Properties

Label 240.4.v.c.113.2
Level $240$
Weight $4$
Character 240.113
Analytic conductor $14.160$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,4,Mod(17,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 240.v (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.1604584014\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.28356903014400.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 209x^{4} + 1600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 113.2
Root \(-1.18766 + 1.18766i\) of defining polynomial
Character \(\chi\) \(=\) 240.113
Dual form 240.4.v.c.17.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.932827 - 5.11173i) q^{3} +(2.48157 - 10.9015i) q^{5} +(13.3578 - 13.3578i) q^{7} +(-25.2597 - 9.53673i) q^{9} -28.7164i q^{11} +(14.1789 + 14.1789i) q^{13} +(-53.4105 - 22.8543i) q^{15} +(18.5587 + 18.5587i) q^{17} +49.0735i q^{19} +(-55.8211 - 80.7421i) q^{21} +(37.7738 - 37.7738i) q^{23} +(-112.684 - 54.1055i) q^{25} +(-72.3121 + 120.225i) q^{27} +125.854 q^{29} -247.367 q^{31} +(-146.791 - 26.7874i) q^{33} +(-112.471 - 178.768i) q^{35} +(-127.463 + 127.463i) q^{37} +(85.7053 - 59.2524i) q^{39} -390.328i q^{41} +(39.3993 + 39.3993i) q^{43} +(-166.648 + 251.701i) q^{45} +(-124.560 - 124.560i) q^{47} -13.8625i q^{49} +(112.179 - 77.5549i) q^{51} +(-160.441 + 160.441i) q^{53} +(-313.051 - 71.2618i) q^{55} +(250.850 + 45.7770i) q^{57} +729.423 q^{59} +2.00000 q^{61} +(-464.804 + 210.024i) q^{63} +(189.757 - 119.385i) q^{65} +(329.987 - 329.987i) q^{67} +(-157.853 - 228.326i) q^{69} -171.760i q^{71} +(-279.927 - 279.927i) q^{73} +(-381.687 + 525.538i) q^{75} +(-383.589 - 383.589i) q^{77} +48.0189i q^{79} +(547.102 + 481.789i) q^{81} +(-144.451 + 144.451i) q^{83} +(248.371 - 156.262i) q^{85} +(117.400 - 643.334i) q^{87} +1417.21 q^{89} +378.799 q^{91} +(-230.751 + 1264.48i) q^{93} +(534.972 + 121.779i) q^{95} +(908.111 - 908.111i) q^{97} +(-273.861 + 725.367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} + 16 q^{7} + 68 q^{13} - 90 q^{15} - 492 q^{21} - 220 q^{25} - 702 q^{27} - 616 q^{31} - 240 q^{33} - 1156 q^{37} - 548 q^{43} + 180 q^{45} + 852 q^{51} - 460 q^{55} + 684 q^{57} + 16 q^{61}+ \cdots + 1904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.932827 5.11173i 0.179523 0.983754i
\(4\) 0 0
\(5\) 2.48157 10.9015i 0.221958 0.975056i
\(6\) 0 0
\(7\) 13.3578 13.3578i 0.721254 0.721254i −0.247606 0.968861i \(-0.579644\pi\)
0.968861 + 0.247606i \(0.0796440\pi\)
\(8\) 0 0
\(9\) −25.2597 9.53673i −0.935543 0.353212i
\(10\) 0 0
\(11\) 28.7164i 0.787121i −0.919299 0.393560i \(-0.871243\pi\)
0.919299 0.393560i \(-0.128757\pi\)
\(12\) 0 0
\(13\) 14.1789 + 14.1789i 0.302502 + 0.302502i 0.841992 0.539490i \(-0.181383\pi\)
−0.539490 + 0.841992i \(0.681383\pi\)
\(14\) 0 0
\(15\) −53.4105 22.8543i −0.919369 0.393397i
\(16\) 0 0
\(17\) 18.5587 + 18.5587i 0.264773 + 0.264773i 0.826990 0.562217i \(-0.190051\pi\)
−0.562217 + 0.826990i \(0.690051\pi\)
\(18\) 0 0
\(19\) 49.0735i 0.592538i 0.955105 + 0.296269i \(0.0957425\pi\)
−0.955105 + 0.296269i \(0.904258\pi\)
\(20\) 0 0
\(21\) −55.8211 80.7421i −0.580055 0.839018i
\(22\) 0 0
\(23\) 37.7738 37.7738i 0.342451 0.342451i −0.514837 0.857288i \(-0.672148\pi\)
0.857288 + 0.514837i \(0.172148\pi\)
\(24\) 0 0
\(25\) −112.684 54.1055i −0.901469 0.432844i
\(26\) 0 0
\(27\) −72.3121 + 120.225i −0.515425 + 0.856935i
\(28\) 0 0
\(29\) 125.854 0.805882 0.402941 0.915226i \(-0.367988\pi\)
0.402941 + 0.915226i \(0.367988\pi\)
\(30\) 0 0
\(31\) −247.367 −1.43318 −0.716588 0.697496i \(-0.754297\pi\)
−0.716588 + 0.697496i \(0.754297\pi\)
\(32\) 0 0
\(33\) −146.791 26.7874i −0.774333 0.141306i
\(34\) 0 0
\(35\) −112.471 178.768i −0.543175 0.863352i
\(36\) 0 0
\(37\) −127.463 + 127.463i −0.566347 + 0.566347i −0.931103 0.364756i \(-0.881152\pi\)
0.364756 + 0.931103i \(0.381152\pi\)
\(38\) 0 0
\(39\) 85.7053 59.2524i 0.351893 0.243281i
\(40\) 0 0
\(41\) 390.328i 1.48680i −0.668845 0.743402i \(-0.733211\pi\)
0.668845 0.743402i \(-0.266789\pi\)
\(42\) 0 0
\(43\) 39.3993 + 39.3993i 0.139729 + 0.139729i 0.773511 0.633783i \(-0.218499\pi\)
−0.633783 + 0.773511i \(0.718499\pi\)
\(44\) 0 0
\(45\) −166.648 + 251.701i −0.552053 + 0.833809i
\(46\) 0 0
\(47\) −124.560 124.560i −0.386575 0.386575i 0.486889 0.873464i \(-0.338132\pi\)
−0.873464 + 0.486889i \(0.838132\pi\)
\(48\) 0 0
\(49\) 13.8625i 0.0404155i
\(50\) 0 0
\(51\) 112.179 77.5549i 0.308004 0.212938i
\(52\) 0 0
\(53\) −160.441 + 160.441i −0.415816 + 0.415816i −0.883759 0.467943i \(-0.844995\pi\)
0.467943 + 0.883759i \(0.344995\pi\)
\(54\) 0 0
\(55\) −313.051 71.2618i −0.767487 0.174708i
\(56\) 0 0
\(57\) 250.850 + 45.7770i 0.582912 + 0.106374i
\(58\) 0 0
\(59\) 729.423 1.60954 0.804769 0.593588i \(-0.202289\pi\)
0.804769 + 0.593588i \(0.202289\pi\)
\(60\) 0 0
\(61\) 2.00000 0.00419793 0.00209897 0.999998i \(-0.499332\pi\)
0.00209897 + 0.999998i \(0.499332\pi\)
\(62\) 0 0
\(63\) −464.804 + 210.024i −0.929520 + 0.420009i
\(64\) 0 0
\(65\) 189.757 119.385i 0.362099 0.227813i
\(66\) 0 0
\(67\) 329.987 329.987i 0.601706 0.601706i −0.339059 0.940765i \(-0.610109\pi\)
0.940765 + 0.339059i \(0.110109\pi\)
\(68\) 0 0
\(69\) −157.853 228.326i −0.275410 0.398365i
\(70\) 0 0
\(71\) 171.760i 0.287100i −0.989643 0.143550i \(-0.954148\pi\)
