Properties

Label 105.2.q.a.79.1
Level $105$
Weight $2$
Character 105.79
Analytic conductor $0.838$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [105,2,Mod(4,105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(105, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("105.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.1
Root \(1.05078 - 0.281555i\) of defining polynomial
Character \(\chi\) \(=\) 105.79
Dual form 105.2.q.a.4.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.17942 - 1.25829i) q^{2} +(0.866025 - 0.500000i) q^{3} +(2.16659 + 3.75264i) q^{4} +(2.23607 - 0.00136408i) q^{5} -2.51658 q^{6} +(1.31340 + 2.29673i) q^{7} -5.87162i q^{8} +(0.500000 - 0.866025i) q^{9} +(-4.87505 - 2.81065i) q^{10} +(-0.489068 - 0.847090i) q^{11} +(3.75264 + 2.16659i) q^{12} -5.14977i q^{13} +(0.0275122 - 6.65819i) q^{14} +(1.93581 - 1.11922i) q^{15} +(-3.05502 + 5.29146i) q^{16} +(-3.59380 + 2.07488i) q^{17} +(-2.17942 + 1.25829i) q^{18} +(-1.15001 + 1.99187i) q^{19} +(4.84975 + 8.38820i) q^{20} +(2.28580 + 1.33233i) q^{21} +2.46156i q^{22} +(4.39324 + 2.53644i) q^{23} +(-2.93581 - 5.08497i) q^{24} +(5.00000 - 0.00610036i) q^{25} +(-6.47990 + 11.2235i) q^{26} -1.00000i q^{27} +(-5.77323 + 9.90478i) q^{28} -5.92664 q^{29} +(-5.62724 + 0.00343282i) q^{30} +(-0.316594 - 0.548357i) q^{31} +(3.14643 - 1.81659i) q^{32} +(-0.847090 - 0.489068i) q^{33} +10.4432 q^{34} +(2.93998 + 5.13386i) q^{35} +4.33317 q^{36} +(-7.84188 - 4.52751i) q^{37} +(5.01270 - 2.89408i) q^{38} +(-2.57488 - 4.45983i) q^{39} +(-0.00800937 - 13.1293i) q^{40} +2.65505 q^{41} +(-3.30527 - 5.77992i) q^{42} -0.344947i q^{43} +(2.11922 - 3.67059i) q^{44} +(1.11685 - 1.93717i) q^{45} +(-6.38315 - 11.0559i) q^{46} +(3.67059 + 2.11922i) q^{47} +6.11005i q^{48} +(-3.54998 + 6.03305i) q^{49} +(-10.9048 - 6.27815i) q^{50} +(-2.07488 + 3.59380i) q^{51} +(19.3252 - 11.1574i) q^{52} +(-6.61053 + 3.81659i) q^{53} +(-1.25829 + 2.17942i) q^{54} +(-1.09474 - 1.89348i) q^{55} +(13.4855 - 7.71176i) q^{56} +2.30001i q^{57} +(12.9167 + 7.45743i) q^{58} +(0.908297 + 1.57322i) q^{59} +(8.39411 + 4.83952i) q^{60} +(-0.328128 + 0.568335i) q^{61} +1.59347i q^{62} +(2.64573 + 0.0109324i) q^{63} +3.07689 q^{64} +(-0.00702471 - 11.5152i) q^{65} +(1.23078 + 2.13177i) q^{66} +(-8.01924 + 4.62991i) q^{67} +(-15.5726 - 8.99083i) q^{68} +5.07288 q^{69} +(0.0524368 - 14.8882i) q^{70} -5.49351 q^{71} +(-5.08497 - 2.93581i) q^{72} +(-4.65758 + 2.68905i) q^{73} +(11.3938 + 19.7347i) q^{74} +(4.32707 - 2.50528i) q^{75} -9.96636 q^{76} +(1.30320 - 2.23582i) q^{77} +12.9598i q^{78} +(-5.44346 + 9.42835i) q^{79} +(-6.82402 + 11.8362i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-5.78648 - 3.34083i) q^{82} -6.62663i q^{83} +(-0.0473719 + 11.4644i) q^{84} +(-8.03316 + 4.64448i) q^{85} +(-0.434043 + 0.751785i) q^{86} +(-5.13262 + 2.96332i) q^{87} +(-4.97379 + 2.87162i) q^{88} +(8.15542 - 14.1256i) q^{89} +(-4.87162 + 