\(560\) 0 0
\(561\) −2227.10 3221.38i −0.167608 0.242436i
\(562\) 0 0
\(563\) −11697.0 11697.0i −0.875615 0.875615i 0.117462 0.993077i \(-0.462524\pi\)
−0.993077 + 0.117462i \(0.962524\pi\)
\(564\) 0 0
\(565\) −2283.42 + 3629.39i −0.170025 + 0.270247i
\(566\) 0 0
\(567\) 872.435 + 13743.7i 0.0646188 + 1.01796i
\(568\) 0 0
\(569\) 11517.5 0.848576 0.424288 0.905527i \(-0.360524\pi\)
0.424288 + 0.905527i \(0.360524\pi\)
\(570\) 0 0
\(571\) 11093.9 0.813072 0.406536 0.913635i \(-0.366737\pi\)
0.406536 + 0.913635i \(0.366737\pi\)
\(572\) 0 0
\(573\) −868.617 + 4759.88i −0.0633281 + 0.347027i
\(574\) 0 0
\(575\) 6300.25 + 2212.72i 0.456937 + 0.160481i
\(576\) 0 0
\(577\) −14119.4 14119.4i −1.01871 1.01871i −0.999822 0.0188920i \(-0.993986\pi\)
−0.0188920 0.999822i \(-0.506014\pi\)
\(578\) 0 0
\(579\) 15856.6 10962.4i 1.13813 0.786846i
\(580\) 0 0
\(581\) 3859.10i 0.275564i
\(582\) 0 0
\(583\) 4607.29 4607.29i 0.327297 0.327297i
\(584\) 0 0
\(585\) −3654.65 4825.28i −0.258293 0.341027i
\(586\) 0 0
\(587\) −8524.33 + 8524.33i −0.599381 + 0.599381i −0.940148 0.340767i \(-0.889313\pi\)
0.340767 + 0.940148i \(0.389313\pi\)
\(588\) 0 0
\(589\) 12139.2i 0.849211i
\(590\) 0 0
\(591\) −18103.8 + 12516.0i −1.26005 + 0.871135i
\(592\) 0 0
\(593\) −4580.53 4580.53i −0.317200 0.317200i 0.530491 0.847691i \(-0.322008\pi\)
−0.847691 + 0.530491i \(0.822008\pi\)
\(594\) 0 0
\(595\) 1230.38 + 5405.01i 0.0847740 + 0.372410i
\(596\) 0 0
\(597\) 102.105 559.518i 0.00699979 0.0383577i
\(598\) 0 0
\(599\) 10195.8 0.695477 0.347738 0.937592i \(-0.386950\pi\)
0.347738 + 0.937592i \(0.386950\pi\)
\(600\) 0 0
\(601\) 18915.8 1.28385 0.641923 0.766769i \(-0.278137\pi\)
0.641923 + 0.766769i \(0.278137\pi\)
\(602\) 0 0
\(603\) 5188.36 + 11482.4i 0.350392 + 0.775452i
\(604\) 0 0
\(605\) −1256.59 5520.14i −0.0844421 0.370952i
\(606\) 0 0
\(607\) −12758.2 12758.2i −0.853113 0.853113i 0.137402 0.990515i \(-0.456125\pi\)
−0.990515 + 0.137402i \(0.956125\pi\)
\(608\) 0 0
\(609\) 7025.33 + 10161.8i 0.467456 + 0.676149i
\(610\) 0 0
\(611\) 3532.26i 0.233879i
\(612\) 0 0
\(613\) 7340.02 7340.02i 0.483622 0.483622i −0.422664 0.906286i \(-0.638905\pi\)
0.906286 + 0.422664i \(0.138905\pi\)
\(614\) 0 0
\(615\) 22654.7 982.047i 1.48541 0.0643902i
\(616\) 0 0
\(617\) −17118.9 + 17118.9i −1.11698 + 1.11698i −0.124803 + 0.992182i \(0.539830\pi\)
−0.992182 + 0.124803i \(0.960170\pi\)
\(618\) 0 0
\(619\) 3176.16i 0.206237i −0.994669 0.103118i \(-0.967118\pi\)
0.994669 0.103118i \(-0.0328820\pi\)
\(620\) 0 0