0.989643 0.143550i \(-0.0458518\pi\)
\(72\) 0 0
\(73\) −279.927 279.927i −0.448807 0.448807i 0.446151 0.894958i \(-0.352795\pi\)
−0.894958 + 0.446151i \(0.852795\pi\)
\(74\) 0 0
\(75\) −381.687 + 525.538i −0.587646 + 0.809118i
\(76\) 0 0
\(77\) −383.589 383.589i −0.567714 0.567714i
\(78\) 0 0
\(79\) 48.0189i 0.0683866i 0.999415 + 0.0341933i \(0.0108862\pi\)
−0.999415 + 0.0341933i \(0.989114\pi\)
\(80\) 0 0
\(81\) 547.102 + 481.789i 0.750483 + 0.660890i
\(82\) 0 0
\(83\) −144.451 + 144.451i −0.191031 + 0.191031i −0.796141 0.605111i \(-0.793129\pi\)
0.605111 + 0.796141i \(0.293129\pi\)
\(84\) 0 0
\(85\) 248.371 156.262i 0.316937 0.199400i
\(86\) 0 0
\(87\) 117.400 643.334i 0.144674 0.792789i
\(88\) 0 0
\(89\) 1417.21 1.68790 0.843952 0.536419i \(-0.180223\pi\)
0.843952 + 0.536419i \(0.180223\pi\)
\(90\) 0 0
\(91\) 378.799 0.436361
\(92\) 0 0
\(93\) −230.751 + 1264.48i −0.257288 + 1.40989i
\(94\) 0 0
\(95\) 534.972 + 121.779i 0.577758 + 0.131519i
\(96\) 0 0
\(97\) 908.111 908.111i 0.950564 0.950564i −0.0482702 0.998834i \(-0.515371\pi\)
0.998834 + 0.0482702i \(0.0153708\pi\)
\(98\) 0 0
\(99\) −273.861 + 725.367i −0.278020 + 0.736385i
\(100\) 0 0
\(101\) 337.668i 0.332665i −0.986070 0.166333i \(-0.946807\pi\)
0.986070 0.166333i \(-0.0531926\pi\)
\(102\) 0 0
\(103\) 933.505 + 933.505i 0.893019 + 0.893019i 0.994806 0.101787i \(-0.0324561\pi\)
−0.101787 + 0.994806i \(0.532456\pi\)
\(104\) 0 0
\(105\) −1018.73 + 408.164i −0.946838 + 0.379359i
\(106\) 0 0
\(107\) 596.188 + 596.188i 0.538651 + 0.538651i 0.923133 0.384481i \(-0.125620\pi\)
−0.384481 + 0.923133i \(0.625620\pi\)
\(108\) 0 0
\(109\) 2074.60i 1.82303i 0.411264 + 0.911516i \(0.365087\pi\)
−0.411264 + 0.911516i \(0.634913\pi\)
\(110\) 0 0
\(111\) 532.657 + 770.460i 0.455474 + 0.658818i
\(112\) 0 0
\(113\) 271.193 271.193i 0.225767 0.225767i −0.585154 0.810922i \(-0.698966\pi\)
0.810922 + 0.585154i \(0.198966\pi\)
\(114\) 0 0
\(115\) −318.051 505.527i −0.257899 0.409919i
\(116\) 0 0
\(117\) −222.934 493.375i −0.176156 0.389851i
\(118\) 0 0
\(119\) 495.806 0.381937
\(120\) 0 0
\(121\) 506.367 0.380441
\(122\) 0 0
\(123\) −1995.25 364.108i −1.46265 0.266915i
\(124\) 0 0
\(125\) −869.461 + 1094.15i −0.622135 + 0.782910i
\(126\) 0 0
\(127\) −105.588 + 105.588i −0.0737747 + 0.0737747i −0.743031 0.669257i \(-0.766613\pi\)
0.669257 + 0.743031i \(0.266613\pi\)
\(128\) 0 0
\(129\) 238.151 164.646i 0.162543 0.112374i
\(130\) 0 0
\(131\) 1979.28i 1.32008i −0.751231 0.660039i \(-0.770540\pi\)
0.751231 0.660039i \(-0.229460\pi\)
\(132\) 0 0
\(133\) 655.514 + 655.514i 0.427371 + 0.427371i
\(134\) 0 0
\(135\) 1131.18 + 1086.65i 0.721157 + 0.692772i
\(136\) 0 0
\(137\) 507.451 + 507.451i 0.316456 + 0.316456i 0.847404 0.530948i \(-0.178164\pi\)
−0.530948 + 0.847404i \(0.678164\pi\)
\(138\) 0 0
\(139\) 68.4333i 0.0417585i 0.999782 + 0.0208793i \(0.00664656\pi\)
−0.999782 + 0.0208793i \(0.993353\pi\)
\(140\) 0 0
\(141\) −752.913 + 520.527i −0.449693 + 0.310895i
\(142\) 0 0
\(143\) 407.167 407.167i 0.238105 0.238105i
\(144\) 0 0
\(145\) 312.316 1372.00i 0.178872 0.785780i
\(146\) 0 0
\(147\) −70.8616 12.9313i −0.0397590 0.00725550i
\(148\) 0 0
\(149\) 363.356 0.199780 0.0998902 0.994998i \(-0.468151\pi\)
0.0998902 + 0.994998i \(0.468151\pi\)
\(150\) 0 0
\(151\) 2083.14 1.12267 0.561337 0.827588i \(-0.310287\pi\)
0.561337 + 0.827588i \(0.310287\pi\)
\(152\) 0 0
\(153\) −291.797 645.774i −0.154185 0.341227i
\(154\) 0 0
\(155\) −613.859 + 2696.66i −0.318105 + 1.39743i
\(156\) 0 0
\(157\) −1208.52 + 1208.52i −0.614333 + 0.614333i −0.944072 0.329739i \(-0.893039\pi\)
0.329739 + 0.944072i \(0.393039\pi\)
\(158\) 0 0
\(159\) 670.468 + 969.795i 0.334412 + 0.483709i
\(160\) 0 0
\(161\) 1009.15i 0.493989i
\(162\) 0 0
\(163\) −626.062 626.062i −0.300840 0.300840i 0.540502 0.841343i \(-0.318234\pi\)
−0.841343 + 0.540502i \(0.818234\pi\)
\(164\) 0 0
\(165\) −656.294 + 1533.76i −0.309651 + 0.723654i
\(166\) 0 0
\(167\) −3009.65 3009.65i −1.39457 1.39457i −0.814724 0.579848i \(-0.803112\pi\)
−0.579848 0.814724i \(-0.696888\pi\)
\(168\) 0 0
\(169\) 1794.92i 0.816985i
\(170\) 0 0
\(171\) 468.000 1239.58i 0.209292 0.554345i
\(172\) 0 0
\(173\) 1839.23 1839.23i 0.808288 0.808288i −0.176086 0.984375i \(-0.556344\pi\)
0.984375 + 0.176086i \(0.0563438\pi\)
\(174\) 0 0
\(175\) −2227.94 + 782.476i −0.962379 + 0.337998i
\(176\) 0 0
\(177\) 680.425 3728.61i 0.288948 1.58339i
\(178\) 0 0
\(179\) 821.582 0.343061 0.171530 0.985179i \(-0.445129\pi\)
0.171530 + 0.985179i \(0.445129\pi\)
\(180\) 0 0
\(181\) 2314.20 0.950350 0.475175 0.879891i \(-0.342385\pi\)
0.475175 + 0.879891i \(0.342385\pi\)
\(182\) 0 0
\(183\) 1.86565 10.2235i 0.000753623 0.00412973i
\(184\) 0 0
\(185\) 1073.23 + 1705.84i 0.426515 + 0.677925i
\(186\) 0 0
\(187\) 532.938 532.938i 0.208408 0.208408i
\(188\) 0 0
\(189\) 640.007 + 2571.87i 0.246316 + 0.989820i
\(190\) 0 0
\(191\) 931.167i 0.352758i −0.984322 0.176379i \(-0.943562\pi\)
0.984322 0.176379i \(-0.0564385\pi\)
\(192\) 0 0
\(193\) −2623.28 2623.28i −0.978382 0.978382i 0.0213891 0.999771i \(-0.493191\pi\)
−0.999771 + 0.0213891i \(0.993191\pi\)
\(194\) 0 0
\(195\) −433.254 1081.35i −0.159107 0.397114i
\(196\) 0 0
\(197\) −2995.05 2995.05i −1.08319 1.08319i −0.996210 0.0869796i \(-0.972279\pi\)
−0.0869796 0.996210i \(-0.527721\pi\)
