Properties

Label 735.2.q.g.79.8
Level $735$
Weight $2$
Character 735.79
Analytic conductor $5.869$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(79,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.8
Root \(-0.281555 - 1.05078i\) of defining polynomial
Character \(\chi\) \(=\) 735.79
Dual form 735.2.q.g.214.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.17942 + 1.25829i) q^{2} +(0.866025 - 0.500000i) q^{3} +(2.16659 + 3.75264i) q^{4} +(1.11685 + 1.93717i) q^{5} +2.51658 q^{6} +5.87162i q^{8} +(0.500000 - 0.866025i) q^{9} +(-0.00343282 + 5.62724i) q^{10} +(-0.489068 - 0.847090i) q^{11} +(3.75264 + 2.16659i) q^{12} -5.14977i q^{13} +(1.93581 + 1.11922i) q^{15} +(-3.05502 + 5.29146i) q^{16} +(-3.59380 + 2.07488i) q^{17} +(2.17942 - 1.25829i) q^{18} +(1.15001 - 1.99187i) q^{19} +(-4.84975 + 8.38820i) q^{20} -2.46156i q^{22} +(-4.39324 - 2.53644i) q^{23} +(2.93581 + 5.08497i) q^{24} +(-2.50528 + 4.32707i) q^{25} +(6.47990 - 11.2235i) q^{26} -1.00000i q^{27} -5.92664 q^{29} +(2.81065 + 4.87505i) q^{30} +(0.316594 + 0.548357i) q^{31} +(-3.14643 + 1.81659i) q^{32} +(-0.847090 - 0.489068i) q^{33} -10.4432 q^{34} +4.33317 q^{36} +(7.84188 + 4.52751i) q^{37} +(5.01270 - 2.89408i) q^{38} +(-2.57488 - 4.45983i) q^{39} +(-11.3743 + 6.55773i) q^{40} -2.65505 q^{41} +0.344947i q^{43} +(2.11922 - 3.67059i) q^{44} +(2.23607 + 0.00136408i) q^{45} +(-6.38315 - 11.0559i) q^{46} +(3.67059 + 2.11922i) q^{47} +6.11005i q^{48} +(-10.9048 + 6.27815i) q^{50} +(-2.07488 + 3.59380i) q^{51} +(19.3252 - 11.1574i) q^{52} +(6.61053 - 3.81659i) q^{53} +(1.25829 - 2.17942i) q^{54} +(1.09474 - 1.89348i) q^{55} -2.30001i q^{57} +(-12.9167 - 7.45743i) q^{58} +(-0.908297 - 1.57322i) q^{59} +(-0.00591081 + 9.68927i) q^{60} +(0.328128 - 0.568335i) q^{61} +1.59347i q^{62} +3.07689 q^{64} +(9.97599 - 5.75153i) q^{65} +(-1.23078 - 2.13177i) q^{66} +(8.01924 - 4.62991i) q^{67} +(-15.5726 - 8.99083i) q^{68} -5.07288 q^{69} -5.49351 q^{71} +(5.08497 + 2.93581i) q^{72} +(-4.65758 + 2.68905i) q^{73} +(11.3938 + 19.7347i) q^{74} +(-0.00610036 + 5.00000i) q^{75} +9.96636 q^{76} -12.9598i q^{78} +(-5.44346 + 9.42835i) q^{79} +(-13.6625 - 0.00833461i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-5.78648 - 3.34083i) q^{82} -6.62663i q^{83} +(-8.03316 - 4.64448i) q^{85} +(-0.434043 + 0.751785i) q^{86} +(-5.13262 + 2.96332i) q^{87} +(4.97379 - 2.87162i) q^{88} +(-8.15542 + 14.1256i) q^{89} +(4.87162 + 2.81659i) q^{90} -21.9817i q^{92} +(0.548357 + 0.316594i) q^{93} +(5.33317 + 9.23733i) q^{94} +(5.14299 + 0.00313741i) q^{95} +(-1.81659 + 3.14643i) q^{96} -1.53844i q^{97} -0.978135 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 2 q^{5} + 8 q^{6} + 8 q^{9} + 4 q^{10} - 4 q^{15} + 24 q^{19} + 8 q^{20} + 12 q^{24} - 4 q^{25} + 12 q^{26} + 24 q^{29} - 12 q^{30} - 16 q^{31} - 16 q^{34} + 16 q^{36} - 4 q^{39} - 32 q^{40}+ \cdots - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17942 + 1.25829i 1.54108 + 0.889745i 0.998771 + 0.0495691i \(0.0157848\pi\)
0.542313 + 0.840176i \(0.317549\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 2.16659 + 3.75264i 1.08329 + 1.87632i
\(5\) 1.11685 + 1.93717i 0.499472 + 0.866330i
\(6\) 2.51658 1.02739
\(7\) 0 0
\(8\) 5.87162i 2.07593i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −0.00343282 + 5.62724i −0.00108555 + 1.77949i
\(11\) −0.489068 0.847090i −0.147459 0.255407i 0.782828 0.622238i \(-0.213776\pi\)
−0.930288 + 0.366830i \(0.880443\pi\)
\(12\) 3.75264 + 2.16659i 1.08329 + 0.625440i
\(13\) 5.14977i 1.42829i −0.699998 0.714144i \(-0.746816\pi\)
0.699998 0.714144i \(-0.253184\pi\)
\(14\) 0 0
\(15\) 1.93581 + 1.11922i 0.499824 + 0.288980i
\(16\) −3.05502 + 5.29146i −0.763756 + 1.32286i
\(17\) −3.59380 + 2.07488i −0.871626 + 0.503233i −0.867888 0.496760i \(-0.834523\pi\)
−0.00373753 + 0.999993i \(0.501190\pi\)
\(18\) 2.17942 1.25829i 0.513695 0.296582i
\(19\) 1.15001 1.99187i 0.263830 0.456967i −0.703427 0.710768i \(-0.748348\pi\)
0.967256 + 0.253801i \(0.0816810\pi\)
\(20\) −4.84975 + 8.38820i −1.08444 + 1.87566i
\(21\) 0 0
\(22\) 2.46156i 0.524805i
\(23\) −4.39324 2.53644i −0.916054 0.528884i −0.0336802 0.999433i \(-0.510723\pi\)
−0.882374 + 0.470548i \(0.844056\pi\)
\(24\) 2.93581 + 5.08497i 0.599270 + 1.03797i
\(25\) −2.50528 + 4.32707i −0.501056 + 0.865415i
\(26\) 6.47990 11.2235i 1.27081 2.20111i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −5.92664 −1.10055 −0.550275 0.834983i \(-0.685477\pi\)
−0.550275 + 0.834983i \(0.685477\pi\)
\(30\) 2.81065 + 4.87505i 0.513152 + 0.890059i
\(31\) 0.316594 + 0.548357i 0.0568620 + 0.0984879i 0.893055 0.449947i \(-0.148557\pi\)
−0.836193 + 0.548435i \(0.815224\pi\)
\(32\) −3.14643 + 1.81659i −0.556216 + 0.321132i
\(33\) −0.847090 0.489068i −0.147459 0.0851357i
\(34\) −10.4432 −1.79100
\(35\) 0 0
\(36\) 4.33317 0.722196
\(37\) 7.84188 + 4.52751i 1.28920 + 0.744318i 0.978511 0.206194i \(-0.0661078\pi\)
0.310686 + 0.950513i \(0.399441\pi\)
\(38\) 5.01270 2.89408i 0.813168 0.469483i
\(39\) −2.57488 4.45983i −0.412311 0.714144i
\(40\) −11.3743 + 6.55773i −1.79844 + 1.03687i
\(41\) −2.65505 −0.414650 −0.207325 0.978272i \(-0.566476\pi\)
−0.207325 + 0.978272i \(0.566476\pi\)
\(42\) 0 0
\(43\) 0.344947i 0.0526039i 0.999654 + 0.0263020i \(0.00837314\pi\)
−0.999654 + 0.0263020i \(0.991627\pi\)
\(44\) 2.11922 3.67059i 0.319484 0.553362i
\(45\) 2.23607 + 0.00136408i 0.333333 + 0.000203345i
\(46\) −6.38315 11.0559i −0.941144 1.63011i
\(47\) 3.67059 + 2.11922i 0.535410 + 0.309119i 0.743217 0.669051i \(-0.233299\pi\)
−0.207806 + 0.978170i \(0.566632\pi\)
\(48\) 6.11005i 0.881910i
\(49\) 0 0
\(50\) −10.9048 + 6.27815i −1.54217 + 0.887864i
\(51\) −2.07488 + 3.59380i −0.290542 + 0.503233i
\(52\) 19.3252 11.1574i 2.67993 1.54726i
\(53\) 6.61053 3.81659i 0.908027 0.524250i 0.0282311 0.999601i \(-0.491013\pi\)
0.879796 + 0.475352i \(0.157679\pi\)
\(54\) 1.25829 2.17942i 0.171232 0.296582i
\(55\) 1.09474 1.89348i 0.147615 0.255317i
\(56\) 0 0
\(57\) 2.30001i 0.304644i
\(58\) −12.9167 7.45743i −1.69604 0.979209i
\(59\) −0.908297 1.57322i −0.118250 0.204815i 0.800824 0.598900i \(-0.204395\pi\)
−0.919074 + 0.394084i \(0.871062\pi\)
\(60\) −0.00591081 + 9.68927i −0.000763082 + 1.25088i
\(61\) 0.328128 0.568335i 0.0420125 0.0727678i −0.844255 0.535942i \(-0.819956\pi\)
0.886267 + 0.463175i \(0.153290\pi\)
\(62\) 1.59347i 0.202371i
\(63\) 0 0
\(64\) 3.07689 0.384611
\(65\) 9.97599 5.75153i 1.23737 0.713390i
\(66\) −1.23078 2.13177i −0.151498 0.262403i
\(67\) 8.01924 4.62991i 0.979706 0.565633i 0.0775244 0.996990i \(-0.475298\pi\)
0.902181 + 0.431357i \(0.141965\pi\)
\(68\) −15.5726 8.99083i −1.88845 1.09030i
\(69\) −5.07288 −0.610703
\(70\) 0 0
\(71\) −5.49351 −0.651960 −0.325980 0.945377i \(-0.605694\pi\)
−0.325980 + 0.945377i \(0.605694\pi\)
\(72\) 5.08497 + 2.93581i 0.599270 + 0.345988i
\(73\) −4.65758 + 2.68905i −0.545128 + 0.314730i −0.747155 0.664650i \(-0.768581\pi\)