\(621\) 1809.84 + 7272.84i 0.116950 + 0.469966i
\(622\) 0 0
\(623\) −18930.8 18930.8i −1.21741 1.21741i
\(624\) 0 0
\(625\) 9770.20 12193.6i 0.625293 0.780390i
\(626\) 0 0
\(627\) 7203.53 + 1314.55i 0.458822 + 0.0837291i
\(628\) 0 0
\(629\) 4731.09 0.299906
\(630\) 0 0
\(631\) 11467.2 0.723459 0.361729 0.932283i \(-0.382186\pi\)
0.361729 + 0.932283i \(0.382186\pi\)
\(632\) 0 0
\(633\) 13878.0 + 2532.57i 0.871410 + 0.159021i
\(634\) 0 0
\(635\) −889.036 + 1413.08i −0.0555596 + 0.0883094i
\(636\) 0 0
\(637\) 196.556 + 196.556i 0.0122258 + 0.0122258i
\(638\) 0 0
\(639\) 1638.02 4338.59i 0.101407 0.268595i
\(640\) 0 0
\(641\) 12383.2i 0.763035i 0.924362 + 0.381518i \(0.124598\pi\)
−0.924362 + 0.381518i \(0.875402\pi\)
\(642\) 0 0
\(643\) 11142.9 11142.9i 0.683413 0.683413i −0.277354 0.960768i \(-0.589458\pi\)
0.960768 + 0.277354i \(0.0894576\pi\)
\(644\) 0 0
\(645\) 2385.87 + 2187.62i 0.145649 + 0.133546i
\(646\) 0 0
\(647\) 2391.21 2391.21i 0.145299 0.145299i −0.630716 0.776014i \(-0.717239\pi\)
0.776014 + 0.630716i \(0.217239\pi\)
\(648\) 0 0
\(649\) 20946.4i 1.26690i
\(650\) 0 0
\(651\) 13808.3 + 19973.0i 0.831322 + 1.20246i
\(652\) 0 0
\(653\) −16623.3 16623.3i −0.996201 0.996201i 0.00379136 0.999993i \(-0.498793\pi\)
−0.999993 + 0.00379136i \(0.998793\pi\)
\(654\) 0 0
\(655\) −21577.0 + 4911.71i −1.28715 + 0.293002i
\(656\) 0 0
\(657\) −9740.43 + 4401.27i −0.578403 + 0.261354i
\(658\) 0 0
\(659\) −20089.8 −1.18754 −0.593768 0.804636i \(-0.702360\pi\)
−0.593768 + 0.804636i \(0.702360\pi\)
\(660\) 0 0
\(661\) 541.434 0.0318598 0.0159299 0.999873i \(-0.494929\pi\)
0.0159299 + 0.999873i \(0.494929\pi\)
\(662\) 0 0
\(663\) 490.931 2690.22i 0.0287574 0.157586i
\(664\) 0 0
\(665\) −8772.76 5519.36i −0.511569 0.321852i
\(666\) 0 0
\(667\) 4753.99 + 4753.99i 0.275975 + 0.275975i
\(668\) 0 0
\(669\) 17109.1 11828.3i 0.988751 0.683573i
\(670\) 0 0
\(671\) 57.4328i 0.00330428i
\(672\) 0 0
\(673\) −24314.3 + 24314.3i −1.39264 + 1.39264i −0.573288 + 0.819354i \(0.694332\pi\)
−0.819354 + 0.573288i \(0.805668\pi\)
\(674\) 0 0
\(675\) 17459.8 + 1643.58i 0.995599 + 0.0937207i
\(676\) 0 0
\(677\) −14662.4 + 14662.4i −0.832380 + 0.832380i −0.987842 0.155462i \(-0.950313\pi\)
0.155462 + 0.987842i \(0.450313\pi\)
\(678\) 0 0
\(679\) 24260.8i 1.37120i
\(680\) 0 0
\(681\) 8456.13 5846.14i 0.475829 0.328964i
\(682\) 0 0
\(683\) 15981.2 + 15981.2i 0.895320 + 0.895320i 0.995018 0.0996976i \(-0.0317875\pi\)
−0.0996976 + 0.995018i \(0.531788\pi\)
\(684\) 0 0
\(685\) 6791.23 + 4272.68i 0.378803 + 0.238322i