\(198\) 0 0
\(199\) 109.458i 0.0389912i −0.999810 0.0194956i \(-0.993794\pi\)
0.999810 0.0194956i \(-0.00620603\pi\)
\(200\) 0 0
\(201\) −1378.98 1994.63i −0.483911 0.699951i
\(202\) 0 0
\(203\) 1681.14 1681.14i 0.581246 0.581246i
\(204\) 0 0
\(205\) −4255.14 968.625i −1.44972 0.330008i
\(206\) 0 0
\(207\) −1314.39 + 593.915i −0.441336 + 0.199420i
\(208\) 0 0
\(209\) 1409.21 0.466399
\(210\) 0 0
\(211\) −2714.94 −0.885801 −0.442901 0.896571i \(-0.646051\pi\)
−0.442901 + 0.896571i \(0.646051\pi\)
\(212\) 0 0
\(213\) −877.989 160.222i −0.282436 0.0515409i
\(214\) 0 0
\(215\) 527.281 331.737i 0.167257 0.105229i
\(216\) 0 0
\(217\) −3304.29 + 3304.29i −1.03368 + 1.03368i
\(218\) 0 0
\(219\) −1692.03 + 1169.79i −0.522087 + 0.360945i
\(220\) 0 0
\(221\) 526.283i 0.160188i
\(222\) 0 0
\(223\) −2830.49 2830.49i −0.849971 0.849971i 0.140158 0.990129i \(-0.455239\pi\)
−0.990129 + 0.140158i \(0.955239\pi\)
\(224\) 0 0
\(225\) 2330.36 + 2441.32i 0.690478 + 0.723354i
\(226\) 0 0
\(227\) 1398.96 + 1398.96i 0.409042 + 0.409042i 0.881404 0.472362i \(-0.156599\pi\)
−0.472362 + 0.881404i \(0.656599\pi\)
\(228\) 0 0
\(229\) 3930.38i 1.13418i 0.823656 + 0.567089i \(0.191931\pi\)
−0.823656 + 0.567089i \(0.808069\pi\)
\(230\) 0 0
\(231\) −2318.63 + 1602.98i −0.660408 + 0.456573i
\(232\) 0 0
\(233\) −1980.71 + 1980.71i −0.556912 + 0.556912i −0.928427 0.371515i \(-0.878838\pi\)
0.371515 + 0.928427i \(0.378838\pi\)
\(234\) 0 0
\(235\) −1667.00 + 1048.79i −0.462736 + 0.291129i
\(236\) 0 0
\(237\) 245.460 + 44.7933i 0.0672756 + 0.0122769i
\(238\) 0 0
\(239\) 2976.20 0.805500 0.402750 0.915310i \(-0.368054\pi\)
0.402750 + 0.915310i \(0.368054\pi\)
\(240\) 0 0
\(241\) 1835.45 0.490587 0.245294 0.969449i \(-0.421116\pi\)
0.245294 + 0.969449i \(0.421116\pi\)
\(242\) 0 0
\(243\) 2973.13 2347.21i 0.784882 0.619645i
\(244\) 0 0
\(245\) −151.122 34.4008i −0.0394074 0.00897057i
\(246\) 0 0
\(247\) −695.808 + 695.808i −0.179244 + 0.179244i
\(248\) 0 0
\(249\) 603.648 + 873.143i 0.153633 + 0.222222i
\(250\) 0 0
\(251\) 1542.14i 0.387805i 0.981021 + 0.193902i \(0.0621145\pi\)
−0.981021 + 0.193902i \(0.937885\pi\)
\(252\) 0 0
\(253\) −1084.73 1084.73i −0.269550 0.269550i
\(254\) 0 0
\(255\) −567.082 1415.37i −0.139263 0.347584i
\(256\) 0 0
\(257\) −428.853 428.853i −0.104090 0.104090i 0.653144 0.757234i \(-0.273450\pi\)
−0.757234 + 0.653144i \(0.773450\pi\)
\(258\) 0 0
\(259\) 3405.26i 0.816960i
\(260\) 0 0
\(261\) −3179.04 1200.24i −0.753937 0.284647i
\(262\) 0 0
\(263\) −5256.99 + 5256.99i −1.23255 + 1.23255i −0.269565 + 0.962982i \(0.586880\pi\)
−0.962982 + 0.269565i \(0.913120\pi\)
\(264\) 0 0
\(265\) 1350.89 + 2147.18i 0.313150 + 0.497738i
\(266\) 0 0
\(267\) 1322.01 7244.38i 0.303017 1.66048i
\(268\) 0 0
\(269\) −1930.34 −0.437528 −0.218764 0.975778i \(-0.570203\pi\)
−0.218764 + 0.975778i \(0.570203\pi\)
\(270\) 0 0
\(271\) 3261.67 0.731116 0.365558 0.930789i \(-0.380878\pi\)
0.365558 + 0.930789i \(0.380878\pi\)
\(272\) 0 0
\(273\) 353.353 1936.32i 0.0783367 0.429272i
\(274\) 0 0
\(275\) −1553.72 + 3235.87i −0.340700 + 0.709565i
\(276\) 0 0
\(277\) 4865.57 4865.57i 1.05539 1.05539i 0.0570194 0.998373i \(-0.481840\pi\)
0.998373 0.0570194i \(-0.0181597\pi\)
\(278\) 0 0
\(279\) 6248.41 + 2359.07i 1.34080 + 0.506215i
\(280\) 0 0
\(281\) 3981.96i 0.845351i −0.906281 0.422676i \(-0.861091\pi\)
0.906281 0.422676i \(-0.138909\pi\)
\(282\) 0 0
\(283\) 4092.66 + 4092.66i 0.859658 + 0.859658i 0.991298 0.131640i \(-0.0420242\pi\)
−0.131640 + 0.991298i \(0.542024\pi\)
\(284\) 0 0
\(285\) 1121.54 2621.04i 0.233103 0.544761i
\(286\) 0 0
\(287\) −5213.93 5213.93i −1.07236 1.07236i
\(288\) 0 0
\(289\) 4224.15i 0.859791i
\(290\) 0 0
\(291\) −3794.91 5489.13i −0.764473 1.10577i
\(292\) 0 0
\(293\) −4515.35 + 4515.35i −0.900305 + 0.900305i −0.995462 0.0951570i \(-0.969665\pi\)
0.0951570 + 0.995462i \(0.469665\pi\)
\(294\) 0 0
\(295\) 1810.11 7951.77i 0.357250 1.56939i
\(296\) 0 0
\(297\) 3452.42 + 2076.54i 0.674511 + 0.405701i
\(298\) 0 0
\(299\) 1071.18 0.207184
\(300\) 0 0
\(301\) 1052.58 0.201560
\(302\) 0 0
\(303\) −1726.07 314.986i −0.327261 0.0597210i
\(304\) 0 0
\(305\) 4.96314 21.8029i 0.000931766 0.00409322i
\(306\) 0 0
\(307\) −1831.07 + 1831.07i −0.340406 + 0.340406i −0.856520 0.516114i \(-0.827378\pi\)
0.516114 + 0.856520i \(0.327378\pi\)
\(308\) 0 0
\(309\) 5642.63 3901.03i 1.03883 0.718194i
\(310\) 0 0
\(311\) 4010.21i 0.731184i 0.930775 + 0.365592i \(0.119134\pi\)
−0.930775 + 0.365592i \(0.880866\pi\)
\(312\) 0 0
\(313\) 6072.69 + 6072.69i 1.09664 + 1.09664i 0.994801 + 0.101841i \(0.0324733\pi\)
0.101841 + 0.994801i \(0.467527\pi\)
\(314\) 0 0
\(315\) 1136.13 + 5588.23i 0.203218 + 0.999559i
\(316\) 0 0
\(317\) 3112.10 + 3112.10i 0.551397 + 0.551397i 0.926844 0.375447i \(-0.122511\pi\)
−0.375447 + 0.926844i \(0.622511\pi\)
\(318\) 0 0
\(319\) 3614.09i 0.634326i
\(320\) 0 0
\(321\) 3603.70 2491.42i 0.626600 0.433200i
\(322\) 0 0
\(323\) −910.737 + 910.737i −0.156888 + 0.156888i
\(324\) 0 0
\(325\) −830.574 2364.89i −0.141760 0.403632i
\(326\) 0 0
\(327\) 10604.8 + 1935.24i 1.79342 + 0.327275i
\(328\) 0 0
\(329\) −3327.71 −0.557637
\(330\) 0 0
\(331\) 9589.47 1.59240 0.796201 0.605033i \(-0.206840\pi\)
0.796201 + 0.605033i \(0.206840\pi\)
\(332\) 0 0
\(333\) 4435.26 2004.10i 0.729883 0.329801i