0.202027 + 0.979380i \(0.435247\pi\)
\(74\) 11.3938 + 19.7347i 1.32451 + 2.29411i
\(75\) −0.00610036 + 5.00000i −0.000704409 + 0.577350i
\(76\) 9.96636 1.14322
\(77\) 0 0
\(78\) 12.9598i 1.46741i
\(79\) −5.44346 + 9.42835i −0.612437 + 1.06077i 0.378391 + 0.925646i \(0.376477\pi\)
−0.990828 + 0.135127i \(0.956856\pi\)
\(80\) −13.6625 0.00833461i −1.52751 0.000931838i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −5.78648 3.34083i −0.639010 0.368933i
\(83\) 6.62663i 0.727367i −0.931523 0.363683i \(-0.881519\pi\)
0.931523 0.363683i \(-0.118481\pi\)
\(84\) 0 0
\(85\) −8.03316 4.64448i −0.871318 0.503765i
\(86\) −0.434043 + 0.751785i −0.0468041 + 0.0810671i
\(87\) −5.13262 + 2.96332i −0.550275 + 0.317701i
\(88\) 4.97379 2.87162i 0.530208 0.306116i
\(89\) −8.15542 + 14.1256i −0.864472 + 1.49731i 0.00309785 + 0.999995i \(0.499014\pi\)
−0.867570 + 0.497315i \(0.834319\pi\)
\(90\) 4.87162 + 2.81659i 0.513514 + 0.296895i
\(91\) 0 0
\(92\) 21.9817i 2.29175i
\(93\) 0.548357 + 0.316594i 0.0568620 + 0.0328293i
\(94\) 5.33317 + 9.23733i 0.550075 + 0.952758i
\(95\) 5.14299 + 0.00313741i 0.527659 + 0.000321892i
\(96\) −1.81659 + 3.14643i −0.185405 + 0.321132i
\(97\) 1.53844i 0.156205i −0.996945 0.0781027i \(-0.975114\pi\)
0.996945 0.0781027i \(-0.0248862\pi\)
\(98\) 0 0
\(99\) −0.978135 −0.0983063
\(100\) −21.6659 0.0264339i −2.16659 0.00264339i
\(101\) −2.75805 4.77708i −0.274436 0.475338i 0.695556 0.718471i \(-0.255158\pi\)
−0.969993 + 0.243134i \(0.921825\pi\)
\(102\) −9.04410 + 5.22161i −0.895499 + 0.517017i
\(103\) 14.3079 + 8.26066i 1.40980 + 0.813947i 0.995368 0.0961349i \(-0.0306480\pi\)
0.414429 + 0.910082i \(0.363981\pi\)
\(104\) 30.2375 2.96503
\(105\) 0 0
\(106\) 19.2095 1.86579
\(107\) −2.06824 1.19410i −0.199944 0.115438i 0.396685 0.917955i \(-0.370160\pi\)
−0.596630 + 0.802517i \(0.703494\pi\)
\(108\) 3.75264 2.16659i 0.361098 0.208480i
\(109\) −9.05479 15.6833i −0.867291 1.50219i −0.864754 0.502196i \(-0.832526\pi\)
−0.00253705 0.999997i \(-0.500808\pi\)
\(110\) 4.76846 2.74919i 0.454655 0.262125i
\(111\) 9.05502 0.859465
\(112\) 0 0
\(113\) 4.04373i 0.380402i 0.981745 + 0.190201i \(0.0609140\pi\)
−0.981745 + 0.190201i \(0.939086\pi\)
\(114\) 2.89408 5.01270i 0.271056 0.469483i
\(115\) 0.00691983 11.3433i 0.000645277 1.05777i
\(116\) −12.8406 22.2405i −1.19222 2.06498i
\(117\) −4.45983 2.57488i −0.412311 0.238048i
\(118\) 4.57160i 0.420850i
\(119\) 0 0
\(120\) −6.57160 + 11.3663i −0.599903 + 1.03760i
\(121\) 5.02163 8.69771i 0.456511 0.790701i
\(122\) 1.43026 0.825761i 0.129490 0.0747608i
\(123\) −2.29934 + 1.32753i −0.207325 + 0.119699i
\(124\) −1.37186 + 2.37613i −0.123196 + 0.213383i
\(125\) −11.1803 0.0204612i −0.999998 0.00183011i
\(126\) 0 0
\(127\) 6.85023i 0.607860i −0.952694 0.303930i \(-0.901701\pi\)
0.952694 0.303930i \(-0.0982989\pi\)
\(128\) 12.9987 + 7.50481i 1.14893 + 0.663337i
\(129\) 0.172473 + 0.298733i 0.0151854 + 0.0263020i
\(130\) 28.9790 + 0.0176782i 2.54163 + 0.00155048i
\(131\) −2.01270 + 3.48610i −0.175850 + 0.304582i −0.940455 0.339918i \(-0.889601\pi\)
0.764605 + 0.644499i \(0.222934\pi\)
\(132\) 4.23843i 0.368908i
\(133\) 0 0
\(134\) 23.3031 2.01308
\(135\) 1.93717 1.11685i 0.166725 0.0961234i
\(136\) −12.1829 21.1014i −1.04468 1.80943i
\(137\) −9.72709 + 5.61594i −0.831041 + 0.479802i −0.854209 0.519930i \(-0.825958\pi\)
0.0231680 + 0.999732i \(0.492625\pi\)
\(138\) −11.0559 6.38315i −0.941144 0.543370i
\(139\) −4.98991 −0.423238 −0.211619 0.977352i \(-0.567874\pi\)
−0.211619 + 0.977352i \(0.567874\pi\)
\(140\) 0 0
\(141\) 4.23843 0.356940
\(142\) −11.9727 6.91243i −1.00473 0.580078i
\(143\) −4.36232 + 2.51858i −0.364795 + 0.210615i
\(144\) 3.05502 + 5.29146i 0.254585 + 0.440955i
\(145\) −6.61919 11.4809i −0.549693 0.953440i
\(146\) −13.5344 −1.12012
\(147\) 0 0
\(148\) 39.2370i 3.22526i
\(149\) −7.24712 + 12.5524i −0.593707 + 1.02833i 0.400021 + 0.916506i \(0.369003\pi\)
−0.993728 + 0.111825i \(0.964330\pi\)
\(150\) −6.30474 + 10.8894i −0.514780 + 0.889118i
\(151\) −3.94346 6.83028i −0.320914 0.555840i 0.659763 0.751474i \(-0.270657\pi\)
−0.980677 + 0.195634i \(0.937324\pi\)
\(152\) 11.6955 + 6.75240i 0.948631 + 0.547692i
\(153\) 4.14977i 0.335489i
\(154\) 0 0
\(155\) −0.708674 + 1.22573i −0.0569221 + 0.0984531i
\(156\) 11.1574 19.3252i 0.893309 1.54726i
\(157\) 5.67792 3.27815i 0.453147 0.261625i −0.256011 0.966674i \(-0.582408\pi\)
0.709159 + 0.705049i \(0.249075\pi\)
\(158\) −23.7272 + 13.6989i −1.88763 + 1.08983i
\(159\) 3.81659 6.61053i 0.302676 0.524250i
\(160\) −7.03316 4.06632i −0.556020 0.321471i
\(161\) 0 0
\(162\) 2.51658i 0.197721i
\(163\) 10.6138 + 6.12790i 0.831340 + 0.479974i 0.854311 0.519762i \(-0.173979\pi\)
−0.0229712 + 0.999736i \(0.507313\pi\)
\(164\) −5.75240 9.96346i −0.449187 0.778015i
\(165\) 0.00133426 2.18718i 0.000103872 0.170271i
\(166\) 8.33822 14.4422i 0.647171 1.12093i
\(167\) 2.13239i 0.165009i −0.996591 0.0825047i \(-0.973708\pi\)
0.996591 0.0825047i \(-0.0262920\pi\)
\(168\) 0 0
\(169\) −13.5201 −1.04001
\(170\) −11.6635 20.2303i −0.894553 1.55160i
\(171\) −1.15001 1.99187i −0.0879432 0.152322i
\(172\) −1.29446 + 0.747358i −0.0987017 + 0.0569855i
\(173\) 10.0013 + 5.77427i 0.760387 + 0.439009i 0.829435 0.558604i \(-0.188663\pi\)
−0.0690479 + 0.997613i \(0.521996\pi\)
\(174\) −14.9149 −1.13069
\(175\) 0 0
\(176\) 5.97645 0.450492
\(177\) −1.57322 0.908297i −0.118250 0.0682718i
\(178\) −35.5482 + 20.5238i −2.66445 + 1.53832i
\(179\) 4.44978 + 7.70725i 0.332592 + 0.576067i 0.983019 0.183502i \(-0.0587434\pi\)
−0.650427 + 0.759569i \(0.725410\pi\)
\(180\) 4.83952 + 8.39411i 0.360716 + 0.625660i
\(181\) 3.17940 0.236323 0.118161 0.992994i \(-0.462300\pi\)
0.118161 + 0.992994i \(0.462300\pi\)
\(182\) 0 0
\(183\) 0.656256i 0.0485119i
\(184\) 14.8930 25.7954i 1.09793 1.90167i
\(185\) −0.0123518 + 20.2476i −0.000908123 + 1.48864i
\(186\) 0.796734 + 1.37998i 0.0584194 + 0.101185i
\(187\) 3.51523 + 2.02952i 0.257059 + 0.148413i
\(188\) 18.3659i 1.33947i
\(189\) 0 0
\(190\) 11.2048 + 6.47821i 0.812881 + 0.469979i
\(191\) 0.311309 0.539203i 0.0225255 0.0390154i −0.854543 0.519381i \(-0.826163\pi\)
0.877068 + 0.480365i \(0.159496\pi\)
\(192\) 2.66466 1.53844i 0.192306 0.111028i
\(193\) −13.1529 + 7.59383i −0.946767 + 0.546616i −0.892075 0.451887i \(-0.850751\pi\)
−0.0546916 + 0.998503i \(0.517418\pi\)
\(194\) 1.93581 3.35292i 0.138983 0.240726i
\(195\) 5.76370 9.96897i 0.412747 0.713893i
\(196\) 0 0
\(197\) 23.9410i 1.70573i 0.522136 + 0.852863i \(0.325136\pi\)
−0.522136 + 0.852863i \(0.674864\pi\)
\(198\) −2.13177 1.23078i −0.151498 0.0874676i
\(199\) −6.97662 12.0839i −0.494560 0.856602i 0.505421 0.862873i \(-0.331337\pi\)
−0.999980 + 0.00627071i \(0.998004\pi\)
\(200\) −25.4069 14.7101i −1.79654 1.04016i
\(201\) 4.62991 8.01924i 0.326569 0.565633i
\(202\) 13.8817i 0.976714i
\(203\) 0 0
\(204\) −17.9817 −1.25897
\(205\) −2.96530 5.14330i −0.207106 0.359224i