\(686\) 0 0
\(687\) −3666.36 + 20091.1i −0.203611 + 1.11575i
\(688\) 0 0
\(689\) 4549.75 0.251570
\(690\) 0 0
\(691\) 16714.9 0.920209 0.460105 0.887865i \(-0.347812\pi\)
0.460105 + 0.887865i \(0.347812\pi\)
\(692\) 0 0
\(693\) 13347.5 6031.14i 0.731645 0.330598i
\(694\) 0 0
\(695\) −746.023 + 169.822i −0.0407169 + 0.00926865i
\(696\) 0 0
\(697\) 7243.96 + 7243.96i 0.393665 + 0.393665i
\(698\) 0 0
\(699\) −8277.19 11972.5i −0.447886 0.647842i
\(700\) 0 0
\(701\) 6990.49i 0.376643i 0.982107 + 0.188322i \(0.0603048\pi\)
−0.982107 + 0.188322i \(0.939695\pi\)
\(702\) 0 0
\(703\) −6255.06 + 6255.06i −0.335582 + 0.335582i
\(704\) 0 0
\(705\) 7542.91 + 6916.13i 0.402954 + 0.369470i
\(706\) 0 0
\(707\) 4510.51 4510.51i 0.239936 0.239936i
\(708\) 0 0
\(709\) 28175.0i 1.49243i −0.665705 0.746215i \(-0.731869\pi\)
0.665705 0.746215i \(-0.268131\pi\)
\(710\) 0 0
\(711\) 457.943 1212.94i 0.0241550 0.0639787i
\(712\) 0 0
\(713\) 9343.99 + 9343.99i 0.490793 + 0.490793i
\(714\) 0 0
\(715\) −3428.31 + 5449.13i −0.179317 + 0.285015i
\(716\) 0 0
\(717\) 15213.6 + 2776.28i 0.792414 + 0.144605i
\(718\) 0 0
\(719\) 20143.8 1.04484 0.522418 0.852690i \(-0.325030\pi\)
0.522418 + 0.852690i \(0.325030\pi\)
\(720\) 0 0
\(721\) 24939.2 1.28819
\(722\) 0 0
\(723\) −9382.32 1712.15i −0.482617 0.0880715i
\(724\) 0 0
\(725\) 14181.7 6809.41i 0.726477 0.348821i
\(726\) 0 0
\(727\) 9805.90 + 9805.90i 0.500249 + 0.500249i 0.911515 0.411267i \(-0.134913\pi\)
−0.411267 + 0.911515i \(0.634913\pi\)
\(728\) 0 0
\(729\) 9224.92 + 17387.4i 0.468674 + 0.883371i
\(730\) 0 0
\(731\) 1462.39i 0.0739926i
\(732\) 0 0
\(733\) 16533.1 16533.1i 0.833100 0.833100i −0.154840 0.987940i \(-0.549486\pi\)
0.987940 + 0.154840i \(0.0494861\pi\)
\(734\) 0 0
\(735\) −804.585 + 34.8775i −0.0403776 + 0.00175031i
\(736\) 0 0
\(737\) 9476.04 9476.04i 0.473615 0.473615i
\(738\) 0 0
\(739\) 15250.1i 0.759114i 0.925168 + 0.379557i \(0.123924\pi\)
−0.925168 + 0.379557i \(0.876076\pi\)
\(740\) 0 0
\(741\) 2907.72 + 4205.85i 0.144153 + 0.208510i
\(742\) 0 0
\(743\) 5438.49 + 5438.49i 0.268531 + 0.268531i 0.828508 0.559977i \(-0.189190\pi\)
−0.559977 + 0.828508i \(0.689190\pi\)
\(744\) 0 0
\(745\) 901.693 + 3961.11i 0.0443429 + 0.194797i
\(746\) 0 0
\(747\) 2271.20 + 5026.38i 0.111243 + 0.246192i
\(748\) 0 0
\(749\) −15927.5 −0.777009
\(750\) 0 0
\(751\) −2087.82 −0.101446 −0.0507228 0.998713i \(-0.516152\pi\)
−0.0507228 + 0.998713i \(0.516152\pi\)
\(752\) 0 0
\(753\) 1438.55 7883.01i 0.0696197 0.381505i
\(754\) 0 0