\(334\) 0 0
\(335\) −2778.45 4416.22i −0.453144 0.720251i
\(336\) 0 0
\(337\) −2561.34 + 2561.34i −0.414021 + 0.414021i −0.883137 0.469115i \(-0.844573\pi\)
0.469115 + 0.883137i \(0.344573\pi\)
\(338\) 0 0
\(339\) −1133.29 1639.24i −0.181569 0.262630i
\(340\) 0 0
\(341\) 7103.50i 1.12808i
\(342\) 0 0
\(343\) 4396.56 + 4396.56i 0.692104 + 0.692104i
\(344\) 0 0
\(345\) −2880.81 + 1154.22i −0.449558 + 0.180120i
\(346\) 0 0
\(347\) 8177.44 + 8177.44i 1.26509 + 1.26509i 0.948592 + 0.316503i \(0.102509\pi\)
0.316503 + 0.948592i \(0.397491\pi\)
\(348\) 0 0
\(349\) 2766.04i 0.424249i −0.977243 0.212124i \(-0.931962\pi\)
0.977243 0.212124i \(-0.0680382\pi\)
\(350\) 0 0
\(351\) −2729.96 + 679.347i −0.415141 + 0.103307i
\(352\) 0 0
\(353\) −6338.53 + 6338.53i −0.955711 + 0.955711i −0.999060 0.0433491i \(-0.986197\pi\)
0.0433491 + 0.999060i \(0.486197\pi\)
\(354\) 0 0
\(355\) −1872.43 426.233i −0.279939 0.0637242i
\(356\) 0 0
\(357\) 462.501 2534.43i 0.0685663 0.375732i
\(358\) 0 0
\(359\) −8827.47 −1.29776 −0.648880 0.760890i \(-0.724762\pi\)
−0.648880 + 0.760890i \(0.724762\pi\)
\(360\) 0 0
\(361\) 4450.80 0.648899
\(362\) 0 0
\(363\) 472.353 2588.42i 0.0682978 0.374261i
\(364\) 0 0
\(365\) −3746.27 + 2356.95i −0.537229 + 0.337996i
\(366\) 0 0
\(367\) −6191.27 + 6191.27i −0.880605 + 0.880605i −0.993596 0.112991i \(-0.963957\pi\)
0.112991 + 0.993596i \(0.463957\pi\)
\(368\) 0 0
\(369\) −3722.45 + 9859.55i −0.525157 + 1.39097i
\(370\) 0 0
\(371\) 4286.28i 0.599818i
\(372\) 0 0
\(373\) 3584.46 + 3584.46i 0.497577 + 0.497577i 0.910683 0.413106i \(-0.135556\pi\)
−0.413106 + 0.910683i \(0.635556\pi\)
\(374\) 0 0
\(375\) 4781.95 + 5465.10i 0.658503 + 0.752578i
\(376\) 0 0
\(377\) 1784.48 + 1784.48i 0.243781 + 0.243781i
\(378\) 0 0
\(379\) 7110.48i 0.963695i −0.876255 0.481848i \(-0.839966\pi\)
0.876255 0.481848i \(-0.160034\pi\)
\(380\) 0 0
\(381\) 441.241 + 638.231i 0.0593319 + 0.0858203i
\(382\) 0 0
\(383\) −1695.77 + 1695.77i −0.226240 + 0.226240i −0.811120 0.584880i \(-0.801142\pi\)
0.584880 + 0.811120i \(0.301142\pi\)
\(384\) 0 0
\(385\) −5133.58 + 3229.77i −0.679562 + 0.427544i
\(386\) 0 0
\(387\) −619.472 1370.95i −0.0813683 0.180076i
\(388\) 0 0
\(389\) 12362.2 1.61128 0.805640 0.592405i \(-0.201822\pi\)
0.805640 + 0.592405i \(0.201822\pi\)
\(390\) 0 0
\(391\) 1402.06 0.181343
\(392\) 0 0
\(393\) −10117.5 1846.32i −1.29863 0.236984i
\(394\) 0 0
\(395\) 523.476 + 119.162i 0.0666808 + 0.0151790i
\(396\) 0 0
\(397\) −1340.12 + 1340.12i −0.169417 + 0.169417i −0.786723 0.617306i \(-0.788224\pi\)
0.617306 + 0.786723i \(0.288224\pi\)
\(398\) 0 0
\(399\) 3962.30 2739.33i 0.497150 0.343705i
\(400\) 0 0
\(401\) 2281.30i 0.284096i 0.989860 + 0.142048i \(0.0453688\pi\)
−0.989860 + 0.142048i \(0.954631\pi\)
\(402\) 0 0
\(403\) −3507.40 3507.40i −0.433538 0.433538i
\(404\) 0 0
\(405\) 6609.87 4768.61i 0.810981 0.585072i
\(406\) 0 0
\(407\) 3660.29 + 3660.29i 0.445783 + 0.445783i
\(408\) 0 0
\(409\) 4614.82i 0.557917i −0.960303 0.278959i \(-0.910011\pi\)
0.960303 0.278959i \(-0.0899892\pi\)
\(410\) 0 0
\(411\) 3067.32 2120.59i 0.368126 0.254504i
\(412\) 0 0
\(413\) 9743.49 9743.49i 1.16089 1.16089i
\(414\) 0 0
\(415\) 1216.26 + 1933.19i 0.143865 + 0.228667i
\(416\) 0 0
\(417\) 349.813 + 63.8364i 0.0410801 + 0.00749660i
\(418\) 0 0
\(419\) −2142.28 −0.249779 −0.124889 0.992171i \(-0.539858\pi\)
−0.124889 + 0.992171i \(0.539858\pi\)
\(420\) 0 0
\(421\) −8889.30 −1.02907 −0.514534 0.857470i \(-0.672035\pi\)
−0.514534 + 0.857470i \(0.672035\pi\)
\(422\) 0 0
\(423\) 1958.46 + 4334.26i 0.225115 + 0.498200i
\(424\) 0 0
\(425\) −1087.13 3095.38i −0.124079 0.353289i
\(426\) 0 0
\(427\) 26.7156 26.7156i 0.00302778 0.00302778i
\(428\) 0 0
\(429\) −1701.52 2461.15i −0.191492 0.276982i
\(430\) 0 0
\(431\) 15707.3i 1.75543i −0.479179 0.877717i \(-0.659065\pi\)
0.479179 0.877717i \(-0.340935\pi\)
\(432\) 0 0
\(433\) 5430.81 + 5430.81i 0.602744 + 0.602744i 0.941040 0.338296i \(-0.109851\pi\)
−0.338296 + 0.941040i \(0.609851\pi\)
\(434\) 0 0
\(435\) −6721.94 2876.31i −0.740902 0.317031i
\(436\) 0 0
\(437\) 1853.69 + 1853.69i 0.202915 + 0.202915i
\(438\) 0 0
\(439\) 8221.92i 0.893874i 0.894565 + 0.446937i \(0.147485\pi\)
−0.894565 + 0.446937i \(0.852515\pi\)
\(440\) 0 0
\(441\) −132.203 + 350.163i −0.0142753 + 0.0378105i
\(442\) 0 0
\(443\) −1960.53 + 1960.53i −0.210265 + 0.210265i −0.804380 0.594115i \(-0.797502\pi\)
0.594115 + 0.804380i \(0.297502\pi\)
\(444\) 0 0
\(445\) 3516.89 15449.6i 0.374644 1.64580i
\(446\) 0 0
\(447\) 338.948 1857.38i 0.0358651 0.196535i
\(448\) 0 0
\(449\) −17849.2 −1.87607 −0.938036 0.346537i \(-0.887357\pi\)
−0.938036 + 0.346537i \(0.887357\pi\)
\(450\) 0 0
\(451\) −11208.8 −1.17029
\(452\) 0 0
\(453\) 1943.21 10648.5i 0.201545 1.10443i
\(454\) 0 0
\(455\) 940.015 4129.46i 0.0968540 0.425477i
\(456\) 0 0
\(457\) −6346.80 + 6346.80i −0.649652 + 0.649652i −0.952909 0.303257i \(-0.901926\pi\)
0.303257 + 0.952909i \(0.401926\pi\)
\(458\) 0 0
\(459\) −3573.22 + 889.192i −0.363363 + 0.0904225i
\(460\) 0 0
\(461\) 8848.20i 0.893930i 0.894552 + 0.446965i \(0.147495\pi\)
−0.894552 + 0.446965i \(0.852505\pi\)
\(462\) 0 0
\(463\) −1329.43 1329.43i −0.133443 0.133443i 0.637230 0.770673i \(-0.280080\pi\)
−0.770673 + 0.637230i \(0.780080\pi\)