\(206\) 20.7886 + 36.0069i 1.44841 + 2.50872i
\(207\) −4.39324 + 2.53644i −0.305351 + 0.176295i
\(208\) 27.2498 + 15.7327i 1.88943 + 1.09086i
\(209\) −2.24973 −0.155617
\(210\) 0 0
\(211\) 4.82315 0.332040 0.166020 0.986122i \(-0.446908\pi\)
0.166020 + 0.986122i \(0.446908\pi\)
\(212\) 28.6446 + 16.5380i 1.96732 + 1.13583i
\(213\) −4.75752 + 2.74676i −0.325980 + 0.188205i
\(214\) −3.00505 5.20489i −0.205421 0.355799i
\(215\) −0.668222 + 0.385255i −0.0455724 + 0.0262742i
\(216\) 5.87162 0.399513
\(217\) 0 0
\(218\) 45.5742i 3.08667i
\(219\) −2.68905 + 4.65758i −0.181709 + 0.314730i
\(220\) 9.47742 + 0.00578157i 0.638967 + 0.000389793i
\(221\) 10.6852 + 18.5073i 0.718762 + 1.24493i
\(222\) 19.7347 + 11.3938i 1.32451 + 0.764705i
\(223\) 15.8227i 1.05956i 0.848134 + 0.529782i \(0.177726\pi\)
−0.848134 + 0.529782i \(0.822274\pi\)
\(224\) 0 0
\(225\) 2.49472 + 4.33317i 0.166314 + 0.288878i
\(226\) −5.08818 + 8.81299i −0.338461 + 0.586232i
\(227\) 18.7913 10.8492i 1.24722 0.720084i 0.276667 0.960966i \(-0.410770\pi\)
0.970554 + 0.240882i \(0.0774368\pi\)
\(228\) 8.63112 4.98318i 0.571610 0.330019i
\(229\) 1.03844 1.79864i 0.0686223 0.118857i −0.829673 0.558250i \(-0.811473\pi\)
0.898295 + 0.439393i \(0.144806\pi\)
\(230\) 14.2882 24.7131i 0.942139 1.62954i
\(231\) 0 0
\(232\) 34.7990i 2.28467i
\(233\) −5.85348 3.37951i −0.383474 0.221399i 0.295854 0.955233i \(-0.404396\pi\)
−0.679329 + 0.733834i \(0.737729\pi\)
\(234\) −6.47990 11.2235i −0.423604 0.733704i
\(235\) −0.00578157 + 9.47742i −0.000377148 + 0.618238i
\(236\) 3.93581 6.81702i 0.256199 0.443750i
\(237\) 10.8869i 0.707182i
\(238\) 0 0
\(239\) 2.90478 0.187894 0.0939472 0.995577i \(-0.470051\pi\)
0.0939472 + 0.995577i \(0.470051\pi\)
\(240\) −11.8362 + 6.82402i −0.764025 + 0.440489i
\(241\) −4.44875 7.70546i −0.286569 0.496352i 0.686419 0.727206i \(-0.259181\pi\)
−0.972988 + 0.230854i \(0.925848\pi\)
\(242\) 21.8885 12.6373i 1.40705 0.812358i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 2.84367 0.182047
\(245\) 0 0
\(246\) −6.68165 −0.426007
\(247\) −10.2577 5.92227i −0.652680 0.376825i
\(248\) −3.21974 + 1.85892i −0.204454 + 0.118042i
\(249\) −3.31331 5.73883i −0.209973 0.363683i
\(250\) −24.3409 14.1127i −1.53945 0.892564i
\(251\) 21.1747 1.33653 0.668267 0.743921i \(-0.267036\pi\)
0.668267 + 0.743921i \(0.267036\pi\)
\(252\) 0 0
\(253\) 4.96196i 0.311956i
\(254\) 8.61958 14.9295i 0.540840 0.936763i
\(255\) −9.27916 0.00566063i −0.581084 0.000354482i
\(256\) 15.8096 + 27.3830i 0.988097 + 1.71143i
\(257\) 5.39917 + 3.11721i 0.336791 + 0.194446i 0.658852 0.752273i \(-0.271042\pi\)
−0.322061 + 0.946719i \(0.604376\pi\)
\(258\) 0.868086i 0.0540447i
\(259\) 0 0
\(260\) 43.1973 + 24.9751i 2.67898 + 1.54889i
\(261\) −2.96332 + 5.13262i −0.183425 + 0.317701i
\(262\) −8.77304 + 5.06512i −0.542000 + 0.312924i
\(263\) 24.2903 14.0240i 1.49780 0.864756i 0.497805 0.867289i \(-0.334139\pi\)
0.999997 + 0.00253231i \(0.000806060\pi\)
\(264\) 2.87162 4.97379i 0.176736 0.306116i
\(265\) 14.7764 + 8.54318i 0.907707 + 0.524803i
\(266\) 0 0
\(267\) 16.3108i 0.998207i
\(268\) 34.7487 + 20.0622i 2.12262 + 1.22549i
\(269\) −3.70915 6.42444i −0.226151 0.391705i 0.730513 0.682899i \(-0.239281\pi\)
−0.956664 + 0.291194i \(0.905948\pi\)
\(270\) 5.62724 + 0.00343282i 0.342463 + 0.000208915i
\(271\) −15.6058 + 27.0300i −0.947985 + 1.64196i −0.198323 + 0.980137i \(0.563550\pi\)
−0.749662 + 0.661821i \(0.769784\pi\)
\(272\) 25.3553i 1.53739i
\(273\) 0 0
\(274\) −28.2659 −1.70761
\(275\) 4.89067 + 0.00596698i 0.294919 + 0.000359822i
\(276\) −10.9908 19.0367i −0.661570 1.14587i
\(277\) −10.7843 + 6.22629i −0.647963 + 0.374102i −0.787675 0.616090i \(-0.788716\pi\)
0.139712 + 0.990192i \(0.455382\pi\)
\(278\) −10.8751 6.27875i −0.652246 0.376574i
\(279\) 0.633188 0.0379080
\(280\) 0 0
\(281\) −0.0409225 −0.00244123 −0.00122061 0.999999i \(-0.500389\pi\)
−0.00122061 + 0.999999i \(0.500389\pi\)
\(282\) 9.23733 + 5.33317i 0.550075 + 0.317586i
\(283\) 9.38944 5.42100i 0.558144 0.322245i −0.194256 0.980951i \(-0.562229\pi\)
0.752400 + 0.658706i \(0.228896\pi\)
\(284\) −11.9022 20.6152i −0.706264 1.22329i
\(285\) 4.45553 2.56878i 0.263923 0.152161i
\(286\) −12.6764 −0.749574
\(287\) 0 0
\(288\) 3.63319i 0.214088i
\(289\) 0.110288 0.191024i 0.00648752 0.0112367i
\(290\) 0.0203451 33.3507i 0.00119471 1.95842i
\(291\) −0.769222 1.33233i −0.0450926 0.0781027i
\(292\) −20.1821 11.6521i −1.18107 0.681890i
\(293\) 29.6455i 1.73191i 0.500125 + 0.865953i \(0.333287\pi\)
−0.500125 + 0.865953i \(0.666713\pi\)
\(294\) 0 0
\(295\) 2.03316 3.51658i 0.118375 0.204743i
\(296\) −26.5838 + 46.0445i −1.54515 + 2.67628i
\(297\) −0.847090 + 0.489068i −0.0491531 + 0.0283786i
\(298\) −31.5891 + 18.2380i −1.82991 + 1.05650i
\(299\) −13.0621 + 22.6242i −0.755399 + 1.30839i
\(300\) −18.7764 + 10.8100i −1.08406 + 0.624118i
\(301\) 0 0
\(302\) 19.8481i 1.14213i
\(303\) −4.77708 2.75805i −0.274436 0.158446i
\(304\) 7.02660 + 12.1704i 0.403003 + 0.698022i
\(305\) 1.46743 0.000895188i 0.0840250 5.12583e-5i
\(306\) −5.22161 + 9.04410i −0.298500 + 0.517017i
\(307\) 31.6055i 1.80382i −0.431923 0.901910i \(-0.642165\pi\)
0.431923 0.901910i \(-0.357835\pi\)
\(308\) 0 0
\(309\) 16.5213 0.939865
\(310\) −3.08683 + 1.77967i −0.175320 + 0.101078i
\(311\) 11.0851 + 19.2000i 0.628581 + 1.08873i 0.987837 + 0.155495i \(0.0496972\pi\)
−0.359256 + 0.933239i \(0.616969\pi\)
\(312\) 26.1864 15.1187i 1.48251 0.855930i
\(313\) −5.96321 3.44286i −0.337060 0.194602i 0.321911 0.946770i \(-0.395675\pi\)
−0.658971 + 0.752168i \(0.729008\pi\)
\(314\) 16.4995 0.931118
\(315\) 0 0
\(316\) −47.1749 −2.65380
\(317\) −11.1186 6.41935i −0.624485 0.360547i 0.154128 0.988051i \(-0.450743\pi\)
−0.778613 + 0.627504i \(0.784077\pi\)
\(318\) 16.6359 9.60476i 0.932897 0.538608i
\(319\) 2.89853 + 5.02040i 0.162286 + 0.281088i
\(320\) 3.43643 + 5.96047i 0.192102 + 0.333200i
\(321\) −2.38820 −0.133296
\(322\) 0 0
\(323\) 9.54453i 0.531072i
\(324\) 2.16659 3.75264i 0.120366 0.208480i
\(325\) 22.2834 + 12.9016i 1.23606 + 0.715653i
\(326\) 15.4214 + 26.7106i 0.854110 + 1.47936i
\(327\) −15.6833 9.05479i −0.867291 0.500731i
\(328\) 15.5895i 0.860784i
\(329\) 0 0
\(330\) 2.75501 4.76510i 0.151658 0.262310i
\(331\) 4.26678 7.39028i 0.234524 0.406207i −0.724611 0.689159i \(-0.757980\pi\)
0.959134 + 0.282952i \(0.0913137\pi\)
\(332\) 24.8673 14.3572i 1.36477 0.787952i
\(333\) 7.84188 4.52751i 0.429732 0.248106i
\(334\) 2.68317 4.64738i 0.146816 0.254293i
\(335\) 17.9252 + 10.3637i 0.979360 + 0.566231i
\(336\) 0 0
\(337\) 29.1131i 1.58589i −0.609292 0.792946i \(-0.708546\pi\)
0.609292 0.792946i \(-0.291454\pi\)
\(338\) −29.4660 17.0122i −1.60274 0.925343i
\(339\) 2.02186 + 3.50197i 0.109813 + 0.190201i
\(340\) 0.0245285 40.2082i 0.00133024 2.18060i
\(341\) 0.309672 0.536367i 0.0167697 0.0290459i
\(342\) 5.78817i 0.312988i
\(343\) 0 0
\(344\) −2.02540 −0.109202