\(755\) −5169.46 22709.3i −0.249187 1.09467i
\(756\) 0 0
\(757\) −10258.6 10258.6i −0.492546 0.492546i 0.416562 0.909107i \(-0.363235\pi\)
−0.909107 + 0.416562i \(0.863235\pi\)
\(758\) 0 0
\(759\) 6556.70 4532.98i 0.313561 0.216781i
\(760\) 0 0
\(761\) 26879.5i 1.28040i −0.768210 0.640198i \(-0.778852\pi\)
0.768210 0.640198i \(-0.221148\pi\)
\(762\) 0 0
\(763\) 27712.1 27712.1i 1.31487 1.31487i
\(764\) 0 0
\(765\) 4783.54 + 6315.77i 0.226078 + 0.298493i
\(766\) 0 0
\(767\) −10342.4 + 10342.4i −0.486888 + 0.486888i
\(768\) 0 0
\(769\) 25180.9i 1.18082i 0.807105 + 0.590408i \(0.201033\pi\)
−0.807105 + 0.590408i \(0.798967\pi\)
\(770\) 0 0
\(771\) −2592.23 + 1792.14i −0.121085 + 0.0837124i
\(772\) 0 0
\(773\) 18871.2 + 18871.2i 0.878072 + 0.878072i 0.993335 0.115263i \(-0.0367711\pi\)
−0.115263 + 0.993335i \(0.536771\pi\)
\(774\) 0 0
\(775\) 27874.2 13383.9i 1.29196 0.620341i
\(776\) 0 0
\(777\) −3176.52 + 17406.8i −0.146663 + 0.803688i
\(778\) 0 0
\(779\) −19154.7 −0.880988
\(780\) 0 0
\(781\) −4932.32 −0.225982
\(782\) 0 0
\(783\) 15130.8 + 9100.79i 0.690588 + 0.415371i
\(784\) 0 0
\(785\) −10175.6 + 16173.6i −0.462653 + 0.735365i
\(786\) 0 0
\(787\) −14716.0 14716.0i −0.666542 0.666542i 0.290372 0.956914i \(-0.406221\pi\)
−0.956914 + 0.290372i \(0.906221\pi\)
\(788\) 0 0
\(789\) −21968.5 31776.2i −0.991253 1.43379i
\(790\) 0 0
\(791\) 7245.10i 0.325672i
\(792\) 0 0
\(793\) 28.3578 28.3578i 0.00126988 0.00126988i
\(794\) 0 0
\(795\) −8908.37 + 9715.69i −0.397418 + 0.433434i
\(796\) 0 0
\(797\) 17463.9 17463.9i 0.776163 0.776163i −0.203013 0.979176i \(-0.565073\pi\)
0.979176 + 0.203013i \(0.0650735\pi\)
\(798\) 0 0
\(799\) 4623.35i 0.204709i
\(800\) 0 0
\(801\) −35798.1 13515.5i −1.57911 0.596188i
\(802\) 0 0
\(803\) 8038.49 + 8038.49i 0.353265 + 0.353265i
\(804\) 0 0
\(805\) −11001.2 + 2504.28i −0.481667 + 0.109645i
\(806\) 0 0
\(807\) −9867.40 1800.68i −0.430420 0.0785462i
\(808\) 0 0
\(809\) −24097.9 −1.04727 −0.523633 0.851944i \(-0.675424\pi\)
−0.523633 + 0.851944i \(0.675424\pi\)
\(810\) 0 0
\(811\) −25302.7 −1.09556 −0.547780 0.836622i \(-0.684527\pi\)
−0.547780 + 0.836622i \(0.684527\pi\)
\(812\) 0 0
\(813\) −16672.8 3042.57i −0.719238 0.131252i
\(814\) 0 0
\(815\) 8378.61 + 5271.38i 0.360110 + 0.226562i
\(816\) 0 0
\(817\) −1933.46 1933.46i −0.0827945 0.0827945i
\(818\) 0 0
\(819\) 9568.33 + 3612.50i 0.408235 + 0.154128i
\(820\) 0 0
\(821\) 27925.3i 1.18709i 0.804802 + 0.593544i \(0.202272\pi\)
−0.804802 + 0.593544i \(0.797728\pi\)
\(822\) 0 0