\(464\) 0 0
\(465\) 13212.0 + 5653.40i 1.31762 + 0.563807i
\(466\) 0 0
\(467\) −1479.96 1479.96i −0.146647 0.146647i 0.629971 0.776618i \(-0.283067\pi\)
−0.776618 + 0.629971i \(0.783067\pi\)
\(468\) 0 0
\(469\) 8815.81i 0.867966i
\(470\) 0 0
\(471\) 5050.29 + 7304.96i 0.494066 + 0.714639i
\(472\) 0 0
\(473\) 1131.41 1131.41i 0.109983 0.109983i
\(474\) 0 0
\(475\) 2655.14 5529.77i 0.256476 0.534155i
\(476\) 0 0
\(477\) 5582.76 2522.60i 0.535885 0.242143i
\(478\) 0 0
\(479\) −5039.60 −0.480720 −0.240360 0.970684i \(-0.577266\pi\)
−0.240360 + 0.970684i \(0.577266\pi\)
\(480\) 0 0
\(481\) −3614.58 −0.342642
\(482\) 0 0
\(483\) −5158.51 941.362i −0.485963 0.0886821i
\(484\) 0 0
\(485\) −7646.20 12153.3i −0.715868 1.13784i
\(486\) 0 0
\(487\) −1292.93 + 1292.93i −0.120305 + 0.120305i −0.764696 0.644391i \(-0.777111\pi\)
0.644391 + 0.764696i \(0.277111\pi\)
\(488\) 0 0
\(489\) −3784.27 + 2616.26i −0.349961 + 0.241945i
\(490\) 0 0
\(491\) 13865.7i 1.27444i 0.770681 + 0.637221i \(0.219916\pi\)
−0.770681 + 0.637221i \(0.780084\pi\)
\(492\) 0 0
\(493\) 2335.69 + 2335.69i 0.213375 + 0.213375i
\(494\) 0 0
\(495\) 7227.96 + 4785.53i 0.656308 + 0.434532i
\(496\) 0 0
\(497\) −2294.33 2294.33i −0.207072 0.207072i
\(498\) 0 0
\(499\) 10884.3i 0.976453i −0.872717 0.488226i \(-0.837644\pi\)
0.872717 0.488226i \(-0.162356\pi\)
\(500\) 0 0
\(501\) −18192.0 + 12577.0i −1.62227 + 1.12156i
\(502\) 0 0
\(503\) 7880.86 7880.86i 0.698589 0.698589i −0.265517 0.964106i \(-0.585543\pi\)
0.964106 + 0.265517i \(0.0855427\pi\)
\(504\) 0 0
\(505\) −3681.07 837.946i −0.324368 0.0738379i
\(506\) 0 0
\(507\) −9175.14 1674.35i −0.803713 0.146667i
\(508\) 0 0
\(509\) 1788.46 0.155741 0.0778704 0.996963i \(-0.475188\pi\)
0.0778704 + 0.996963i \(0.475188\pi\)
\(510\) 0 0
\(511\) −7478.42 −0.647408
\(512\) 0 0
\(513\) −5899.84 3548.60i −0.507766 0.305409i
\(514\) 0 0
\(515\) 12493.1 7860.01i 1.06896 0.672531i
\(516\) 0 0
\(517\) −3576.93 + 3576.93i −0.304281 + 0.304281i
\(518\) 0 0
\(519\) −7685.96 11117.3i −0.650051 0.940263i
\(520\) 0 0
\(521\) 18251.6i 1.53478i −0.641183 0.767388i \(-0.721556\pi\)
0.641183 0.767388i \(-0.278444\pi\)
\(522\) 0 0
\(523\) 2125.69 + 2125.69i 0.177725 + 0.177725i 0.790363 0.612639i \(-0.209892\pi\)
−0.612639 + 0.790363i \(0.709892\pi\)
\(524\) 0 0
\(525\) 1921.53 + 12118.5i 0.159738 + 1.00742i
\(526\) 0 0
\(527\) −4590.80 4590.80i −0.379466 0.379466i
\(528\) 0 0
\(529\) 9313.29i 0.765455i
\(530\) 0 0
\(531\) −18425.0 6956.30i −1.50579 0.568508i
\(532\) 0 0
\(533\) 5534.42 5534.42i 0.449761 0.449761i
\(534\) 0 0
\(535\) 7978.81 5019.84i 0.644774 0.405657i
\(536\) 0 0
\(537\) 766.393 4199.71i 0.0615872 0.337488i
\(538\) 0 0
\(539\) −398.082 −0.0318119
\(540\) 0 0
\(541\) −2214.16 −0.175960 −0.0879798 0.996122i \(-0.528041\pi\)
−0.0879798 + 0.996122i \(0.528041\pi\)
\(542\) 0 0
\(543\) 2158.75 11829.6i 0.170609 0.934911i
\(544\) 0 0
\(545\) 22616.2 + 5148.26i 1.77756 + 0.404637i
\(546\) 0 0
\(547\) −12385.1 + 12385.1i −0.968098 + 0.968098i −0.999507 0.0314090i \(-0.990001\pi\)
0.0314090 + 0.999507i \(0.490001\pi\)
\(548\) 0 0
\(549\) −50.5193 19.0735i −0.00392735 0.00148276i
\(550\) 0 0
\(551\) 6176.11i 0.477516i
\(552\) 0 0
\(553\) 641.427 + 641.427i 0.0493242 + 0.0493242i
\(554\) 0 0
\(555\) 9720.96 3894.79i 0.743481 0.297882i
\(556\) 0 0
\(557\) −8716.96 8716.96i −0.663105 0.663105i 0.293006 0.956111i \(-0.405344\pi\)
−0.956111 + 0.293006i \(0.905344\pi\)
\(558\) 0 0
\(559\) 1117.28i 0.0845363i
\(560\) 0 0
\(561\) −2227.10 3221.38i −0.167608 0.242436i
\(562\) 0 0
\(563\) 11697.0 11697.0i 0.875615 0.875615i −0.117462 0.993077i \(-0.537476\pi\)
0.993077 + 0.117462i \(0.0374759\pi\)
\(564\) 0 0
\(565\) −2283.42 3629.39i −0.170025 0.270247i
\(566\) 0 0
\(567\) 13743.7 872.435i 1.01796 0.0646188i
\(568\) 0 0
\(569\) −11517.5 −0.848576 −0.424288 0.905527i \(-0.639476\pi\)
−0.424288 + 0.905527i \(0.639476\pi\)
\(570\) 0 0
\(571\) 11093.9 0.813072 0.406536 0.913635i \(-0.366737\pi\)
0.406536 + 0.913635i \(0.366737\pi\)
\(572\) 0 0
\(573\) −4759.88 868.617i −0.347027 0.0633281i
\(574\) 0 0
\(575\) −6300.25 + 2212.72i −0.456937 + 0.160481i
\(576\) 0 0
\(577\) −14119.4 + 14119.4i −1.01871 + 1.01871i −0.0188920 + 0.999822i \(0.506014\pi\)
−0.999822 + 0.0188920i \(0.993986\pi\)
\(578\) 0 0
\(579\) −15856.6 + 10962.4i −1.13813 + 0.786846i
\(580\) 0 0
\(581\) 3859.10i 0.275564i
\(582\) 0 0
\(583\) 4607.29 + 4607.29i 0.327297 + 0.327297i
\(584\) 0 0
\(585\) −5931.73 + 1205.96i −0.419226 + 0.0852316i
\(586\) 0 0
\(587\) 8524.33 + 8524.33i 0.599381 + 0.599381i 0.940148 0.340767i \(-0.110687\pi\)
−0.340767 + 0.940148i \(0.610687\pi\)
\(588\) 0 0
\(589\) 12139.2i 0.849211i
\(590\) 0 0
\(591\) −18103.8 + 12516.0i −1.26005 + 0.871135i
\(592\) 0 0
\(593\) 4580.53 4580.53i 0.317200 0.317200i −0.530491 0.847691i \(-0.677992\pi\)
0.847691 + 0.530491i \(0.177992\pi\)
\(594\) 0 0
\(595\) 1230.38 5405.01i 0.0847740 0.372410i
\(596\) 0 0
\(597\) −559.518 102.105i −0.0383577 0.00699979i
\(598\) 0 0
\(599\) −10195.8 −0.695477 −0.347738 0.937592i \(-0.613050\pi\)
−0.347738 + 0.937592i \(0.613050\pi\)
\(600\) 0 0
\(601\) 18915.8 1.28385 0.641923 0.766769i \(-0.278137\pi\)
0.641923 + 0.766769i \(0.278137\pi\)
\(602\) 0 0
\(603\) −11482.4 + 5188.36i −0.775452 + 0.350392i
\(604\) 0 0