2.81659i) q^{90} +(11.8277 - 6.76369i) q^{91} +21.9817i q^{92} +(-0.548357 - 0.316594i) q^{93} +(-5.33317 - 9.23733i) q^{94} +(-2.56878 + 4.45553i) q^{95} +(1.81659 - 3.14643i) q^{96} -1.53844i q^{97} +(15.3282 - 8.68165i) q^{98} -0.978135 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 2 q^{5} - 8 q^{6} + 8 q^{9} - 4 q^{10} - 24 q^{14} - 4 q^{15} - 24 q^{19} - 8 q^{20} - 4 q^{21} - 12 q^{24} - 4 q^{25} - 12 q^{26} + 24 q^{29} - 12 q^{30} + 16 q^{31} + 16 q^{34} - 10 q^{35}+ \cdots + 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.17942 1.25829i −1.54108 0.889745i −0.998771 0.0495691i \(-0.984215\pi\)
−0.542313 0.840176i \(-0.682451\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 2.16659 + 3.75264i 1.08329 + 1.87632i
\(5\) 2.23607 0.00136408i 1.00000 0.000610036i
\(6\) −2.51658 −1.02739
\(7\) 1.31340 + 2.29673i 0.496417 + 0.868084i
\(8\) 5.87162i 2.07593i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −4.87505 2.81065i −1.54163 0.888805i
\(11\) −0.489068 0.847090i −0.147459 0.255407i 0.782828 0.622238i \(-0.213776\pi\)
−0.930288 + 0.366830i \(0.880443\pi\)
\(12\) 3.75264 + 2.16659i 1.08329 + 0.625440i
\(13\) 5.14977i 1.42829i −0.699998 0.714144i \(-0.746816\pi\)
0.699998 0.714144i \(-0.253184\pi\)
\(14\) 0.0275122 6.65819i 0.00735294 1.77948i
\(15\) 1.93581 1.11922i 0.499824 0.288980i
\(16\) −3.05502 + 5.29146i −0.763756 + 1.32286i
\(17\) −3.59380 + 2.07488i −0.871626 + 0.503233i −0.867888 0.496760i \(-0.834523\pi\)
−0.00373753 + 0.999993i \(0.501190\pi\)
\(18\) −2.17942 + 1.25829i −0.513695 + 0.296582i
\(19\) −1.15001 + 1.99187i −0.263830 + 0.456967i −0.967256 0.253801i \(-0.918319\pi\)
0.703427 + 0.710768i \(0.251652\pi\)
\(20\) 4.84975 + 8.38820i 1.08444 + 1.87566i
\(21\) 2.28580 + 1.33233i 0.498803 + 0.290739i
\(22\) 2.46156i 0.524805i
\(23\) 4.39324 + 2.53644i 0.916054 + 0.528884i 0.882374 0.470548i \(-0.155944\pi\)
0.0336802 + 0.999433i \(0.489277\pi\)
\(24\) −2.93581 5.08497i −0.599270 1.03797i
\(25\) 5.00000 0.00610036i 0.999999 0.00122007i
\(26\) −6.47990 + 11.2235i −1.27081 + 2.20111i
\(27\) 1.00000i 0.192450i
\(28\) −5.77323 + 9.90478i −1.09104 + 1.87183i
\(29\) −5.92664 −1.10055 −0.550275 0.834983i \(-0.685477\pi\)
−0.550275 + 0.834983i \(0.685477\pi\)
\(30\) −5.62724 + 0.00343282i −1.02739 + 0.000626745i
\(31\) −0.316594 0.548357i −0.0568620 0.0984879i 0.836193 0.548435i \(-0.184776\pi\)
−0.893055 + 0.449947i \(0.851443\pi\)
\(32\) 3.14643 1.81659i 0.556216 0.321132i
\(33\) −0.847090 0.489068i −0.147459 0.0851357i
\(34\) 10.4432 1.79100
\(35\) 2.93998 + 5.13386i 0.496947 + 0.867781i
\(36\) 4.33317 0.722196
\(37\) −7.84188 4.52751i −1.28920 0.744318i −0.310686 0.950513i \(-0.600559\pi\)
−0.978511 + 0.206194i \(0.933892\pi\)
\(38\) 5.01270 2.89408i 0.813168 0.469483i
\(39\) −2.57488 4.45983i −0.412311 0.714144i
\(40\) −0.00800937 13.1293i −0.00126639 2.07593i
\(41\) 2.65505 0.414650 0.207325 0.978272i \(-0.433524\pi\)
0.207325 + 0.978272i \(0.433524\pi\)