\(345\) −5.66566 9.82705i −0.305029 0.529070i
\(346\) 14.5314 + 25.1691i 0.781213 + 1.35310i
\(347\) −11.6418 + 6.72137i −0.624962 + 0.360822i −0.778798 0.627274i \(-0.784171\pi\)
0.153836 + 0.988096i \(0.450837\pi\)
\(348\) −22.2405 12.8406i −1.19222 0.688328i
\(349\) −24.7397 −1.32429 −0.662144 0.749377i \(-0.730353\pi\)
−0.662144 + 0.749377i \(0.730353\pi\)
\(350\) 0 0
\(351\) −5.14977 −0.274874
\(352\) 3.07764 + 1.77687i 0.164039 + 0.0947077i
\(353\) 14.5103 8.37751i 0.772303 0.445890i −0.0613923 0.998114i \(-0.519554\pi\)
0.833696 + 0.552224i \(0.186221\pi\)
\(354\) −2.28580 3.95913i −0.121489 0.210425i
\(355\) −6.13544 10.6419i −0.325635 0.564813i
\(356\) −70.6777 −3.74591
\(357\) 0 0
\(358\) 22.3965i 1.18369i
\(359\) −16.2462 + 28.1393i −0.857442 + 1.48513i 0.0169190 + 0.999857i \(0.494614\pi\)
−0.874361 + 0.485276i \(0.838719\pi\)
\(360\) −0.00800937 + 13.1293i −0.000422131 + 0.691977i
\(361\) 6.85497 + 11.8732i 0.360788 + 0.624903i
\(362\) 6.92925 + 4.00060i 0.364193 + 0.210267i
\(363\) 10.0433i 0.527134i
\(364\) 0 0
\(365\) −10.4110 6.01926i −0.544936 0.315062i
\(366\) 0.825761 1.43026i 0.0431632 0.0747608i
\(367\) −20.7516 + 11.9809i −1.08322 + 0.625400i −0.931764 0.363064i \(-0.881731\pi\)
−0.151460 + 0.988463i \(0.548397\pi\)
\(368\) 26.8429 15.4978i 1.39928 0.807877i
\(369\) −1.32753 + 2.29934i −0.0691083 + 0.119699i
\(370\) −25.5043 + 44.1126i −1.32591 + 2.29331i
\(371\) 0 0
\(372\) 2.74372i 0.142255i
\(373\) −9.59160 5.53771i −0.496634 0.286732i 0.230688 0.973028i \(-0.425902\pi\)
−0.727323 + 0.686296i \(0.759236\pi\)
\(374\) 5.10744 + 8.84635i 0.264100 + 0.457434i
\(375\) −9.69267 + 5.57244i −0.500527 + 0.287760i
\(376\) −12.4432 + 21.5523i −0.641710 + 1.11147i
\(377\) 30.5208i 1.57190i
\(378\) 0 0
\(379\) 32.7423 1.68186 0.840929 0.541145i \(-0.182009\pi\)
0.840929 + 0.541145i \(0.182009\pi\)
\(380\) 11.1310 + 19.3066i 0.571006 + 0.990406i
\(381\) −3.42512 5.93247i −0.175474 0.303930i
\(382\) 1.35695 0.783435i 0.0694275 0.0400840i
\(383\) −20.1371 11.6262i −1.02896 0.594069i −0.112271 0.993678i \(-0.535813\pi\)
−0.916686 + 0.399609i \(0.869146\pi\)
\(384\) 15.0096 0.765956
\(385\) 0 0
\(386\) −38.2210 −1.94540
\(387\) 0.298733 + 0.172473i 0.0151854 + 0.00876732i
\(388\) 5.77323 3.33317i 0.293091 0.169216i
\(389\) −18.8131 32.5852i −0.953861 1.65214i −0.736954 0.675943i \(-0.763737\pi\)
−0.216907 0.976192i \(-0.569597\pi\)
\(390\) 25.1054 14.4742i 1.27126 0.732929i
\(391\) 21.0513 1.06461
\(392\) 0 0
\(393\) 4.02540i 0.203054i
\(394\) −30.1247 + 52.1775i −1.51766 + 2.62867i
\(395\) −24.3439 0.0148507i −1.22487 0.000747218i
\(396\) −2.11922 3.67059i −0.106495 0.184454i
\(397\) 0.0498605 + 0.0287870i 0.00250243 + 0.00144478i 0.501251 0.865302i \(-0.332873\pi\)
−0.498748 + 0.866747i \(0.666207\pi\)
\(398\) 35.1144i 1.76013i
\(399\) 0 0
\(400\) −15.2428 26.4759i −0.762142 1.32380i
\(401\) 4.53797 7.85999i 0.226615 0.392509i −0.730188 0.683247i \(-0.760567\pi\)
0.956803 + 0.290738i \(0.0939007\pi\)
\(402\) 20.1810 11.6515i 1.00654 0.581126i
\(403\) 2.82391 1.63039i 0.140669 0.0812153i
\(404\) 11.9511 20.6999i 0.594590 1.02986i
\(405\) 1.11922 1.93581i 0.0556142 0.0961911i
\(406\) 0 0
\(407\) 8.85704i 0.439027i
\(408\) −21.1014 12.1829i −1.04468 0.603145i
\(409\) −8.30602 14.3865i −0.410706 0.711364i 0.584261 0.811566i \(-0.301385\pi\)
−0.994967 + 0.100202i \(0.968051\pi\)
\(410\) 0.00911433 14.9406i 0.000450125 0.737865i
\(411\) −5.61594 + 9.72709i −0.277014 + 0.479802i
\(412\) 71.5897i 3.52697i
\(413\) 0 0
\(414\) −12.7663 −0.627430
\(415\) 12.8369 7.40097i 0.630140 0.363299i
\(416\) 9.35504 + 16.2034i 0.458669 + 0.794437i
\(417\) −4.32139 + 2.49495i −0.211619 + 0.122178i
\(418\) −4.90310 2.83081i −0.239818 0.138459i
\(419\) −29.8759 −1.45953 −0.729766 0.683697i \(-0.760371\pi\)
−0.729766 + 0.683697i \(0.760371\pi\)
\(420\) 0 0
\(421\) −19.3201 −0.941602 −0.470801 0.882239i \(-0.656035\pi\)
−0.470801 + 0.882239i \(0.656035\pi\)
\(422\) 10.5117 + 6.06893i 0.511701 + 0.295431i
\(423\) 3.67059 2.11922i 0.178470 0.103040i
\(424\) 22.4096 + 38.8145i 1.08831 + 1.88500i
\(425\) 0.0253151 20.7488i 0.00122796 1.00647i
\(426\) −13.8249 −0.669817
\(427\) 0 0
\(428\) 10.3485i 0.500213i
\(429\) −2.51858 + 4.36232i −0.121598 + 0.210615i
\(430\) −1.94110 0.00118414i −0.0936082 5.71044e-5i
\(431\) 10.9981 + 19.0493i 0.529761 + 0.917572i 0.999397 + 0.0347127i \(0.0110516\pi\)
−0.469637 + 0.882860i \(0.655615\pi\)
\(432\) 5.29146 + 3.05502i 0.254585 + 0.146985i
\(433\) 2.72706i 0.131054i 0.997851 + 0.0655272i \(0.0208729\pi\)
−0.997851 + 0.0655272i \(0.979127\pi\)
\(434\) 0 0
\(435\) −11.4729 6.63319i −0.550081 0.318037i
\(436\) 39.2360 67.9587i 1.87906 3.25463i
\(437\) −10.1045 + 5.83385i −0.483365 + 0.279071i
\(438\) −11.7212 + 6.76722i −0.560059 + 0.323350i
\(439\) 3.77183 6.53300i 0.180020 0.311803i −0.761867 0.647733i \(-0.775717\pi\)
0.941887 + 0.335930i \(0.109051\pi\)
\(440\) 11.1178 + 6.42792i 0.530021 + 0.306439i
\(441\) 0 0
\(442\) 53.7802i 2.55806i
\(443\) 9.03987 + 5.21917i 0.429497 + 0.247970i 0.699132 0.714992i \(-0.253570\pi\)
−0.269635 + 0.962963i \(0.586903\pi\)
\(444\) 19.6185 + 33.9802i 0.931053 + 1.61263i
\(445\) −36.4721 0.0222493i −1.72894 0.00105472i
\(446\) −19.9095 + 34.4843i −0.942743 + 1.63288i
\(447\) 14.4942i 0.685554i
\(448\) 0 0
\(449\) 1.73107 0.0816944 0.0408472 0.999165i \(-0.486994\pi\)
0.0408472 + 0.999165i \(0.486994\pi\)
\(450\) −0.0153521 + 12.5829i −0.000723703 + 0.593163i
\(451\) 1.29850 + 2.24907i 0.0611440 + 0.105905i
\(452\) −15.1747 + 8.76109i −0.713756 + 0.412087i
\(453\) −6.83028 3.94346i −0.320914 0.185280i
\(454\) 54.6055 2.56276
\(455\) 0 0
\(456\) 13.5048 0.632421
\(457\) 26.7268 + 15.4307i 1.25023 + 0.721819i 0.971154 0.238452i \(-0.0766398\pi\)
0.279072 + 0.960270i \(0.409973\pi\)
\(458\) 4.52642 2.61333i 0.211506 0.122113i
\(459\) 2.07488 + 3.59380i 0.0968473 + 0.167744i
\(460\) 42.5823 24.5503i 1.98541 1.14466i
\(461\) −10.7294 −0.499718 −0.249859 0.968282i \(-0.580384\pi\)
−0.249859 + 0.968282i \(0.580384\pi\)
\(462\) 0 0
\(463\) 11.1060i 0.516141i 0.966126 + 0.258071i \(0.0830867\pi\)
−0.966126 + 0.258071i \(0.916913\pi\)
\(464\) 18.1060 31.3606i 0.840552 1.45588i
\(465\) −0.000863721 1.41585i −4.00541e−5 0.0656586i
\(466\) −8.50481 14.7308i −0.393978 0.682389i
\(467\) −23.8932 13.7947i −1.10564 0.638344i −0.167946 0.985796i \(-0.553714\pi\)
−0.937698 + 0.347452i \(0.887047\pi\)
\(468\) 22.3148i 1.03150i
\(469\) 0 0
\(470\) −11.9379 + 20.6480i −0.550656 + 0.952422i
\(471\) 3.27815 5.67792i 0.151049 0.261625i
\(472\) 9.23733 5.33317i 0.425182 0.245479i
\(473\) 0.292201 0.168702i 0.0134354 0.00775694i
\(474\) −13.6989 + 23.7272i −0.629212 + 1.08983i
\(475\) 5.73788 + 9.96636i 0.263272 + 0.457288i
\(476\) 0 0
\(477\) 7.63319i 0.349500i
\(478\) 6.33074 + 3.65505i 0.289561 + 0.167178i
\(479\) 5.00869 + 8.67530i 0.228853 + 0.396385i 0.957468 0.288538i \(-0.0931692\pi\)