\(605\) 1256.59 5520.14i 0.0844421 0.370952i
\(606\) 0 0
\(607\) −12758.2 + 12758.2i −0.853113 + 0.853113i −0.990515 0.137402i \(-0.956125\pi\)
0.137402 + 0.990515i \(0.456125\pi\)
\(608\) 0 0
\(609\) −7025.33 10161.8i −0.467456 0.676149i
\(610\) 0 0
\(611\) 3532.26i 0.233879i
\(612\) 0 0
\(613\) 7340.02 + 7340.02i 0.483622 + 0.483622i 0.906286 0.422664i \(-0.138905\pi\)
−0.422664 + 0.906286i \(0.638905\pi\)
\(614\) 0 0
\(615\) −8920.67 + 20847.6i −0.584904 + 1.36692i
\(616\) 0 0
\(617\) 17118.9 + 17118.9i 1.11698 + 1.11698i 0.992182 + 0.124803i \(0.0398299\pi\)
0.124803 + 0.992182i \(0.460170\pi\)
\(618\) 0 0
\(619\) 3176.16i 0.206237i 0.994669 + 0.103118i \(0.0328820\pi\)
−0.994669 + 0.103118i \(0.967118\pi\)
\(620\) 0 0
\(621\) 1809.84 + 7272.84i 0.116950 + 0.469966i
\(622\) 0 0
\(623\) 18930.8 18930.8i 1.21741 1.21741i
\(624\) 0 0
\(625\) 9770.20 + 12193.6i 0.625293 + 0.780390i
\(626\) 0 0
\(627\) 1314.55 7203.53i 0.0837291 0.458822i
\(628\) 0 0
\(629\) −4731.09 −0.299906
\(630\) 0 0
\(631\) 11467.2 0.723459 0.361729 0.932283i \(-0.382186\pi\)
0.361729 + 0.932283i \(0.382186\pi\)
\(632\) 0 0
\(633\) −2532.57 + 13878.0i −0.159021 + 0.871410i
\(634\) 0 0
\(635\) 889.036 + 1413.08i 0.0555596 + 0.0883094i
\(636\) 0 0
\(637\) 196.556 196.556i 0.0122258 0.0122258i
\(638\) 0 0
\(639\) −1638.02 + 4338.59i −0.101407 + 0.268595i
\(640\) 0 0
\(641\) 12383.2i 0.763035i 0.924362 + 0.381518i \(0.124598\pi\)
−0.924362 + 0.381518i \(0.875402\pi\)
\(642\) 0 0
\(643\) 11142.9 + 11142.9i 0.683413 + 0.683413i 0.960768 0.277354i \(-0.0894576\pi\)
−0.277354 + 0.960768i \(0.589458\pi\)
\(644\) 0 0
\(645\) −1203.89 3004.78i −0.0734933 0.183431i
\(646\) 0 0
\(647\) −2391.21 2391.21i −0.145299 0.145299i 0.630716 0.776014i \(-0.282761\pi\)
−0.776014 + 0.630716i \(0.782761\pi\)
\(648\) 0 0
\(649\) 20946.4i 1.26690i
\(650\) 0 0
\(651\) 13808.3 + 19973.0i 0.831322 + 1.20246i
\(652\) 0 0
\(653\) 16623.3 16623.3i 0.996201 0.996201i −0.00379136 0.999993i \(-0.501207\pi\)
0.999993 + 0.00379136i \(0.00120683\pi\)
\(654\) 0 0
\(655\) −21577.0 4911.71i −1.28715 0.293002i
\(656\) 0 0
\(657\) 4401.27 + 9740.43i 0.261354 + 0.578403i
\(658\) 0 0
\(659\) 20089.8 1.18754 0.593768 0.804636i \(-0.297640\pi\)
0.593768 + 0.804636i \(0.297640\pi\)
\(660\) 0 0
\(661\) 541.434 0.0318598 0.0159299 0.999873i \(-0.494929\pi\)
0.0159299 + 0.999873i \(0.494929\pi\)
\(662\) 0 0
\(663\) 2690.22 + 490.931i 0.157586 + 0.0287574i
\(664\) 0 0
\(665\) 8772.76 5519.36i 0.511569 0.321852i
\(666\) 0 0
\(667\) 4753.99 4753.99i 0.275975 0.275975i
\(668\) 0 0
\(669\) −17109.1 + 11828.3i −0.988751 + 0.683573i
\(670\) 0 0
\(671\) 57.4328i 0.00330428i
\(672\) 0 0
\(673\) −24314.3 24314.3i −1.39264 1.39264i −0.819354 0.573288i \(-0.805668\pi\)
−0.573288 0.819354i \(-0.694332\pi\)
\(674\) 0 0
\(675\) 14653.2 9634.87i 0.835558 0.549402i
\(676\) 0 0
\(677\) 14662.4 + 14662.4i 0.832380 + 0.832380i 0.987842 0.155462i \(-0.0496867\pi\)
−0.155462 + 0.987842i \(0.549687\pi\)
\(678\) 0 0
\(679\) 24260.8i 1.37120i
\(680\) 0 0
\(681\) 8456.13 5846.14i 0.475829 0.328964i
\(682\) 0 0
\(683\) −15981.2 + 15981.2i −0.895320 + 0.895320i −0.995018 0.0996976i \(-0.968212\pi\)
0.0996976 + 0.995018i \(0.468212\pi\)
\(684\) 0 0
\(685\) 6791.23 4272.68i 0.378803 0.238322i
\(686\) 0 0
\(687\) 20091.1 + 3666.36i 1.11575 + 0.203611i
\(688\) 0 0
\(689\) −4549.75 −0.251570
\(690\) 0 0
\(691\) 16714.9 0.920209 0.460105 0.887865i \(-0.347812\pi\)
0.460105 + 0.887865i \(0.347812\pi\)
\(692\) 0 0
\(693\) 6031.14 + 13347.5i 0.330598 + 0.731645i
\(694\) 0 0
\(695\) 746.023 + 169.822i 0.0407169 + 0.00926865i
\(696\) 0 0
\(697\) 7243.96 7243.96i 0.393665 0.393665i
\(698\) 0 0
\(699\) 8277.19 + 11972.5i 0.447886 + 0.647842i
\(700\) 0 0
\(701\) 6990.49i 0.376643i 0.982107 + 0.188322i \(0.0603048\pi\)
−0.982107 + 0.188322i \(0.939695\pi\)
\(702\) 0 0
\(703\) −6255.06 6255.06i −0.335582 0.335582i
\(704\) 0 0
\(705\) 3806.09 + 9499.58i 0.203327 + 0.507482i
\(706\) 0 0
\(707\) −4510.51 4510.51i −0.239936 0.239936i
\(708\) 0 0
\(709\) 28175.0i 1.49243i 0.665705 + 0.746215i \(0.268131\pi\)
−0.665705 + 0.746215i \(0.731869\pi\)
\(710\) 0 0
\(711\) 457.943 1212.94i 0.0241550 0.0639787i
\(712\) 0 0
\(713\) −9343.99 + 9343.99i −0.490793 + 0.490793i
\(714\) 0 0
\(715\) −3428.31 5449.13i −0.179317 0.285015i
\(716\) 0 0
\(717\) 2776.28 15213.6i 0.144605 0.792414i
\(718\) 0 0
\(719\) −20143.8 −1.04484 −0.522418 0.852690i \(-0.674970\pi\)
−0.522418 + 0.852690i \(0.674970\pi\)
\(720\) 0 0
\(721\) 24939.2 1.28819
\(722\) 0 0
\(723\) 1712.15 9382.32i 0.0880715 0.482617i
\(724\) 0 0
\(725\) −14181.7 6809.41i −0.726477 0.348821i
\(726\) 0 0
\(727\) 9805.90 9805.90i 0.500249 0.500249i −0.411267 0.911515i \(-0.634913\pi\)
0.911515 + 0.411267i \(0.134913\pi\)
\(728\) 0 0
\(729\) −9224.92 17387.4i −0.468674 0.883371i
\(730\) 0 0
\(731\) 1462.39i 0.0739926i
\(732\) 0 0
\(733\) 16533.1 + 16533.1i 0.833100 + 0.833100i 0.987940 0.154840i \(-0.0494861\pi\)
−0.154840 + 0.987940i \(0.549486\pi\)
\(734\) 0 0
\(735\) −316.818 + 740.405i −0.0158994 + 0.0371568i
\(736\) 0 0
\(737\) −9476.04 9476.04i −0.473615 0.473615i
\(738\) 0 0
\(739\) 15250.1i 0.759114i −0.925168 0.379557i \(-0.876076\pi\)
0.925168 0.379557i \(-0.123924\pi\)
\(740\) 0 0
\(741\) 2907.72 + 4205.85i 0.144153 + 0.208510i