\(42\) −3.30527 5.77992i −0.510014 0.891860i
\(43\) 0.344947i 0.0526039i −0.999654 0.0263020i \(-0.991627\pi\)
0.999654 0.0263020i \(-0.00837314\pi\)
\(44\) 2.11922 3.67059i 0.319484 0.553362i
\(45\) 1.11685 1.93717i 0.166491 0.288777i
\(46\) −6.38315 11.0559i −0.941144 1.63011i
\(47\) 3.67059 + 2.11922i 0.535410 + 0.309119i 0.743217 0.669051i \(-0.233299\pi\)
−0.207806 + 0.978170i \(0.566632\pi\)
\(48\) 6.11005i 0.881910i
\(49\) −3.54998 + 6.03305i −0.507140 + 0.861864i
\(50\) −10.9048 6.27815i −1.54217 0.887864i
\(51\) −2.07488 + 3.59380i −0.290542 + 0.503233i
\(52\) 19.3252 11.1574i 2.67993 1.54726i
\(53\) −6.61053 + 3.81659i −0.908027 + 0.524250i −0.879796 0.475352i \(-0.842321\pi\)
−0.0282311 + 0.999601i \(0.508987\pi\)
\(54\) −1.25829 + 2.17942i −0.171232 + 0.296582i
\(55\) −1.09474 1.89348i −0.147615 0.255317i
\(56\) 13.4855 7.71176i 1.80208 1.03053i
\(57\) 2.30001i 0.304644i
\(58\) 12.9167 + 7.45743i 1.69604 + 0.979209i
\(59\) 0.908297 + 1.57322i 0.118250 + 0.204815i 0.919074 0.394084i \(-0.128938\pi\)
−0.800824 + 0.598900i \(0.795605\pi\)
\(60\) 8.39411 + 4.83952i 1.08367 + 0.624779i
\(61\) −0.328128 + 0.568335i −0.0420125 + 0.0727678i −0.886267 0.463175i \(-0.846710\pi\)
0.844255 + 0.535942i \(0.180044\pi\)
\(62\) 1.59347i 0.202371i
\(63\) 2.64573 + 0.0109324i 0.333330 + 0.00137735i
\(64\) 3.07689 0.384611
\(65\) −0.00702471 11.5152i −0.000871308 1.42829i
\(66\) 1.23078 + 2.13177i 0.151498 + 0.262403i
\(67\) −8.01924 + 4.62991i −0.979706 + 0.565633i −0.902181 0.431357i \(-0.858035\pi\)
−0.0775244 + 0.996990i \(0.524702\pi\)
\(68\) −15.5726 8.99083i −1.88845 1.09030i
\(69\) 5.07288 0.610703
\(70\) 0.0524368 14.8882i 0.00626740 1.77948i
\(71\) −5.49351 −0.651960 −0.325980 0.945377i \(-0.605694\pi\)
−0.325980 + 0.945377i \(0.605694\pi\)
\(72\) −5.08497 2.93581i −0.599270 0.345988i
\(73\) −4.65758 + 2.68905i −0.545128 + 0.314730i −0.747155 0.664650i \(-0.768581\pi\)
0.202027 + 0.979380i \(0.435247\pi\)
\(74\) 11.3938 + 19.7347i 1.32451 + 2.29411i
\(75\) 4.32707 2.50528i 0.499647 0.289285i
\(76\) −9.96636 −1.14322
\(77\) 1.30320 2.23582i 0.148514 0.254796i
\(78\) 12.9598i 1.46741i
\(79\) −5.44346 + 9.42835i −0.612437 + 1.06077i 0.378391 + 0.925646i \(0.376477\pi\)
−0.990828 + 0.135127i \(0.956856\pi\)
\(80\) −6.82402 + 11.8362i −0.762949 + 1.32333i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −5.78648 3.34083i −0.639010 0.368933i
\(83\) 6.62663i 0.727367i −0.931523 0.363683i \(-0.881519\pi\)
0.931523 0.363683i \(-0.118481\pi\)
\(84\) −0.0473719 + 11.4644i −0.00516870 + 1.25087i
\(85\) −8.03316 + 4.64448i −0.871318 + 0.503765i
\(86\) −0.434043 + 0.751785i −0.0468041 + 0.0810671i
\(87\) −5.13262 + 2.96332i −0.550275 + 0.317701i
\(88\) −4.97379 + 2.87162i −0.530208 + 0.306116i
\(89\) 8.15542 14.1256i 0.864472 1.49731i −0.00309785 0.999995i \(-0.500986\pi\)
0.867570 0.497315i \(-0.165681\pi\)
\(90\) −4.87162 + 2.81659i −0.513514 + 0.296895i