−0.728616 + 0.684923i \(0.759836\pi\)
\(480\) −8.12405 0.00495597i −0.370811 0.000226208i
\(481\) 23.3156 40.3839i 1.06310 1.84135i
\(482\) 22.3913i 1.01989i
\(483\) 0 0
\(484\) 43.5192 1.97814
\(485\) 2.98023 1.71822i 0.135325 0.0780202i
\(486\) −1.25829 2.17942i −0.0570772 0.0988606i
\(487\) 26.6165 15.3671i 1.20611 0.696348i 0.244203 0.969724i \(-0.421474\pi\)
0.961907 + 0.273376i \(0.0881403\pi\)
\(488\) 3.33704 + 1.92664i 0.151061 + 0.0872150i
\(489\) 12.2558 0.554227
\(490\) 0 0
\(491\) 4.14054 0.186860 0.0934301 0.995626i \(-0.470217\pi\)
0.0934301 + 0.995626i \(0.470217\pi\)
\(492\) −9.96346 5.75240i −0.449187 0.259338i
\(493\) 21.2992 12.2971i 0.959268 0.553833i
\(494\) −14.9039 25.8143i −0.670557 1.16144i
\(495\) −1.09243 1.89482i −0.0491012 0.0851657i
\(496\) −3.86881 −0.173715
\(497\) 0 0
\(498\) 16.6764i 0.747289i
\(499\) −0.774139 + 1.34085i −0.0346552 + 0.0600246i −0.882833 0.469687i \(-0.844367\pi\)
0.848178 + 0.529712i \(0.177700\pi\)
\(500\) −24.1464 42.0000i −1.07986 1.87830i
\(501\) −1.06620 1.84671i −0.0476341 0.0825047i
\(502\) 46.1486 + 26.6439i 2.05971 + 1.18918i
\(503\) 15.1658i 0.676210i −0.941108 0.338105i \(-0.890214\pi\)
0.941108 0.338105i \(-0.109786\pi\)
\(504\) 0 0
\(505\) 6.17370 10.6781i 0.274726 0.475170i
\(506\) −6.24359 + 10.8142i −0.277561 + 0.480750i
\(507\) −11.7088 + 6.76006i −0.520004 + 0.300225i
\(508\) 25.7064 14.8416i 1.14054 0.658491i
\(509\) 10.2327 17.7236i 0.453558 0.785586i −0.545046 0.838406i \(-0.683488\pi\)
0.998604 + 0.0528204i \(0.0168211\pi\)
\(510\) −20.2161 11.6882i −0.895183 0.517563i
\(511\) 0 0
\(512\) 49.5528i 2.18994i
\(513\) −1.99187 1.15001i −0.0879432 0.0507741i
\(514\) 7.84471 + 13.5874i 0.346015 + 0.599316i
\(515\) −0.0225364 + 36.9428i −0.000993074 + 1.62789i
\(516\) −0.747358 + 1.29446i −0.0329006 + 0.0569855i
\(517\) 4.14576i 0.182330i
\(518\) 0 0
\(519\) 11.5485 0.506924
\(520\) 33.7708 + 58.5752i 1.48095 + 2.56869i
\(521\) 1.37337 + 2.37875i 0.0601685 + 0.104215i 0.894541 0.446987i \(-0.147503\pi\)
−0.834372 + 0.551202i \(0.814170\pi\)
\(522\) −12.9167 + 7.45743i −0.565347 + 0.326403i
\(523\) 34.5258 + 19.9335i 1.50971 + 0.871629i 0.999936 + 0.0113184i \(0.00360283\pi\)
0.509770 + 0.860311i \(0.329731\pi\)
\(524\) −17.4427 −0.761990
\(525\) 0 0
\(526\) 70.5850 3.07765
\(527\) −2.27556 1.31379i −0.0991247 0.0572297i
\(528\) 5.17576 2.98823i 0.225246 0.130046i
\(529\) 1.36705 + 2.36780i 0.0594370 + 0.102948i
\(530\) 21.4542 + 37.2122i 0.931911 + 1.61639i
\(531\) −1.81659 −0.0788335
\(532\) 0 0
\(533\) 13.6729i 0.592239i
\(534\) −20.5238 + 35.5482i −0.888150 + 1.53832i
\(535\) 0.00325770 5.34017i 0.000140843 0.230876i
\(536\) 27.1851 + 47.0859i 1.17422 + 2.03380i
\(537\) 7.70725 + 4.44978i 0.332592 + 0.192022i
\(538\) 18.6688i 0.804867i
\(539\) 0 0
\(540\) 8.38820 + 4.84975i 0.360971 + 0.208700i
\(541\) −13.2493 + 22.9485i −0.569633 + 0.986633i 0.426969 + 0.904266i \(0.359581\pi\)
−0.996602 + 0.0823667i \(0.973752\pi\)
\(542\) −68.0232 + 39.2732i −2.92185 + 1.68693i
\(543\) 2.75344 1.58970i 0.118161 0.0682205i
\(544\) 7.53844 13.0570i 0.323208 0.559813i
\(545\) 20.2685 35.0567i 0.868207 1.50166i
\(546\) 0 0
\(547\) 12.9090i 0.551950i −0.961165 0.275975i \(-0.910999\pi\)
0.961165 0.275975i \(-0.0890008\pi\)
\(548\) −42.1492 24.3348i −1.80052 1.03953i
\(549\) −0.328128 0.568335i −0.0140042 0.0242559i
\(550\) 10.6513 + 6.16689i 0.454174 + 0.262957i
\(551\) −6.81568 + 11.8051i −0.290358 + 0.502914i
\(552\) 29.7860i 1.26778i
\(553\) 0 0
\(554\) −31.3379 −1.33142
\(555\) 10.1131 + 17.5412i 0.429278 + 0.744580i
\(556\) −10.8111 18.7253i −0.458492 0.794131i
\(557\) −6.22247 + 3.59254i −0.263654 + 0.152221i −0.626000 0.779823i \(-0.715309\pi\)
0.362346 + 0.932044i \(0.381976\pi\)
\(558\) 1.37998 + 0.796734i 0.0584194 + 0.0337285i
\(559\) 1.77640 0.0751336
\(560\) 0 0
\(561\) 4.05903 0.171373
\(562\) −0.0891873 0.0514923i −0.00376214 0.00217207i
\(563\) −2.06720 + 1.19350i −0.0871220 + 0.0502999i −0.542928 0.839779i \(-0.682684\pi\)
0.455806 + 0.890079i \(0.349351\pi\)
\(564\) 9.18293 + 15.9053i 0.386671 + 0.669734i
\(565\) −7.83341 + 4.51625i −0.329554 + 0.190000i
\(566\) 27.2847 1.14686
\(567\) 0 0
\(568\) 32.2558i 1.35342i
\(569\) 14.9271 25.8545i 0.625776 1.08388i −0.362615 0.931939i \(-0.618116\pi\)
0.988390 0.151936i \(-0.0485508\pi\)
\(570\) 12.9427 + 0.00789554i 0.542112 + 0.000330708i
\(571\) 9.73170 + 16.8558i 0.407259 + 0.705393i 0.994582 0.103960i \(-0.0331513\pi\)
−0.587322 + 0.809353i \(0.699818\pi\)
\(572\) −18.9027 10.9135i −0.790361 0.456315i
\(573\) 0.622618i 0.0260103i
\(574\) 0 0
\(575\) 21.9817 12.6554i 0.916699 0.527766i
\(576\) 1.53844 2.66466i 0.0641019 0.111028i
\(577\) 3.43108 1.98094i 0.142838 0.0824675i −0.426878 0.904309i \(-0.640387\pi\)
0.569716 + 0.821842i \(0.307053\pi\)
\(578\) 0.480727 0.277548i 0.0199956 0.0115445i
\(579\) −7.59383 + 13.1529i −0.315589 + 0.546616i
\(580\) 28.7428 49.7139i 1.19348 2.06426i
\(581\) 0 0
\(582\) 3.87162i 0.160484i
\(583\) −6.46600 3.73315i −0.267794 0.154611i
\(584\) −15.7891 27.3475i −0.653357 1.13165i
\(585\) 0.00702471 11.5152i 0.000290436 0.476096i
\(586\) −37.3026 + 64.6100i −1.54096 + 2.66901i
\(587\) 13.9419i 0.575446i −0.957714 0.287723i \(-0.907102\pi\)
0.957714 0.287723i \(-0.0928982\pi\)
\(588\) 0 0
\(589\) 1.45634 0.0600075
\(590\) 8.85599 5.10581i 0.364595 0.210203i
\(591\) 11.9705 + 20.7335i 0.492400 + 0.852863i
\(592\) −47.9143 + 27.6633i −1.96926 + 1.13696i
\(593\) 33.3396 + 19.2486i 1.36909 + 0.790447i 0.990812 0.135243i \(-0.0431816\pi\)
0.378282 + 0.925690i \(0.376515\pi\)
\(594\) −2.46156 −0.100999
\(595\) 0 0
\(596\) −62.8061 −2.57264
\(597\) −12.0839 6.97662i −0.494560 0.285534i
\(598\) −56.9356 + 32.8718i −2.32827 + 1.34423i
\(599\) 8.74985 + 15.1552i 0.357509 + 0.619224i 0.987544 0.157343i \(-0.0502927\pi\)
−0.630035 + 0.776567i \(0.716959\pi\)
\(600\) −29.3581 0.0358190i −1.19854 0.00146230i
\(601\) −34.5192 −1.40807 −0.704033 0.710167i \(-0.748619\pi\)
−0.704033 + 0.710167i \(0.748619\pi\)
\(602\) 0 0
\(603\) 9.25982i 0.377089i
\(604\) 17.0877 29.5968i 0.695289 1.20428i
\(605\) 22.4574 + 0.0136998i 0.913023 + 0.000556977i
\(606\) −6.94086 12.0219i −0.281953 0.488357i
\(607\) 9.45318 + 5.45780i 0.383693 + 0.221525i 0.679424 0.733746i \(-0.262230\pi\)
−0.295731 + 0.955271i \(0.595563\pi\)
\(608\) 8.35639i 0.338896i
\(609\) 0 0
\(610\) 3.19703 + 1.84841i 0.129444 + 0.0748398i
\(611\) 10.9135 18.9027i 0.441512 0.764721i
\(612\) −15.5726 + 8.99083i −0.629484 + 0.363433i
\(613\) 22.6183 13.0587i 0.913543 0.527435i 0.0319739 0.999489i \(-0.489821\pi\)
0.881570 + 0.472054i \(0.156487\pi\)
\(614\) 39.7689 68.8817i 1.60494 2.77984i
\(615\) −5.13968 2.97158i −0.207252 0.119825i
\(616\) 0 0
\(617\) 11.6689i 0.469772i 0.972023 + 0.234886i \(0.0754717\pi\)
−0.972023 + 0.234886i \(0.924528\pi\)
\(618\) 36.0069 + 20.7886i 1.44841 + 0.836240i