\(742\) 0 0
\(743\) −5438.49 + 5438.49i −0.268531 + 0.268531i −0.828508 0.559977i \(-0.810810\pi\)
0.559977 + 0.828508i \(0.310810\pi\)
\(744\) 0 0
\(745\) 901.693 3961.11i 0.0443429 0.194797i
\(746\) 0 0
\(747\) 5026.38 2271.20i 0.246192 0.111243i
\(748\) 0 0
\(749\) 15927.5 0.777009
\(750\) 0 0
\(751\) −2087.82 −0.101446 −0.0507228 0.998713i \(-0.516152\pi\)
−0.0507228 + 0.998713i \(0.516152\pi\)
\(752\) 0 0
\(753\) 7883.01 + 1438.55i 0.381505 + 0.0696197i
\(754\) 0 0
\(755\) 5169.46 22709.3i 0.249187 1.09467i
\(756\) 0 0
\(757\) −10258.6 + 10258.6i −0.492546 + 0.492546i −0.909107 0.416562i \(-0.863235\pi\)
0.416562 + 0.909107i \(0.363235\pi\)
\(758\) 0 0
\(759\) −6556.70 + 4532.98i −0.313561 + 0.216781i
\(760\) 0 0
\(761\) 26879.5i 1.28040i −0.768210 0.640198i \(-0.778852\pi\)
0.768210 0.640198i \(-0.221148\pi\)
\(762\) 0 0
\(763\) 27712.1 + 27712.1i 1.31487 + 1.31487i
\(764\) 0 0
\(765\) −7763.99 + 1578.48i −0.366938 + 0.0746012i
\(766\) 0 0
\(767\) 10342.4 + 10342.4i 0.486888 + 0.486888i
\(768\) 0 0
\(769\) 25180.9i 1.18082i −0.807105 0.590408i \(-0.798967\pi\)
0.807105 0.590408i \(-0.201033\pi\)
\(770\) 0 0
\(771\) −2592.23 + 1792.14i −0.121085 + 0.0837124i
\(772\) 0 0
\(773\) −18871.2 + 18871.2i −0.878072 + 0.878072i −0.993335 0.115263i \(-0.963229\pi\)
0.115263 + 0.993335i \(0.463229\pi\)
\(774\) 0 0
\(775\) 27874.2 + 13383.9i 1.29196 + 0.620341i
\(776\) 0 0
\(777\) 17406.8 + 3176.52i 0.803688 + 0.146663i
\(778\) 0 0
\(779\) 19154.7 0.880988
\(780\) 0 0
\(781\) −4932.32 −0.225982
\(782\) 0 0
\(783\) −9100.79 + 15130.8i −0.415371 + 0.690588i
\(784\) 0 0
\(785\) 10175.6 + 16173.6i 0.462653 + 0.735365i
\(786\) 0 0
\(787\) −14716.0 + 14716.0i −0.666542 + 0.666542i −0.956914 0.290372i \(-0.906221\pi\)
0.290372 + 0.956914i \(0.406221\pi\)
\(788\) 0 0
\(789\) 21968.5 + 31776.2i 0.991253 + 1.43379i
\(790\) 0 0
\(791\) 7245.10i 0.325672i
\(792\) 0 0
\(793\) 28.3578 + 28.3578i 0.00126988 + 0.00126988i
\(794\) 0 0
\(795\) 12236.0 4902.46i 0.545869 0.218708i
\(796\) 0 0
\(797\) −17463.9 17463.9i −0.776163 0.776163i 0.203013 0.979176i \(-0.434927\pi\)
−0.979176 + 0.203013i \(0.934927\pi\)
\(798\) 0 0
\(799\) 4623.35i 0.204709i
\(800\) 0 0
\(801\) −35798.1 13515.5i −1.57911 0.596188i
\(802\) 0 0
\(803\) −8038.49 + 8038.49i −0.353265 + 0.353265i
\(804\) 0 0
\(805\) −11001.2 2504.28i −0.481667 0.109645i
\(806\) 0 0
\(807\) −1800.68 + 9867.40i −0.0785462 + 0.430420i
\(808\) 0 0
\(809\) 24097.9 1.04727 0.523633 0.851944i \(-0.324576\pi\)
0.523633 + 0.851944i \(0.324576\pi\)
\(810\) 0 0
\(811\) −25302.7 −1.09556 −0.547780 0.836622i \(-0.684527\pi\)
−0.547780 + 0.836622i \(0.684527\pi\)
\(812\) 0 0
\(813\) 3042.57 16672.8i 0.131252 0.719238i
\(814\) 0 0
\(815\) −8378.61 + 5271.38i −0.360110 + 0.226562i
\(816\) 0 0
\(817\) −1933.46 + 1933.46i −0.0827945 + 0.0827945i
\(818\) 0 0
\(819\) −9568.33 3612.50i −0.408235 0.154128i
\(820\) 0 0
\(821\) 27925.3i 1.18709i 0.804802 + 0.593544i \(0.202272\pi\)
−0.804802 + 0.593544i \(0.797728\pi\)
\(822\) 0 0
\(823\) −997.907 997.907i −0.0422659 0.0422659i 0.685658 0.727924i \(-0.259515\pi\)
−0.727924 + 0.685658i \(0.759515\pi\)
\(824\) 0 0
\(825\) 15091.6 + 10960.7i 0.636874 + 0.462548i
\(826\) 0 0
\(827\) −18683.3 18683.3i −0.785590 0.785590i 0.195178 0.980768i \(-0.437471\pi\)
−0.980768 + 0.195178i \(0.937471\pi\)
\(828\) 0 0
\(829\) 21146.9i 0.885962i 0.896531 + 0.442981i \(0.146079\pi\)
−0.896531 + 0.442981i \(0.853921\pi\)
\(830\) 0 0
\(831\) −20332.8 29410.2i −0.848780 1.22771i
\(832\) 0 0
\(833\) 257.270 257.270i 0.0107009 0.0107009i
\(834\) 0 0
\(835\) −40278.2 + 25340.9i −1.66932 + 1.05025i
\(836\) 0 0
\(837\) 17887.6 29739.6i 0.738695 1.22814i
\(838\) 0 0
\(839\) 30903.4 1.27164 0.635820 0.771838i \(-0.280662\pi\)
0.635820 + 0.771838i \(0.280662\pi\)
\(840\) 0 0
\(841\) −8549.68 −0.350555
\(842\) 0 0
\(843\) −20354.7 3714.48i −0.831618 0.151760i
\(844\) 0 0
\(845\) −19567.2 4454.21i −0.796607 0.181337i
\(846\) 0 0
\(847\) 6763.96 6763.96i 0.274395 0.274395i
\(848\) 0 0
\(849\) 24738.3 17102.8i 1.00002 0.691364i
\(850\) 0 0
\(851\) 9629.53i 0.387892i
\(852\) 0 0
\(853\) 181.224 + 181.224i 0.00727432 + 0.00727432i 0.710735 0.703460i \(-0.248363\pi\)
−0.703460 + 0.710735i \(0.748363\pi\)
\(854\) 0 0
\(855\) −12351.8 8177.98i −0.494063 0.327112i
\(856\) 0 0
\(857\) 13852.9 + 13852.9i 0.552167 + 0.552167i 0.927066 0.374899i \(-0.122323\pi\)
−0.374899 + 0.927066i \(0.622323\pi\)
\(858\) 0 0
\(859\) 8910.47i 0.353925i 0.984218 + 0.176962i \(0.0566271\pi\)
−0.984218 + 0.176962i \(0.943373\pi\)
\(860\) 0 0
\(861\) −31515.9 + 21788.5i −1.24746 + 0.862428i
\(862\) 0 0
\(863\) −6487.75 + 6487.75i −0.255905 + 0.255905i −0.823386 0.567481i \(-0.807918\pi\)
0.567481 + 0.823386i \(0.307918\pi\)
\(864\) 0 0
\(865\) −15486.1 24614.4i −0.608720 0.967533i
\(866\) 0 0
\(867\) −21592.8 3940.40i −0.845823 0.154352i
\(868\) 0 0
\(869\) 1378.93 0.0538285
\(870\) 0 0
\(871\) 9357.71 0.364034
\(872\) 0 0
\(873\) −31599.0 + 14278.2i −1.22504 + 0.553543i
\(874\) 0 0
\(875\) 3001.35 + 26229.5i 0.115959 + 1.01339i
\(876\) 0 0
\(877\) −20231.6 + 20231.6i −0.778987 + 0.778987i −0.979659 0.200672i \(-0.935688\pi\)
0.200672 + 0.979659i \(0.435688\pi\)
\(878\) 0 0
\(879\) 18869.2 + 27293.3i 0.724054 + 1.04730i
\(880\) 0 0