\(91\) 11.8277 6.76369i 1.23987 0.709027i
\(92\) 21.9817i 2.29175i
\(93\) −0.548357 0.316594i −0.0568620 0.0328293i
\(94\) −5.33317 9.23733i −0.550075 0.952758i
\(95\) −2.56878 + 4.45553i −0.263551 + 0.457127i
\(96\) 1.81659 3.14643i 0.185405 0.321132i
\(97\) 1.53844i 0.156205i −0.996945 0.0781027i \(-0.975114\pi\)
0.996945 0.0781027i \(-0.0248862\pi\)
\(98\) 15.3282 8.68165i 1.54838 0.876979i
\(99\) −0.978135 −0.0983063
\(100\) 10.8558 + 18.7500i 1.08558 + 1.87500i
\(101\) 2.75805 + 4.77708i 0.274436 + 0.475338i 0.969993 0.243134i \(-0.0781754\pi\)
−0.695556 + 0.718471i \(0.744842\pi\)
\(102\) 9.04410 5.22161i 0.895499 0.517017i
\(103\) 14.3079 + 8.26066i 1.40980 + 0.813947i 0.995368 0.0961349i \(-0.0306480\pi\)
0.414429 + 0.910082i \(0.363981\pi\)
\(104\) −30.2375 −2.96503
\(105\) 5.11303 + 2.97607i 0.498980 + 0.290434i
\(106\) 19.2095 1.86579
\(107\) 2.06824 + 1.19410i 0.199944 + 0.115438i 0.596630 0.802517i \(-0.296506\pi\)
−0.396685 + 0.917955i \(0.629840\pi\)
\(108\) 3.75264 2.16659i 0.361098 0.208480i
\(109\) −9.05479 15.6833i −0.867291 1.50219i −0.864754 0.502196i \(-0.832526\pi\)
−0.00253705 0.999997i \(-0.500808\pi\)
\(110\) 0.00335777 + 5.50420i 0.000320150 + 0.524805i
\(111\) −9.05502 −0.859465
\(112\) −16.1655 0.0667973i −1.52750 0.00631176i
\(113\) 4.04373i 0.380402i −0.981745 0.190201i \(-0.939086\pi\)
0.981745 0.190201i \(-0.0609140\pi\)
\(114\) 2.89408 5.01270i 0.271056 0.469483i
\(115\) 9.82705 + 5.66566i 0.916377 + 0.528325i
\(116\) −12.8406 22.2405i −1.19222 2.06498i
\(117\) −4.45983 2.57488i −0.412311 0.238048i
\(118\) 4.57160i 0.420850i
\(119\) −9.48555 5.52887i −0.869539 0.506831i
\(120\) −6.57160 11.3663i −0.599903 1.03760i
\(121\) 5.02163 8.69771i 0.456511 0.790701i
\(122\) 1.43026 0.825761i 0.129490 0.0747608i
\(123\) 2.29934 1.32753i 0.207325 0.119699i
\(124\) 1.37186 2.37613i 0.123196 0.213383i
\(125\) 11.1803 0.0204612i 0.999998 0.00183011i
\(126\) −5.75240 3.35292i −0.512465 0.298702i
\(127\) 6.85023i 0.607860i 0.952694 + 0.303930i \(0.0982989\pi\)
−0.952694 + 0.303930i \(0.901701\pi\)
\(128\) −12.9987 7.50481i −1.14893 0.663337i
\(129\) −0.172473 0.298733i −0.0151854 0.0263020i
\(130\) −14.4742 + 25.1054i −1.26947 + 2.20189i
\(131\) 2.01270 3.48610i 0.175850 0.304582i −0.764605 0.644499i \(-0.777066\pi\)
0.940455 + 0.339918i \(0.110399\pi\)
\(132\) 4.23843i 0.368908i
\(133\) −6.08521 0.0251446i −0.527655 0.00218031i
\(134\) 23.3031 2.01308
\(135\) −0.00136408 2.23607i −0.000117402 0.192450i
\(136\) 12.1829 + 21.1014i 1.04468 + 1.80943i
\(137\) 9.72709 5.61594i 0.831041 0.479802i −0.0231680 0.999732i \(-0.507375\pi\)
0.854209 + 0.519930i \(0.174042\pi\)
\(138\) −11.0559 6.38315i −0.941144 0.543370i
\(139\) 4.98991 0.423238 0.211619 0.977352i \(-0.432126\pi\)
0.211619 + 0.977352i \(0.432126\pi\)
\(140\) −12.8958 + 22.1556i −1.08990 + 1.87249i
\(141\) 4.23843 0.356940
\(142\) 11.9727 + 6.91243i 1.00473 + 0.580078i