\(619\) 0.411816 + 0.713286i 0.0165523 + 0.0286694i 0.874183 0.485597i \(-0.161398\pi\)
−0.857631 + 0.514266i \(0.828064\pi\)
\(620\) −6.13513 0.00374265i −0.246393 0.000150309i
\(621\) −2.53644 + 4.39324i −0.101784 + 0.176295i
\(622\) 55.7933i 2.23711i
\(623\) 0 0
\(624\) 31.4653 1.25962
\(625\) −12.4471 21.6811i −0.497885 0.867243i
\(626\) −8.66423 15.0069i −0.346292 0.599796i
\(627\) −1.94832 + 1.12486i −0.0778084 + 0.0449227i
\(628\) 24.6034 + 14.2048i 0.981783 + 0.566833i
\(629\) −37.5763 −1.49826
\(630\) 0 0
\(631\) −20.5920 −0.819755 −0.409877 0.912141i \(-0.634429\pi\)
−0.409877 + 0.912141i \(0.634429\pi\)
\(632\) −55.3597 31.9619i −2.20209 1.27138i
\(633\) 4.17697 2.41158i 0.166020 0.0958516i
\(634\) −16.1548 27.9810i −0.641590 1.11127i
\(635\) 13.2701 7.65070i 0.526607 0.303609i
\(636\) 33.0759 1.31155
\(637\) 0 0
\(638\) 14.5888i 0.577575i
\(639\) −2.74676 + 4.75752i −0.108660 + 0.188205i
\(640\) −0.0204744 + 33.5625i −0.000809320 + 1.32667i
\(641\) −14.8371 25.6986i −0.586029 1.01503i −0.994746 0.102371i \(-0.967357\pi\)
0.408717 0.912661i \(-0.365976\pi\)
\(642\) −5.20489 3.00505i −0.205421 0.118600i
\(643\) 11.1286i 0.438870i 0.975627 + 0.219435i \(0.0704214\pi\)
−0.975627 + 0.219435i \(0.929579\pi\)
\(644\) 0 0
\(645\) −0.386070 + 0.667751i −0.0152015 + 0.0262927i
\(646\) −12.0098 + 20.8016i −0.472519 + 0.818426i
\(647\) 9.45991 5.46168i 0.371907 0.214721i −0.302384 0.953186i \(-0.597783\pi\)
0.674291 + 0.738465i \(0.264449\pi\)
\(648\) 5.08497 2.93581i 0.199757 0.115329i
\(649\) −0.888437 + 1.53882i −0.0348742 + 0.0604039i
\(650\) 32.3310 + 56.1571i 1.26813 + 2.20266i
\(651\) 0 0
\(652\) 53.1065i 2.07981i
\(653\) −6.21006 3.58538i −0.243019 0.140307i 0.373545 0.927612i \(-0.378142\pi\)
−0.616563 + 0.787305i \(0.711476\pi\)
\(654\) −22.7871 39.4684i −0.891046 1.54334i
\(655\) −9.00106 0.00549097i −0.351700 0.000214550i
\(656\) 8.11125 14.0491i 0.316691 0.548525i
\(657\) 5.37811i 0.209820i
\(658\) 0 0
\(659\) −14.1232 −0.550161 −0.275080 0.961421i \(-0.588704\pi\)
−0.275080 + 0.961421i \(0.588704\pi\)
\(660\) 8.21057 4.73370i 0.319596 0.184259i
\(661\) 14.4608 + 25.0469i 0.562461 + 0.974212i 0.997281 + 0.0736941i \(0.0234789\pi\)
−0.434819 + 0.900518i \(0.643188\pi\)
\(662\) 18.5982 10.7377i 0.722841 0.417333i
\(663\) 18.5073 + 10.6852i 0.718762 + 0.414978i
\(664\) 38.9090 1.50996
\(665\) 0 0
\(666\) 22.7877 0.883005
\(667\) 26.0372 + 15.0326i 1.00816 + 0.582063i
\(668\) 8.00210 4.62001i 0.309610 0.178754i
\(669\) 7.91134 + 13.7028i 0.305870 + 0.529782i
\(670\) 26.0261 + 45.1421i 1.00548 + 1.74399i
\(671\) −0.641907 −0.0247806
\(672\) 0 0
\(673\) 14.4081i 0.555392i 0.960669 + 0.277696i \(0.0895709\pi\)
−0.960669 + 0.277696i \(0.910429\pi\)
\(674\) 36.6327 63.4497i 1.41104 2.44399i
\(675\) 4.32707 + 2.50528i 0.166549 + 0.0964283i
\(676\) −29.2925 50.7361i −1.12663 1.95139i
\(677\) −26.0991 15.0683i −1.00307 0.579123i −0.0939148 0.995580i \(-0.529938\pi\)
−0.909155 + 0.416457i \(0.863271\pi\)
\(678\) 10.1764i 0.390821i
\(679\) 0 0
\(680\) 27.2706 47.1676i 1.04578 1.80880i
\(681\) 10.8492 18.7913i 0.415740 0.720084i
\(682\) 1.34981 0.779314i 0.0516870 0.0298415i
\(683\) 13.4380 7.75842i 0.514190 0.296868i −0.220364 0.975418i \(-0.570725\pi\)
0.734554 + 0.678550i \(0.237391\pi\)
\(684\) 4.98318 8.63112i 0.190537 0.330019i
\(685\) −21.7428 12.5709i −0.830748 0.480309i
\(686\) 0 0
\(687\) 2.07689i 0.0792383i
\(688\) −1.82527 1.05382i −0.0695878 0.0401766i
\(689\) −19.6546 34.0427i −0.748780 1.29692i
\(690\) 0.0174143 28.5463i 0.000662951 1.08674i
\(691\) 22.8917 39.6496i 0.870842 1.50834i 0.00971588 0.999953i \(-0.496907\pi\)
0.861127 0.508391i \(-0.169759\pi\)
\(692\) 50.0418i 1.90230i
\(693\) 0 0
\(694\) −33.8297 −1.28416
\(695\) −5.57299 9.66632i −0.211396 0.366664i
\(696\) −17.3995 30.1368i −0.659526 1.14233i
\(697\) 9.54174 5.50893i 0.361419 0.208666i
\(698\) −53.9183 31.1298i −2.04084 1.17828i
\(699\) −6.75902 −0.255650
\(700\) 0 0
\(701\) 24.0419 0.908050 0.454025 0.890989i \(-0.349988\pi\)
0.454025 + 0.890989i \(0.349988\pi\)
\(702\) −11.2235 6.47990i −0.423604 0.244568i
\(703\) 18.0364 10.4133i 0.680257 0.392747i
\(704\) −1.50481 2.60640i −0.0567145 0.0982325i
\(705\) 4.73370 + 8.21057i 0.178282 + 0.309228i
\(706\) 42.1653 1.58691
\(707\) 0 0
\(708\) 7.87162i 0.295834i
\(709\) 9.19854 15.9323i 0.345459 0.598352i −0.639978 0.768393i \(-0.721057\pi\)
0.985437 + 0.170041i \(0.0543901\pi\)
\(710\) 0.0188583 30.9133i 0.000707738 1.16016i
\(711\) 5.44346 + 9.42835i 0.204146 + 0.353591i
\(712\) −82.9401 47.8855i −3.10831 1.79458i
\(713\) 3.21209i 0.120294i
\(714\) 0 0
\(715\) −9.75100 5.63768i −0.364667 0.210837i
\(716\) −19.2817 + 33.3969i −0.720590 + 1.24810i
\(717\) 2.51561 1.45239i 0.0939472 0.0542405i
\(718\) −70.8147 + 40.8849i −2.64278 + 1.52581i
\(719\) 8.12275 14.0690i 0.302927 0.524686i −0.673870 0.738850i \(-0.735369\pi\)
0.976798 + 0.214164i \(0.0687027\pi\)
\(720\) −6.83846 + 11.8279i −0.254854 + 0.440799i
\(721\) 0 0
\(722\) 34.5021i 1.28404i
\(723\) −7.70546 4.44875i −0.286569 0.165451i
\(724\) 6.88844 + 11.9311i 0.256007 + 0.443417i
\(725\) 14.8479 25.6450i 0.551437 0.952432i
\(726\) 12.6373 21.8885i 0.469015 0.812358i
\(727\) 42.6977i 1.58357i −0.610800 0.791785i \(-0.709152\pi\)
0.610800 0.791785i \(-0.290848\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) −15.1160 26.2185i −0.559467 0.970392i
\(731\) −0.715725 1.23967i −0.0264720 0.0458509i
\(732\) 2.46269 1.42184i 0.0910237 0.0525526i
\(733\) −40.4538 23.3560i −1.49420 0.862674i −0.494218 0.869338i \(-0.664545\pi\)
−0.999978 + 0.00666408i \(0.997879\pi\)
\(734\) −60.3020 −2.22579
\(735\) 0 0
\(736\) 18.4307 0.679366
\(737\) −7.84390 4.52868i −0.288934 0.166816i
\(738\) −5.78648 + 3.34083i −0.213003 + 0.122978i
\(739\) 3.52410 + 6.10393i 0.129636 + 0.224537i 0.923536 0.383513i \(-0.125286\pi\)
−0.793899 + 0.608049i \(0.791952\pi\)
\(740\) −76.0089 + 43.8219i −2.79414 + 1.61093i
\(741\) −11.8445 −0.435120
\(742\) 0 0
\(743\) 8.55510i 0.313856i −0.987610 0.156928i \(-0.949841\pi\)
0.987610 0.156928i \(-0.0501591\pi\)
\(744\) −1.85892 + 3.21974i −0.0681513 + 0.118042i
\(745\) −32.4101 0.0197713i −1.18741 0.000724366i
\(746\) −13.9361 24.1380i −0.510237 0.883756i
\(747\) −5.73883 3.31331i −0.209973 0.121228i
\(748\) 17.5885i 0.643099i
\(749\) 0 0
\(750\) −28.1362 0.0514923i −1.02739 0.00188023i
\(751\) 1.48823 2.57768i 0.0543062 0.0940611i −0.837594 0.546293i \(-0.816039\pi\)
0.891901 + 0.452232i \(0.149372\pi\)
\(752\) −22.4275 + 12.9485i −0.817846 + 0.472183i
\(753\) 18.3378 10.5873i 0.668267 0.385824i
\(754\) −38.4041 + 66.5178i −1.39859 + 2.42243i
\(755\) 8.82716 15.2676i 0.321253 0.555644i
\(756\) 0 0
\(757\) 43.6750i 1.58740i −0.608313 0.793698i \(-0.708153\pi\)
0.608313 0.793698i \(-0.291847\pi\)
\(758\) 71.3592 + 41.1993i 2.59188 + 1.49643i
\(759\) 2.48098 + 4.29718i 0.0900539 + 0.155978i
\(760\) −0.0184217 + 30.1977i −0.000668224 + 1.09538i