\(881\) 33209.0i 1.26996i −0.772527 0.634982i \(-0.781007\pi\)
0.772527 0.634982i \(-0.218993\pi\)
\(882\) 0 0
\(883\) −26984.3 26984.3i −1.02842 1.02842i −0.999584 0.0288331i \(-0.990821\pi\)
−0.0288331 0.999584i \(-0.509179\pi\)
\(884\) 0 0
\(885\) −38958.8 16670.4i −1.47976 0.633187i
\(886\) 0 0
\(887\) 24008.9 + 24008.9i 0.908838 + 0.908838i 0.996179 0.0873406i \(-0.0278369\pi\)
−0.0873406 + 0.996179i \(0.527837\pi\)
\(888\) 0 0
\(889\) 2820.84i 0.106421i
\(890\) 0 0
\(891\) 13835.3 15710.8i 0.520200 0.590720i
\(892\) 0 0
\(893\) 6112.61 6112.61i 0.229060 0.229060i
\(894\) 0 0
\(895\) 2038.81 8956.44i 0.0761452 0.334504i
\(896\) 0 0
\(897\) 999.226 5475.59i 0.0371942 0.203818i
\(898\) 0 0
\(899\) −31132.2 −1.15497
\(900\) 0 0
\(901\) −5955.13 −0.220193
\(902\) 0 0
\(903\) 981.871 5380.49i 0.0361845 0.198285i
\(904\) 0 0
\(905\) 5742.86 25228.2i 0.210938 0.926645i
\(906\) 0 0
\(907\) 23026.7 23026.7i 0.842989 0.842989i −0.146258 0.989246i \(-0.546723\pi\)
0.989246 + 0.146258i \(0.0467229\pi\)
\(908\) 0 0
\(909\) −3220.25 + 8529.38i −0.117501 + 0.311223i
\(910\) 0 0
\(911\) 33422.1i 1.21550i −0.794127 0.607752i \(-0.792071\pi\)
0.794127 0.607752i \(-0.207929\pi\)
\(912\) 0 0
\(913\) 4148.12 + 4148.12i 0.150364 + 0.150364i
\(914\) 0 0
\(915\) −106.821 45.7086i −0.00385945 0.00165145i
\(916\) 0 0
\(917\) −26438.8 26438.8i −0.952112 0.952112i
\(918\) 0 0
\(919\) 42542.2i 1.52703i 0.645792 + 0.763513i \(0.276527\pi\)
−0.645792 + 0.763513i \(0.723473\pi\)
\(920\) 0 0
\(921\) 7651.86 + 11068.0i 0.273765 + 0.395986i
\(922\) 0 0
\(923\) 2435.36 2435.36i 0.0868482 0.0868482i
\(924\) 0 0
\(925\) 21259.5 7466.56i 0.755684 0.265404i
\(926\) 0 0
\(927\) −14677.4 32482.6i −0.520033 1.15088i
\(928\) 0 0
\(929\) −5721.21 −0.202053 −0.101026 0.994884i \(-0.532213\pi\)
−0.101026 + 0.994884i \(0.532213\pi\)
\(930\) 0 0
\(931\) 680.282 0.0239477
\(932\) 0 0
\(933\) 20499.1 + 3740.83i 0.719305 + 0.131264i
\(934\) 0 0
\(935\) −4487.28 7132.32i −0.156952 0.249467i
\(936\) 0 0
\(937\) 1344.01 1344.01i 0.0468589 0.0468589i −0.683289 0.730148i \(-0.739451\pi\)
0.730148 + 0.683289i \(0.239451\pi\)
\(938\) 0 0
\(939\) 36706.8 25377.2i 1.27570 0.881953i
\(940\) 0 0
\(941\) 9625.77i 0.333466i 0.986002 + 0.166733i \(0.0533217\pi\)
−0.986002 + 0.166733i \(0.946678\pi\)
\(942\) 0 0
\(943\) −14744.1 14744.1i −0.509157 0.509157i
\(944\) 0 0
\(945\) 29625.4 594.731i 1.01980 0.0204726i
\(946\) 0 0
\(947\) −2234.24 2234.24i −0.0766664 0.0766664i 0.667734 0.744400i \(-0.267264\pi\)
−0.744400 + 0.667734i \(0.767264\pi\)
\(948\) 0 0
\(949\) 7938.11i 0.271530i
\(950\) 0 0
\(951\) 18811.3 13005.2i 0.641427 0.443451i
\(952\) 0 0
\(953\) −6457.14 + 6457.14i −0.219483 + 0.219483i −0.808281 0.588798i \(-0.799602\pi\)
0.588798 + 0.808281i \(0.299602\pi\)
\(954\) 0 0
\(955\) −10151.1 2310.75i −0.343959 0.0782977i
\(956\) 0 0
\(957\) −18474.3 3371.32i −0.624021 0.113876i
\(958\) 0 0
\(959\) 13556.9 0.456491
\(960\) 0 0
\(961\) 31399.6 1.05399
\(962\) 0 0
\(963\) −9373.84 20745.2i −0.313674 0.694190i
\(964\) 0 0
\(965\) −35107.4 + 22087.7i −1.17114 + 0.736817i
\(966\) 0 0
\(967\) −13166.9 + 13166.9i −0.437869 + 0.437869i −0.891294 0.453425i \(-0.850202\pi\)
0.453425 + 0.891294i \(0.350202\pi\)
\(968\) 0 0
\(969\) 3805.89 + 5505.01i 0.126174 + 0.182504i
\(970\) 0 0
\(971\) 21504.3i 0.710716i −0.934730 0.355358i \(-0.884359\pi\)
0.934730 0.355358i \(-0.115641\pi\)
\(972\) 0 0
\(973\) 914.119 + 914.119i 0.0301185 + 0.0301185i
\(974\) 0 0
\(975\) −12863.5 + 2039.65i −0.422523 + 0.0669959i
\(976\) 0 0
\(977\) 8996.19 + 8996.19i 0.294589 + 0.294589i 0.838890 0.544301i \(-0.183205\pi\)
−0.544301 + 0.838890i \(0.683205\pi\)
\(978\) 0 0
\(979\) 40697.1i 1.32858i
\(980\) 0 0
\(981\) 19784.9 52403.7i 0.643917 1.70553i
\(982\) 0 0
\(983\) −16337.3 + 16337.3i −0.530090 + 0.530090i −0.920599 0.390509i \(-0.872299\pi\)
0.390509 + 0.920599i \(0.372299\pi\)
\(984\) 0 0
\(985\) −40082.8 + 25218.0i −1.29659 + 0.815748i
\(986\) 0 0
\(987\) −3104.18 + 17010.4i −0.100108 + 0.548578i
\(988\) 0 0
\(989\) 2976.52 0.0957004
\(990\) 0 0
\(991\) 18296.9 0.586500 0.293250 0.956036i \(-0.405263\pi\)
0.293250 + 0.956036i \(0.405263\pi\)
\(992\) 0 0
\(993\) 8945.31 49018.8i 0.285872 1.56653i
\(994\) 0 0
\(995\) −1193.25 271.627i −0.0380186 0.00865441i
\(996\) 0 0
\(997\) 20406.0 20406.0i 0.648210 0.648210i −0.304350 0.952560i \(-0.598439\pi\)
0.952560 + 0.304350i \(0.0984393\pi\)
\(998\) 0 0
\(999\) −6107.09 24541.4i −0.193413 0.777232i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.4.v.c.113.2 8
3.2 odd 2 inner 240.4.v.c.113.1 8
4.3 odd 2 15.4.e.a.8.3 yes 8
5.2 odd 4 inner 240.4.v.c.17.1 8
12.11 even 2 15.4.e.a.8.2 yes 8
15.2 even 4 inner 240.4.v.c.17.2 8
20.3 even 4 75.4.e.c.32.3 8
20.7 even 4 15.4.e.a.2.2 8
20.19 odd 2 75.4.e.c.68.2 8
60.23 odd 4 75.4.e.c.32.2 8
60.47 odd 4 15.4.e.a.2.3 yes 8
60.59 even 2 75.4.e.c.68.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.4.e.a.2.2 8 20.7 even 4
15.4.e.a.2.3 yes 8 60.47 odd 4
15.4.e.a.8.2 yes 8 12.11 even 2
15.4.e.a.8.3 yes 8 4.3 odd 2
75.4.e.c.32.2 8 60.23 odd 4
75.4.e.c.32.3 8 20.3 even 4
75.4.e.c.68.2 8 20.19 odd 2
75.4.e.c.68.3 8 60.59 even 2
240.4.v.c.17.1 8 5.2 odd 4 inner
240.4.v.c.17.2 8 15.2 even 4 inner
240.4.v.c.113.1 8 3.2 odd 2 inner
240.4.v.c.113.2 8 1.1 even 1 trivial