\(823\) −997.907 + 997.907i −0.0422659 + 0.0422659i −0.727924 0.685658i \(-0.759515\pi\)
0.685658 + 0.727924i \(0.259515\pi\)
\(824\) 0 0
\(825\) −4923.67 17990.3i −0.207782 0.759200i
\(826\) 0 0
\(827\) 18683.3 18683.3i 0.785590 0.785590i −0.195178 0.980768i \(-0.562529\pi\)
0.980768 + 0.195178i \(0.0625285\pi\)
\(828\) 0 0
\(829\) 21146.9i 0.885962i −0.896531 0.442981i \(-0.853921\pi\)
0.896531 0.442981i \(-0.146079\pi\)
\(830\) 0 0
\(831\) −20332.8 29410.2i −0.848780 1.22771i
\(832\) 0 0
\(833\) −257.270 257.270i −0.0107009 0.0107009i
\(834\) 0 0
\(835\) −40278.2 25340.9i −1.66932 1.05025i
\(836\) 0 0
\(837\) 29739.6 + 17887.6i 1.22814 + 0.738695i
\(838\) 0 0
\(839\) −30903.4 −1.27164 −0.635820 0.771838i \(-0.719338\pi\)
−0.635820 + 0.771838i \(0.719338\pi\)
\(840\) 0 0
\(841\) −8549.68 −0.350555
\(842\) 0 0
\(843\) −3714.48 + 20354.7i −0.151760 + 0.831618i
\(844\) 0 0
\(845\) 19567.2 4454.21i 0.796607 0.181337i
\(846\) 0 0
\(847\) 6763.96 + 6763.96i 0.274395 + 0.274395i
\(848\) 0 0
\(849\) −24738.3 + 17102.8i −1.00002 + 0.691364i
\(850\) 0 0
\(851\) 9629.53i 0.387892i
\(852\) 0 0
\(853\) 181.224 181.224i 0.00727432 0.00727432i −0.703460 0.710735i \(-0.748363\pi\)
0.710735 + 0.703460i \(0.248363\pi\)
\(854\) 0 0
\(855\) −14674.6 2025.78i −0.586971 0.0810295i
\(856\) 0 0
\(857\) −13852.9 + 13852.9i −0.552167 + 0.552167i −0.927066 0.374899i \(-0.877677\pi\)
0.374899 + 0.927066i \(0.377677\pi\)
\(858\) 0 0
\(859\) 8910.47i 0.353925i −0.984218 0.176962i \(-0.943373\pi\)
0.984218 0.176962i \(-0.0566271\pi\)
\(860\) 0 0
\(861\) −31515.9 + 21788.5i −1.24746 + 0.862428i
\(862\) 0 0
\(863\) 6487.75 + 6487.75i 0.255905 + 0.255905i 0.823386 0.567481i \(-0.192082\pi\)
−0.567481 + 0.823386i \(0.692082\pi\)
\(864\) 0 0
\(865\) −15486.1 + 24614.4i −0.608720 + 0.967533i
\(866\) 0 0
\(867\) 3940.40 21592.8i 0.154352 0.845823i
\(868\) 0 0
\(869\) −1378.93 −0.0538285
\(870\) 0 0
\(871\) 9357.71 0.364034
\(872\) 0 0
\(873\) 14278.2 + 31599.0i 0.553543 + 1.22504i
\(874\) 0 0
\(875\) −3001.35 + 26229.5i −0.115959 + 1.01339i
\(876\) 0 0
\(877\) −20231.6 20231.6i −0.778987 0.778987i 0.200672 0.979659i \(-0.435688\pi\)
−0.979659 + 0.200672i \(0.935688\pi\)
\(878\) 0 0
\(879\) −18869.2 27293.3i −0.724054 1.04730i
\(880\) 0 0
\(881\) 33209.0i 1.26996i −0.772527 0.634982i \(-0.781007\pi\)
0.772527 0.634982i \(-0.218993\pi\)
\(882\) 0 0
\(883\) −26984.3 + 26984.3i −1.02842 + 1.02842i −0.0288331 + 0.999584i \(0.509179\pi\)
−0.999584 + 0.0288331i \(0.990821\pi\)
\(884\) 0 0