\(143\) −4.36232 + 2.51858i −0.364795 + 0.210615i
\(144\) 3.05502 + 5.29146i 0.254585 + 0.440955i
\(145\) −13.2524 + 0.00808443i −1.10055 + 0.000671376i
\(146\) 13.5344 1.12012
\(147\) −0.0578482 + 6.99976i −0.00477124 + 0.577331i
\(148\) 39.2370i 3.22526i
\(149\) −7.24712 + 12.5524i −0.593707 + 1.02833i 0.400021 + 0.916506i \(0.369003\pi\)
−0.993728 + 0.111825i \(0.964330\pi\)
\(150\) −12.5829 + 0.0153521i −1.02739 + 0.00125349i
\(151\) −3.94346 6.83028i −0.320914 0.555840i 0.659763 0.751474i \(-0.270657\pi\)
−0.980677 + 0.195634i \(0.937324\pi\)
\(152\) 11.6955 + 6.75240i 0.948631 + 0.547692i
\(153\) 4.14977i 0.335489i
\(154\) −5.65354 + 3.23300i −0.455575 + 0.260522i
\(155\) −0.708674 1.22573i −0.0569221 0.0984531i
\(156\) 11.1574 19.3252i 0.893309 1.54726i
\(157\) 5.67792 3.27815i 0.453147 0.261625i −0.256011 0.966674i \(-0.582408\pi\)
0.709159 + 0.705049i \(0.249075\pi\)
\(158\) 23.7272 13.6989i 1.88763 1.08983i
\(159\) −3.81659 + 6.61053i −0.302676 + 0.524250i
\(160\) 7.03316 4.06632i 0.556020 0.321471i
\(161\) −0.0554586 + 13.4215i −0.00437075 + 1.05776i
\(162\) 2.51658i 0.197721i
\(163\) −10.6138 6.12790i −0.831340 0.479974i 0.0229712 0.999736i \(-0.492687\pi\)
−0.854311 + 0.519762i \(0.826021\pi\)
\(164\) 5.75240 + 9.96346i 0.449187 + 0.778015i
\(165\) −1.89482 1.09243i −0.147511 0.0850458i
\(166\) −8.33822 + 14.4422i −0.647171 + 1.12093i
\(167\) 2.13239i 0.165009i −0.996591 0.0825047i \(-0.973708\pi\)
0.996591 0.0825047i \(-0.0262920\pi\)
\(168\) 7.82295 13.4214i 0.603553 1.03548i
\(169\) −13.5201 −1.04001
\(170\) 23.3518 0.0142454i 1.79100 0.00109257i
\(171\) 1.15001 + 1.99187i 0.0879432 + 0.152322i
\(172\) 1.29446 0.747358i 0.0987017 0.0569855i
\(173\) 10.0013 + 5.77427i 0.760387 + 0.439009i 0.829435 0.558604i \(-0.188663\pi\)
−0.0690479 + 0.997613i \(0.521996\pi\)
\(174\) 14.9149 1.13069
\(175\) 6.58099 + 11.4757i 0.497476 + 0.867478i
\(176\) 5.97645 0.450492
\(177\) 1.57322 + 0.908297i 0.118250 + 0.0682718i
\(178\) −35.5482 + 20.5238i −2.66445 + 1.53832i
\(179\) 4.44978 + 7.70725i 0.332592 + 0.576067i 0.983019 0.183502i \(-0.0587434\pi\)
−0.650427 + 0.759569i \(0.725410\pi\)
\(180\) 9.68927 0.00591081i 0.722196 0.000440566i
\(181\) −3.17940 −0.236323 −0.118161 0.992994i \(-0.537700\pi\)
−0.118161 + 0.992994i \(0.537700\pi\)
\(182\) −34.2881 0.141681i −2.54160 0.0105021i
\(183\) 0.656256i 0.0485119i
\(184\) 14.8930 25.7954i 1.09793 1.90167i
\(185\) −17.5412 10.1131i −1.28965 0.743532i
\(186\) 0.796734 + 1.37998i 0.0584194 + 0.101185i
\(187\) 3.51523 + 2.02952i 0.257059 + 0.148413i
\(188\) 18.3659i 1.33947i
\(189\) 2.29673 1.31340i 0.167063 0.0955355i
\(190\) 11.2048 6.47821i 0.812881 0.469979i
\(191\) 0.311309 0.539203i 0.0225255 0.0390154i −0.854543 0.519381i \(-0.826163\pi\)
0.877068 + 0.480365i \(0.159496\pi\)
\(192\) 2.66466 1.53844i 0.192306 0.111028i
\(193\) 13.1529 7.59383i 0.946767 0.546616i 0.0546916 0.998503i \(-0.482582\pi\)
0.892075 + 0.451887i \(0.149249\pi\)