\(761\) 13.3628 23.1451i 0.484402 0.839008i −0.515438 0.856927i \(-0.672371\pi\)
0.999839 + 0.0179187i \(0.00570401\pi\)
\(762\) 17.2392i 0.624509i
\(763\) 0 0
\(764\) 2.69791 0.0976071
\(765\) −8.03882 + 4.63468i −0.290644 + 0.167567i
\(766\) −29.2581 50.6766i −1.05714 1.83102i
\(767\) −8.10170 + 4.67752i −0.292535 + 0.168895i
\(768\) 27.3830 + 15.8096i 0.988097 + 0.570478i
\(769\) −4.04661 −0.145925 −0.0729623 0.997335i \(-0.523245\pi\)
−0.0729623 + 0.997335i \(0.523245\pi\)
\(770\) 0 0
\(771\) 6.23442 0.224527
\(772\) −56.9938 32.9054i −2.05125 1.18429i
\(773\) −5.46553 + 3.15553i −0.196581 + 0.113496i −0.595060 0.803681i \(-0.702872\pi\)
0.398478 + 0.917178i \(0.369538\pi\)
\(774\) 0.434043 + 0.751785i 0.0156014 + 0.0270224i
\(775\) −3.16594 0.00386268i −0.113724 0.000138752i
\(776\) 9.03316 0.324272
\(777\) 0 0
\(778\) 94.6892i 3.39477i
\(779\) −3.05333 + 5.28852i −0.109397 + 0.189481i
\(780\) 49.8975 + 0.0304393i 1.78662 + 0.00108990i
\(781\) 2.68670 + 4.65350i 0.0961376 + 0.166515i
\(782\) 45.8796 + 26.4886i 1.64065 + 0.947230i
\(783\) 5.92664i 0.211801i
\(784\) 0 0
\(785\) 12.6917 + 7.33791i 0.452988 + 0.261901i
\(786\) −5.06512 + 8.77304i −0.180667 + 0.312924i
\(787\) 25.9595 14.9877i 0.925358 0.534256i 0.0400174 0.999199i \(-0.487259\pi\)
0.885340 + 0.464943i \(0.153925\pi\)
\(788\) −89.8419 + 51.8702i −3.20048 + 1.84780i
\(789\) 14.0240 24.2903i 0.499267 0.864756i
\(790\) −53.0369 30.6640i −1.88697 1.09098i
\(791\) 0 0
\(792\) 5.74324i 0.204077i
\(793\) −2.92679 1.68978i −0.103933 0.0600060i
\(794\) 0.0724448 + 0.125478i 0.00257097 + 0.00445305i
\(795\) 17.0683 + 0.0104123i 0.605351 + 0.000369286i
\(796\) 30.2309 52.3615i 1.07151 1.85590i
\(797\) 0.676527i 0.0239638i 0.999928 + 0.0119819i \(0.00381405\pi\)
−0.999928 + 0.0119819i \(0.996186\pi\)
\(798\) 0 0
\(799\) −17.5885 −0.622236
\(800\) 0.0221638 18.1659i 0.000783608 0.642263i
\(801\) 8.15542 + 14.1256i 0.288157 + 0.499103i
\(802\) 19.7803 11.4202i 0.698466 0.403260i
\(803\) 4.55574 + 2.63026i 0.160769 + 0.0928198i
\(804\) 40.1244 1.41508
\(805\) 0 0
\(806\) 8.20600 0.289044
\(807\) −6.42444 3.70915i −0.226151 0.130568i
\(808\) 28.0492 16.1942i 0.986768 0.569711i
\(809\) −25.0612 43.4072i −0.881104 1.52612i −0.850115 0.526596i \(-0.823468\pi\)
−0.0309881 0.999520i \(-0.509865\pi\)
\(810\) 4.87505 2.81065i 0.171292 0.0987561i
\(811\) 36.4884 1.28128 0.640641 0.767841i \(-0.278669\pi\)
0.640641 + 0.767841i \(0.278669\pi\)
\(812\) 0 0
\(813\) 31.2116i 1.09464i
\(814\) 11.1447 19.3032i 0.390622 0.676578i
\(815\) −0.0167179 + 27.4048i −0.000585604 + 0.959949i
\(816\) −12.6776 21.9583i −0.443806 0.768695i
\(817\) 0.687090 + 0.396691i 0.0240382 + 0.0138785i
\(818\) 41.8055i 1.46170i
\(819\) 0 0
\(820\) 12.8764 22.2711i 0.449662 0.777741i
\(821\) −19.3654 + 33.5419i −0.675858 + 1.17062i 0.300359 + 0.953826i \(0.402893\pi\)
−0.976217 + 0.216794i \(0.930440\pi\)
\(822\) −24.4790 + 14.1329i −0.853803 + 0.492943i
\(823\) 18.1702 10.4906i 0.633375 0.365679i −0.148683 0.988885i \(-0.547503\pi\)
0.782058 + 0.623206i \(0.214170\pi\)
\(824\) −48.5034 + 84.0104i −1.68970 + 2.92664i
\(825\) 4.23843 2.44017i 0.147563 0.0849558i
\(826\) 0 0
\(827\) 37.8114i 1.31483i −0.753528 0.657416i \(-0.771650\pi\)
0.753528 0.657416i \(-0.228350\pi\)
\(828\) −19.0367 10.9908i −0.661570 0.381958i
\(829\) 26.6591 + 46.1749i 0.925908 + 1.60372i 0.790095 + 0.612985i \(0.210031\pi\)
0.135813 + 0.990734i \(0.456635\pi\)
\(830\) 37.2896 + 0.0227480i 1.29434 + 0.000789596i
\(831\) −6.22629 + 10.7843i −0.215988 + 0.374102i
\(832\) 15.8453i 0.549336i
\(833\) 0 0
\(834\) −12.5575 −0.434831
\(835\) 4.13081 2.38157i 0.142953 0.0824175i
\(836\) −4.87423 8.44241i −0.168579 0.291987i
\(837\) 0.548357 0.316594i 0.0189540 0.0109431i
\(838\) −65.1121 37.5925i −2.24926 1.29861i
\(839\) 52.6452 1.81752 0.908758 0.417324i \(-0.137032\pi\)
0.908758 + 0.417324i \(0.137032\pi\)
\(840\) 0 0
\(841\) 6.12510 0.211210
\(842\) −42.1066 24.3102i −1.45109 0.837786i
\(843\) −0.0354399 + 0.0204612i −0.00122061 + 0.000704722i
\(844\) 10.4498 + 18.0996i 0.359696 + 0.623012i
\(845\) −15.1000 26.1908i −0.519455 0.900991i
\(846\) 10.6663 0.366717
\(847\) 0 0
\(848\) 46.6392i 1.60160i
\(849\) 5.42100 9.38944i 0.186048 0.322245i
\(850\) 26.1632 45.1886i 0.897391 1.54996i
\(851\) −22.9675 39.7809i −0.787316 1.36367i
\(852\) −20.6152 11.9022i −0.706264 0.407762i
\(853\) 5.01225i 0.171616i 0.996312 + 0.0858081i \(0.0273472\pi\)
−0.996312 + 0.0858081i \(0.972653\pi\)
\(854\) 0 0
\(855\) 2.57421 4.45239i 0.0880362 0.152268i
\(856\) 7.01129 12.1439i 0.239641 0.415071i
\(857\) −33.2737 + 19.2106i −1.13661 + 0.656222i −0.945589 0.325364i \(-0.894513\pi\)
−0.191021 + 0.981586i \(0.561180\pi\)
\(858\) −10.9781 + 6.33822i −0.374787 + 0.216383i
\(859\) −11.6709 + 20.2146i −0.398207 + 0.689714i −0.993505 0.113791i \(-0.963701\pi\)
0.595298 + 0.803505i \(0.297034\pi\)
\(860\) −2.89348 1.67291i −0.0986670 0.0570457i
\(861\) 0 0
\(862\) 55.3553i 1.88541i
\(863\) 47.0908 + 27.1879i 1.60299 + 0.925486i 0.990885 + 0.134707i \(0.0430094\pi\)
0.612103 + 0.790778i \(0.290324\pi\)
\(864\) 1.81659 + 3.14643i 0.0618018 + 0.107044i
\(865\) −0.0157532 + 25.8233i −0.000535624 + 0.878019i
\(866\) −3.43144 + 5.94342i −0.116605 + 0.201966i
\(867\) 0.220576i 0.00749114i
\(868\) 0 0
\(869\) 10.6489 0.361239
\(870\) −16.6577 28.8927i −0.564749 0.979554i
\(871\) −23.8430 41.2972i −0.807888 1.39930i
\(872\) 92.0866 53.1662i 3.11845 1.80044i
\(873\) −1.33233 0.769222i −0.0450926 0.0260342i
\(874\) −29.3627 −0.993208
\(875\) 0 0
\(876\) −23.3043 −0.787378
\(877\) 24.6434 + 14.2279i 0.832148 + 0.480441i 0.854587 0.519307i \(-0.173810\pi\)
−0.0224397 + 0.999748i \(0.507143\pi\)
\(878\) 16.4408 9.49211i 0.554851 0.320343i
\(879\) 14.8227 + 25.6737i 0.499958 + 0.865953i
\(880\) 6.67482 + 11.5774i 0.225008 + 0.390275i
\(881\) 6.50466 0.219148 0.109574 0.993979i \(-0.465051\pi\)
0.109574 + 0.993979i \(0.465051\pi\)
\(882\) 0 0
\(883\) 34.7640i 1.16990i −0.811069 0.584951i \(-0.801114\pi\)
0.811069 0.584951i \(-0.198886\pi\)
\(884\) −46.3007 + 80.1952i −1.55726 + 2.69726i
\(885\) 0.00247799 4.06203i 8.32966e−5 0.136544i
\(886\) 13.1345 + 22.7496i 0.441261 + 0.764286i
\(887\) 25.4214 + 14.6770i 0.853566 + 0.492807i 0.861853 0.507159i \(-0.169304\pi\)
−0.00828615 + 0.999966i \(0.502638\pi\)
\(888\) 53.1676i 1.78419i
\(889\) 0 0
\(890\) −79.4601 45.9410i −2.66351 1.53995i
\(891\) −0.489068 + 0.847090i −0.0163844 + 0.0283786i
\(892\) −59.3768 + 34.2812i −1.98808 + 1.14782i
\(893\) 8.44241 4.87423i 0.282514 0.163110i
\(894\) −18.2380 + 31.5891i −0.609968 + 1.05650i
\(895\) −9.96053 + 17.2279i −0.332944 + 0.575864i
\(896\) 0 0
\(897\) 26.1242i 0.872260i
\(898\) 3.77274 + 2.17819i 0.125898 + 0.0726872i
\(899\) −1.87634 3.24992i −0.0625795 0.108391i
\(900\) −10.8558 + 18.7500i −0.361861 + 0.624999i
\(901\) −15.8380 + 27.4322i −0.527640 + 0.913899i
\(902\) 6.53556i 0.217610i