\(885\) −1835.19 42335.9i −0.0697055 1.60803i
\(886\) 0 0
\(887\) −24008.9 + 24008.9i −0.908838 + 0.908838i −0.996179 0.0873406i \(-0.972163\pi\)
0.0873406 + 0.996179i \(0.472163\pi\)
\(888\) 0 0
\(889\) 2820.84i 0.106421i
\(890\) 0 0
\(891\) 13835.3 15710.8i 0.520200 0.590720i
\(892\) 0 0
\(893\) −6112.61 6112.61i −0.229060 0.229060i
\(894\) 0 0
\(895\) 2038.81 + 8956.44i 0.0761452 + 0.334504i
\(896\) 0 0
\(897\) 5475.59 + 999.226i 0.203818 + 0.0371942i
\(898\) 0 0
\(899\) 31132.2 1.15497
\(900\) 0 0
\(901\) −5955.13 −0.220193
\(902\) 0 0
\(903\) −5380.49 981.871i −0.198285 0.0361845i
\(904\) 0 0
\(905\) −5742.86 25228.2i −0.210938 0.926645i
\(906\) 0 0
\(907\) 23026.7 + 23026.7i 0.842989 + 0.842989i 0.989246 0.146258i \(-0.0467229\pi\)
−0.146258 + 0.989246i \(0.546723\pi\)
\(908\) 0 0
\(909\) 3220.25 8529.38i 0.117501 0.311223i
\(910\) 0 0
\(911\) 33422.1i 1.21550i −0.794127 0.607752i \(-0.792071\pi\)
0.794127 0.607752i \(-0.207929\pi\)
\(912\) 0 0
\(913\) 4148.12 4148.12i 0.150364 0.150364i
\(914\) 0 0
\(915\) 5.03191 + 116.080i 0.000181803 + 0.00419399i
\(916\) 0 0
\(917\) 26438.8 26438.8i 0.952112 0.952112i
\(918\) 0 0
\(919\) 42542.2i 1.52703i −0.645792 0.763513i \(-0.723473\pi\)
0.645792 0.763513i \(-0.276527\pi\)
\(920\) 0 0
\(921\) 7651.86 + 11068.0i 0.273765 + 0.395986i
\(922\) 0 0
\(923\) −2435.36 2435.36i −0.0868482 0.0868482i
\(924\) 0 0
\(925\) 21259.5 + 7466.56i 0.755684 + 0.265404i
\(926\) 0 0
\(927\) 32482.6 14677.4i 1.15088 0.520033i
\(928\) 0 0
\(929\) 5721.21 0.202053 0.101026 0.994884i \(-0.467787\pi\)
0.101026 + 0.994884i \(0.467787\pi\)
\(930\) 0 0
\(931\) 680.282 0.0239477
\(932\) 0 0
\(933\) 3740.83 20499.1i 0.131264 0.719305i
\(934\) 0 0
\(935\) 4487.28 7132.32i 0.156952 0.249467i
\(936\) 0 0
\(937\) 1344.01 + 1344.01i 0.0468589 + 0.0468589i 0.730148 0.683289i \(-0.239451\pi\)
−0.683289 + 0.730148i \(0.739451\pi\)
\(938\) 0 0
\(939\) −36706.8 + 25377.2i −1.27570 + 0.881953i
\(940\) 0 0
\(941\) 9625.77i 0.333466i 0.986002 + 0.166733i \(0.0533217\pi\)
−0.986002 + 0.166733i \(0.946678\pi\)
\(942\) 0 0
\(943\) −14744.1 + 14744.1i −0.509157 + 0.509157i
\(944\) 0 0
\(945\) −26448.9 + 13359.3i −0.910459 + 0.459870i
\(946\) 0 0
\(947\) 2234.24 2234.24i 0.0766664 0.0766664i −0.667734 0.744400i \(-0.732736\pi\)
0.744400 + 0.667734i \(0.232736\pi\)
\(948\) 0 0
\(949\) 7938.11i 0.271530i
\(950\) 0 0
\(951\) 18811.3 13005.2i 0.641427 0.443451i
\(952\) 0 0
\(953\) 6457.14 + 6457.14i 0.219483 + 0.219483i 0.808281 0.588798i \(-0.200398\pi\)
−0.588798 + 0.808281i \(0.700398\pi\)