\(194\) −1.93581 + 3.35292i −0.138983 + 0.240726i
\(195\) −5.76370 9.96897i −0.412747 0.713893i
\(196\) −30.3312 0.250666i −2.16651 0.0179047i
\(197\) 23.9410i 1.70573i −0.522136 0.852863i \(-0.674864\pi\)
0.522136 0.852863i \(-0.325136\pi\)
\(198\) 2.13177 + 1.23078i 0.151498 + 0.0874676i
\(199\) 6.97662 + 12.0839i 0.494560 + 0.856602i 0.999980 0.00627071i \(-0.00199604\pi\)
−0.505421 + 0.862873i \(0.668663\pi\)
\(200\) −0.0358190 29.3581i −0.00253279 2.07593i
\(201\) −4.62991 + 8.01924i −0.326569 + 0.565633i
\(202\) 13.8817i 0.976714i
\(203\) −7.78403 13.6119i −0.546332 0.955370i
\(204\) −17.9817 −1.25897
\(205\) 5.93688 0.00362171i 0.414650 0.000252951i
\(206\) −20.7886 36.0069i −1.44841 2.50872i
\(207\) 4.39324 2.53644i 0.305351 0.176295i
\(208\) 27.2498 + 15.7327i 1.88943 + 1.09086i
\(209\) 2.24973 0.155617
\(210\) −7.39869 12.9198i −0.510558 0.891549i
\(211\) 4.82315 0.332040 0.166020 0.986122i \(-0.446908\pi\)
0.166020 + 0.986122i \(0.446908\pi\)
\(212\) −28.6446 16.5380i −1.96732 1.13583i
\(213\) −4.75752 + 2.74676i −0.325980 + 0.188205i
\(214\) −3.00505 5.20489i −0.205421 0.355799i
\(215\) −0.000470536 0.771325i −3.20903e−5 0.0526039i
\(216\) −5.87162 −0.399513
\(217\) 0.843617 1.44734i 0.0572685 0.0982521i
\(218\) 45.5742i 3.08667i
\(219\) −2.68905 + 4.65758i −0.181709 + 0.314730i
\(220\) 4.73370 8.21057i 0.319146 0.553557i
\(221\) 10.6852 + 18.5073i 0.718762 + 1.24493i
\(222\) 19.7347 + 11.3938i 1.32451 + 0.764705i
\(223\) 15.8227i 1.05956i 0.848134 + 0.529782i \(0.177726\pi\)
−0.848134 + 0.529782i \(0.822274\pi\)
\(224\) 8.30475 + 4.84061i 0.554884 + 0.323427i
\(225\) 2.49472 4.33317i 0.166314 0.288878i
\(226\) −5.08818 + 8.81299i −0.338461 + 0.586232i
\(227\) 18.7913 10.8492i 1.24722 0.720084i 0.276667 0.960966i \(-0.410770\pi\)
0.970554 + 0.240882i \(0.0774368\pi\)
\(228\) −8.63112 + 4.98318i −0.571610 + 0.330019i
\(229\) −1.03844 + 1.79864i −0.0686223 + 0.118857i −0.898295 0.439393i \(-0.855194\pi\)
0.829673 + 0.558250i \(0.188527\pi\)
\(230\) −14.2882 24.7131i −0.942139 1.62954i
\(231\) 0.0106933 2.58788i 0.000703570 0.170270i
\(232\) 34.7990i 2.28467i
\(233\) 5.85348 + 3.37951i 0.383474 + 0.221399i 0.679329 0.733834i \(-0.262271\pi\)
−0.295854 + 0.955233i \(0.595604\pi\)
\(234\) 6.47990 + 11.2235i 0.423604 + 0.733704i
\(235\) 8.21057 + 4.73370i 0.535599 + 0.308793i
\(236\) −3.93581 + 6.81702i −0.256199 + 0.443750i
\(237\) 10.8869i 0.707182i
\(238\) 13.7161 + 23.9853i 0.889082 + 1.55474i
\(239\) 2.90478 0.187894 0.0939472 0.995577i \(-0.470051\pi\)
0.0939472 + 0.995577i \(0.470051\pi\)
\(240\) 0.00833461 + 13.6625i 0.000537997 + 0.881909i
\(241\) 4.44875 + 7.70546i 0.286569 + 0.496352i 0.972988 0.230854i \(-0.0741519\pi\)
−0.686419 + 0.727206i \(0.740819\pi\)
\(242\) −21.8885 + 12.6373i −1.40705 + 0.812358i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −2.84367 −0.182047
\(245\) −7.92976 + 13.4951i −0.506614 + 0.862173i
\(246\) −6.68165 −0.426007