\(903\) 0 0
\(904\) −23.7432 −0.789688
\(905\) 3.55092 + 6.15904i 0.118036 + 0.204733i
\(906\) −9.92404 17.1889i −0.329704 0.571064i
\(907\) 31.4256 18.1436i 1.04347 0.602447i 0.122655 0.992449i \(-0.460859\pi\)
0.920814 + 0.390002i \(0.127526\pi\)
\(908\) 81.4259 + 47.0113i 2.70221 + 1.56012i
\(909\) −5.51610 −0.182958
\(910\) 0 0
\(911\) 51.6732 1.71201 0.856004 0.516968i \(-0.172940\pi\)
0.856004 + 0.516968i \(0.172940\pi\)
\(912\) 12.1704 + 7.02660i 0.403003 + 0.232674i
\(913\) −5.61335 + 3.24087i −0.185775 + 0.107257i
\(914\) 38.8326 + 67.2601i 1.28447 + 2.22477i
\(915\) 1.27128 0.732941i 0.0420273 0.0242303i
\(916\) 8.99952 0.297353
\(917\) 0 0
\(918\) 10.4432i 0.344678i
\(919\) −20.5188 + 35.5397i −0.676854 + 1.17235i 0.299069 + 0.954231i \(0.403324\pi\)
−0.975923 + 0.218114i \(0.930010\pi\)
\(920\) 66.6035 + 0.0406306i 2.19585 + 0.00133955i
\(921\) −15.8027 27.3712i −0.520718 0.901910i
\(922\) −23.3839 13.5007i −0.770107 0.444621i
\(923\) 28.2903i 0.931187i
\(924\) 0 0
\(925\) −39.2370 + 22.5897i −1.29010 + 0.742745i
\(926\) −13.9746 + 24.2047i −0.459234 + 0.795417i
\(927\) 14.3079 8.26066i 0.469932 0.271316i
\(928\) 18.6478 10.7663i 0.612144 0.353421i
\(929\) 1.49260 2.58526i 0.0489706 0.0848196i −0.840501 0.541810i \(-0.817739\pi\)
0.889472 + 0.456990i \(0.151073\pi\)
\(930\) −1.78343 + 3.08465i −0.0584811 + 0.101150i
\(931\) 0 0
\(932\) 29.2880i 0.959361i
\(933\) 19.2000 + 11.0851i 0.628581 + 0.362911i
\(934\) −34.7155 60.1291i −1.13593 1.96748i
\(935\) −0.00553686 + 9.07628i −0.000181075 + 0.296826i
\(936\) 15.1187 26.1864i 0.494171 0.855930i
\(937\) 26.1169i 0.853201i −0.904440 0.426601i \(-0.859711\pi\)
0.904440 0.426601i \(-0.140289\pi\)
\(938\) 0 0
\(939\) −6.88572 −0.224707
\(940\) −35.5778 + 20.5120i −1.16042 + 0.669026i
\(941\) 5.10580 + 8.84351i 0.166444 + 0.288290i 0.937167 0.348880i \(-0.113438\pi\)
−0.770723 + 0.637171i \(0.780105\pi\)
\(942\) 14.2889 8.24973i 0.465559 0.268791i
\(943\) 11.6643 + 6.73438i 0.379842 + 0.219302i
\(944\) 11.0995 0.361257
\(945\) 0 0
\(946\) 0.849106 0.0276068
\(947\) −40.3086 23.2722i −1.30985 0.756245i −0.327783 0.944753i \(-0.606301\pi\)
−0.982072 + 0.188509i \(0.939635\pi\)
\(948\) −40.8547 + 23.5875i −1.32690 + 0.766085i
\(949\) 13.8480 + 23.9854i 0.449525 + 0.778600i
\(950\) −0.0353099 + 28.9408i −0.00114561 + 0.938964i
\(951\) −12.8387 −0.416324
\(952\) 0 0
\(953\) 30.6348i 0.992358i −0.868220 0.496179i \(-0.834736\pi\)
0.868220 0.496179i \(-0.165264\pi\)
\(954\) 9.60476 16.6359i 0.310966 0.538608i
\(955\) 1.39222 0.000849303i 0.0450511 2.74828e-5i
\(956\) 6.29345 + 10.9006i 0.203545 + 0.352550i
\(957\) 5.02040 + 2.89853i 0.162286 + 0.0936961i
\(958\) 25.2095i 0.814483i
\(959\) 0 0
\(960\) 5.95627 + 3.44370i 0.192238 + 0.111145i
\(961\) 15.2995 26.4996i 0.493533 0.854825i
\(962\) 101.629 58.6757i 3.27666 1.89178i
\(963\) −2.06824 + 1.19410i −0.0666481 + 0.0384793i
\(964\) 19.2772 33.3891i 0.620877 1.07539i
\(965\) −29.4004 16.9983i −0.946433 0.547193i
\(966\) 0 0
\(967\) 57.4401i 1.84715i 0.383419 + 0.923575i \(0.374747\pi\)
−0.383419 + 0.923575i \(0.625253\pi\)
\(968\) 51.0696 + 29.4851i 1.64144 + 0.947686i
\(969\) 4.77226 + 8.26580i 0.153307 + 0.265536i
\(970\) 8.65720 + 0.00528121i 0.277966 + 0.000169569i
\(971\) 24.0908 41.7265i 0.773110 1.33907i −0.162740 0.986669i \(-0.552033\pi\)
0.935850 0.352397i \(-0.114633\pi\)
\(972\) 4.33317i 0.138987i
\(973\) 0 0
\(974\) 77.3449 2.47829
\(975\) 25.7488 + 0.0314155i 0.824622 + 0.00100610i
\(976\) 2.00488 + 3.47255i 0.0641746 + 0.111154i
\(977\) −11.9099 + 6.87617i −0.381031 + 0.219988i −0.678267 0.734816i \(-0.737269\pi\)
0.297236 + 0.954804i \(0.403935\pi\)
\(978\) 26.7106 + 15.4214i 0.854110 + 0.493121i
\(979\) 15.9542 0.509898
\(980\) 0 0
\(981\) −18.1096 −0.578194
\(982\) 9.02399 + 5.21001i 0.287967 + 0.166258i
\(983\) −33.0773 + 19.0972i −1.05500 + 0.609106i −0.924046 0.382282i \(-0.875138\pi\)
−0.130957 + 0.991388i \(0.541805\pi\)
\(984\) −7.79473 13.5009i −0.248487 0.430392i
\(985\) −46.3779 + 26.7386i −1.47772 + 0.851961i
\(986\) 61.8933 1.97108
\(987\) 0 0
\(988\) 51.3245i 1.63285i
\(989\) 0.874937 1.51544i 0.0278214 0.0481880i
\(990\) 0.00335777 5.50420i 0.000106717 0.174935i
\(991\) −19.7600 34.2253i −0.627697 1.08720i −0.988013 0.154372i \(-0.950665\pi\)
0.360316 0.932830i \(-0.382669\pi\)
\(992\) −1.99228 1.15025i −0.0632551 0.0365204i
\(993\) 8.53357i 0.270805i
\(994\) 0 0
\(995\) 15.6167 27.0108i 0.495082 0.856300i
\(996\) 14.3572 24.8673i 0.454924 0.787952i
\(997\) −9.98438 + 5.76448i −0.316208 + 0.182563i −0.649701 0.760190i \(-0.725106\pi\)
0.333493 + 0.942753i \(0.391773\pi\)
\(998\) −3.37435 + 1.94818i −0.106813 + 0.0616687i
\(999\) 4.52751 7.84188i 0.143244 0.248106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.q.g.79.8 16
5.4 even 2 inner 735.2.q.g.79.1 16
7.2 even 3 735.2.d.e.589.1 8
7.3 odd 6 105.2.q.a.4.1 16
7.4 even 3 inner 735.2.q.g.214.1 16
7.5 odd 6 735.2.d.d.589.1 8
7.6 odd 2 105.2.q.a.79.8 yes 16
21.2 odd 6 2205.2.d.o.1324.8 8
21.5 even 6 2205.2.d.s.1324.8 8
21.17 even 6 315.2.bf.b.109.8 16
21.20 even 2 315.2.bf.b.289.1 16
28.3 even 6 1680.2.di.d.529.4 16
28.27 even 2 1680.2.di.d.289.5 16
35.2 odd 12 3675.2.a.cb.1.4 4
35.3 even 12 525.2.i.k.151.4 8
35.4 even 6 inner 735.2.q.g.214.8 16
35.9 even 6 735.2.d.e.589.8 8
35.12 even 12 3675.2.a.bz.1.4 4
35.13 even 4 525.2.i.k.226.4 8
35.17 even 12 525.2.i.h.151.1 8
35.19 odd 6 735.2.d.d.589.8 8
35.23 odd 12 3675.2.a.bn.1.1 4
35.24 odd 6 105.2.q.a.4.8 yes 16
35.27 even 4 525.2.i.h.226.1 8
35.33 even 12 3675.2.a.bp.1.1 4
35.34 odd 2 105.2.q.a.79.1 yes 16
105.44 odd 6 2205.2.d.o.1324.1 8
105.59 even 6 315.2.bf.b.109.1 16
105.89 even 6 2205.2.d.s.1324.1 8
105.104 even 2 315.2.bf.b.289.8 16
140.59 even 6 1680.2.di.d.529.5 16
140.139 even 2 1680.2.di.d.289.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.1 16 7.3 odd 6
105.2.q.a.4.8 yes 16 35.24 odd 6
105.2.q.a.79.1 yes 16 35.34 odd 2
105.2.q.a.79.8 yes 16 7.6 odd 2
315.2.bf.b.109.1 16 105.59 even 6
315.2.bf.b.109.8 16 21.17 even 6
315.2.bf.b.289.1 16 21.20 even 2
315.2.bf.b.289.8 16 105.104 even 2
525.2.i.h.151.1 8 35.17 even 12
525.2.i.h.226.1 8 35.27 even 4
525.2.i.k.151.4 8 35.3 even 12
525.2.i.k.226.4 8 35.13 even 4
735.2.d.d.589.1 8 7.5 odd 6
735.2.d.d.589.8 8 35.19 odd 6
735.2.d.e.589.1 8 7.2 even 3
735.2.d.e.589.8 8 35.9 even 6
735.2.q.g.79.1 16 5.4 even 2 inner
735.2.q.g.79.8 16 1.1 even 1 trivial
735.2.q.g.214.1 16 7.4 even 3 inner
735.2.q.g.214.8 16 35.4 even 6 inner
1680.2.di.d.289.4 16 140.139 even 2
1680.2.di.d.289.5 16 28.27 even 2
1680.2.di.d.529.4 16 28.3 even 6
1680.2.di.d.529.5 16 140.59 even 6
2205.2.d.o.1324.1 8 105.44 odd 6
2205.2.d.o.1324.8 8 21.2 odd 6
2205.2.d.s.1324.1 8 105.89 even 6
2205.2.d.s.1324.8 8 21.5 even 6
3675.2.a.bn.1.1 4 35.23 odd 12
3675.2.a.bp.1.1 4 35.33 even 12
3675.2.a.bz.1.4 4 35.12 even 12
3675.2.a.cb.1.4 4 35.2 odd 12