\(954\) 0 0
\(955\) −10151.1 + 2310.75i −0.343959 + 0.0782977i
\(956\) 0 0
\(957\) 3371.32 18474.3i 0.113876 0.624021i
\(958\) 0 0
\(959\) −13556.9 −0.456491
\(960\) 0 0
\(961\) 31399.6 1.05399
\(962\) 0 0
\(963\) −20745.2 + 9373.84i −0.694190 + 0.313674i
\(964\) 0 0
\(965\) 35107.4 + 22087.7i 1.17114 + 0.736817i
\(966\) 0 0
\(967\) −13166.9 13166.9i −0.437869 0.437869i 0.453425 0.891294i \(-0.350202\pi\)
−0.891294 + 0.453425i \(0.850202\pi\)
\(968\) 0 0
\(969\) −3805.89 5505.01i −0.126174 0.182504i
\(970\) 0 0
\(971\) 21504.3i 0.710716i −0.934730 0.355358i \(-0.884359\pi\)
0.934730 0.355358i \(-0.115641\pi\)
\(972\) 0 0
\(973\) 914.119 914.119i 0.0301185 0.0301185i
\(974\) 0 0
\(975\) 6451.71 11313.9i 0.211918 0.371625i
\(976\) 0 0
\(977\) −8996.19 + 8996.19i −0.294589 + 0.294589i −0.838890 0.544301i \(-0.816795\pi\)
0.544301 + 0.838890i \(0.316795\pi\)
\(978\) 0 0
\(979\) 40697.1i 1.32858i
\(980\) 0 0
\(981\) 19784.9 52403.7i 0.643917 1.70553i
\(982\) 0 0
\(983\) 16337.3 + 16337.3i 0.530090 + 0.530090i 0.920599 0.390509i \(-0.127701\pi\)
−0.390509 + 0.920599i \(0.627701\pi\)
\(984\) 0 0
\(985\) −40082.8 25218.0i −1.29659 0.815748i
\(986\) 0 0
\(987\) −17010.4 3104.18i −0.548578 0.100108i
\(988\) 0 0
\(989\) −2976.52 −0.0957004
\(990\) 0 0
\(991\) 18296.9 0.586500 0.293250 0.956036i \(-0.405263\pi\)
0.293250 + 0.956036i \(0.405263\pi\)
\(992\) 0 0
\(993\) −49018.8 8945.31i −1.56653 0.285872i
\(994\) 0 0
\(995\) 1193.25 271.627i 0.0380186 0.00865441i
\(996\) 0 0
\(997\) 20406.0 + 20406.0i 0.648210 + 0.648210i 0.952560 0.304350i \(-0.0984393\pi\)
−0.304350 + 0.952560i \(0.598439\pi\)
\(998\) 0 0
\(999\) 6107.09 + 24541.4i 0.193413 + 0.777232i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.4.v.c.17.1 8
3.2 odd 2 inner 240.4.v.c.17.2 8
4.3 odd 2 15.4.e.a.2.2 8
5.3 odd 4 inner 240.4.v.c.113.2 8
12.11 even 2 15.4.e.a.2.3 yes 8
15.8 even 4 inner 240.4.v.c.113.1 8
20.3 even 4 15.4.e.a.8.3 yes 8
20.7 even 4 75.4.e.c.68.2 8
20.19 odd 2 75.4.e.c.32.3 8
60.23 odd 4 15.4.e.a.8.2 yes 8
60.47 odd 4 75.4.e.c.68.3 8
60.59 even 2 75.4.e.c.32.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.4.e.a.2.2 8 4.3 odd 2
15.4.e.a.2.3 yes 8 12.11 even 2
15.4.e.a.8.2 yes 8 60.23 odd 4
15.4.e.a.8.3 yes 8 20.3 even 4
75.4.e.c.32.2 8 60.59 even 2
75.4.e.c.32.3 8 20.19 odd 2
75.4.e.c.68.2 8 20.7 even 4
75.4.e.c.68.3 8 60.47 odd 4
240.4.v.c.17.1 8 1.1 even 1 trivial
240.4.v.c.17.2 8 3.2 odd 2 inner
240.4.v.c.113.1 8 15.8 even 4 inner
240.4.v.c.113.2 8 5.3 odd 4 inner