\(247\) 10.2577 + 5.92227i 0.652680 + 0.376825i
\(248\) −3.21974 + 1.85892i −0.204454 + 0.118042i
\(249\) −3.31331 5.73883i −0.209973 0.363683i
\(250\) −24.3924 14.0235i −1.54271 0.886923i
\(251\) −21.1747 −1.33653 −0.668267 0.743921i \(-0.732964\pi\)
−0.668267 + 0.743921i \(0.732964\pi\)
\(252\) 5.69118 + 9.95215i 0.358510 + 0.626927i
\(253\) 4.96196i 0.311956i
\(254\) 8.61958 14.9295i 0.540840 0.936763i
\(255\) −4.63468 + 8.03882i −0.290235 + 0.503410i
\(256\) 15.8096 + 27.3830i 0.988097 + 1.71143i
\(257\) 5.39917 + 3.11721i 0.336791 + 0.194446i 0.658852 0.752273i \(-0.271042\pi\)
−0.322061 + 0.946719i \(0.604376\pi\)
\(258\) 0.868086i 0.0540447i
\(259\) 0.0989929 23.9571i 0.00615112 1.48862i
\(260\) 43.1973 24.9751i 2.67898 1.54889i
\(261\) −2.96332 + 5.13262i −0.183425 + 0.317701i
\(262\) −8.77304 + 5.06512i −0.542000 + 0.312924i
\(263\) −24.2903 + 14.0240i −1.49780 + 0.864756i −0.999997 0.00253231i \(-0.999194\pi\)
−0.497805 + 0.867289i \(0.665861\pi\)
\(264\) −2.87162 + 4.97379i −0.176736 + 0.306116i
\(265\) −14.7764 + 8.54318i −0.907707 + 0.524803i
\(266\) 13.2306 + 7.71176i 0.811221 + 0.472839i
\(267\) 16.3108i 0.998207i
\(268\) −34.7487 20.0622i −2.12262 1.22549i
\(269\) 3.70915 + 6.42444i 0.226151 + 0.391705i 0.956664 0.291194i \(-0.0940524\pi\)
−0.730513 + 0.682899i \(0.760719\pi\)
\(270\) −2.81065 + 4.87505i −0.171051 + 0.296686i
\(271\) 15.6058 27.0300i 0.947985 1.64196i 0.198323 0.980137i \(-0.436450\pi\)
0.749662 0.661821i \(-0.230216\pi\)
\(272\) 25.3553i 1.53739i
\(273\) 6.86120 11.7714i 0.415259 0.712435i
\(274\) −28.2659 −1.70761
\(275\) −2.45050 4.23246i −0.147771 0.255227i
\(276\) 10.9908 + 19.0367i 0.661570 + 1.14587i
\(277\) 10.7843 6.22629i 0.647963 0.374102i −0.139712 0.990192i \(-0.544618\pi\)
0.787675 + 0.616090i \(0.211284\pi\)
\(278\) −10.8751 6.27875i −0.652246 0.376574i
\(279\) −0.633188 −0.0379080
\(280\) 30.1441 17.2624i 1.80145 1.03163i
\(281\) −0.0409225 −0.00244123 −0.00122061 0.999999i \(-0.500389\pi\)
−0.00122061 + 0.999999i \(0.500389\pi\)
\(282\) −9.23733 5.33317i −0.550075 0.317586i
\(283\) 9.38944 5.42100i 0.558144 0.322245i −0.194256 0.980951i \(-0.562229\pi\)
0.752400 + 0.658706i \(0.228896\pi\)
\(284\) −11.9022 20.6152i −0.706264 1.22329i
\(285\) 0.00313741 + 5.14299i 0.000185844 + 0.304644i
\(286\) 12.6764 0.749574
\(287\) 3.48714 + 6.09795i 0.205839 + 0.359951i
\(288\) 3.63319i 0.214088i
\(289\) 0.110288 0.191024i 0.00648752 0.0112367i
\(290\) 28.8927 + 16.6577i 1.69664 + 0.978174i
\(291\) −0.769222 1.33233i −0.0450926 0.0781027i
\(292\) −20.1821 11.6521i −1.18107 0.681890i
\(293\) 29.6455i 1.73191i 0.500125 + 0.865953i \(0.333287\pi\)
−0.500125 + 0.865953i \(0.666713\pi\)
\(294\) 8.93380 15.1826i 0.521030 0.885470i
\(295\) 2.03316 + 3.51658i 0.118375 + 0.204743i
\(296\) −26.5838 + 46.0445i −1.54515 + 2.67628i
\(297\) −0.847090 + 0.489068i −0.0491531 + 0.0283786i
\(298\) 31.5891 18.2380i 1.82991 1.05650i
\(299\) 13.0621 22.6242i 0.755399 1.30839i
\(300\) 18.7764 + 10.8100i 1.08406 + 0.624118i
\(301\) 0.792252 0.453052i 0.0456646 0.0261135i
\(302\) 19.8481i 1.14213i
\(303\) 4.77708 + 2.75805i 0.274436 + 0.158446i
\(304\) −7.02660 12.1704i −0.403003 0.698022i
\(305\) −0.732941 + 1.27128i −0.0419681 + 0.0727934i
\(306\) 5.22161 9.04410i 0.298500 0.517017i
\(307\) 31.6055i 1.80382i −0.431923 0.901910i \(-0.642165\pi\)
0.431923 0.901910i \(-0.357835\pi\)
\(308\) 11.2137 + 0.0463361i 0.638962 + 0.00264024i
\(309\) 16.5213 0.939865
\(310\) 0.00217362 + 3.56310i 0.000123454 + 0.202371i
\(311\) −11.0851 19.2000i −0.628581 1.08873i −0.987837 0.155495i \(-0.950303\pi\)
0.359256 0.933239i \(-0.383031\pi\)
\(312\) −26.1864 + 15.1187i −1.48251 + 0.855930i
\(313\) −5.96321 3.44286i −0.337060 0.194602i 0.321911 0.946770i \(-0.395675\pi\)
−0.658971 + 0.752168i \(0.729008\pi\)
\(314\) −16.4995 −0.931118
\(315\) 5.91604 + 0.0208365i 0.333331 + 0.00117401i
\(316\) −47.1749 −2.65380
\(317\) 11.1186 + 6.41935i 0.624485 + 0.360547i 0.778613 0.627504i \(-0.215923\pi\)
−0.154128 + 0.988051i \(0.549257\pi\)
\(318\) 16.6359 9.60476i 0.932897 0.538608i
\(319\) 2.89853 + 5.02040i 0.162286 + 0.281088i
\(320\) 6.88013 0.00419713i 0.384611 0.000234627i
\(321\) 2.38820 0.133296
\(322\) 17.0090 29.1812i 0.947872 1.62621i
\(323\) 9.54453i 0.531072i
\(324\) 2.16659 3.75264i 0.120366 0.208480i
\(325\) −0.0314155 25.7488i −0.00174262 1.42829i
\(326\) 15.4214 + 26.7106i 0.854110 + 1.47936i
\(327\) −15.6833 9.05479i −0.867291 0.500731i
\(328\) 15.5895i 0.860784i
\(329\) −0.0463361 + 11.2137i −0.00255459 + 0.618233i
\(330\) 2.75501 + 4.76510i 0.151658 + 0.262310i
\(331\) 4.26678 7.39028i 0.234524 0.406207i −0.724611 0.689159i \(-0.757980\pi\)
0.959134 + 0.282952i \(0.0913137\pi\)
\(332\) 24.8673 14.3572i 1.36477 0.787952i
\(333\) −7.84188 + 4.52751i −0.429732 + 0.248106i
\(334\) −2.68317 + 4.64738i −0.146816 + 0.254293i
\(335\) −17.9252 + 10.3637i −0.979360 + 0.566231i
\(336\) −14.0332 + 8.02492i −0.765572 + 0.437795i
\(337\) 29.1131i 1.58589i 0.609292 + 0.792946i \(0.291454\pi\)
−0.609292 + 0.792946i \(0.708546\pi\)
\(338\) 29.4660 + 17.0122i 1.60274 + 0.925343i
\(339\) −2.02186 3.50197i −0.109813 0.190201i
\(340\) −34.8336 20.0829i −1.88912 1.08915i
\(341\) −0.309672 + 0.536367i −0.0167697 + 0.0290459i
\(342\) 5.78817i 0.312988i
\(343\) −18.5188 0.229575i −0.999923 0.0123959i
\(344\) −2.02540 −0.109202
\(345\) 11.3433 0.00691983i 0.610703 0.000372551i
\(346\) −14.5314 25.1691i −0.781213 1.35310i
\(347\) 11.6418 6.72137i 0.624962 0.360822i −0.153836 0.988096i \(-0.549163\pi\)
0.778798 + 0.627274i \(0.215829\pi\)
\(348\) −22.2405 12.8406i −1.19222 0.688328i
\(349\) 24.7397 1.32429 0.662144 0.749377i \(-0.269647\pi\)
0.662144 + 0.749377i \(0.269647\pi\)
\(350\) 0.0969435 33.2911i 0.00518185 1.77948i
\(351\) −5.14977 −0.274874
\(352\) −3.07764 1.77687i −0.164039 0.0947077i
\(353\) 14.5103 8.37751i 0.772303 0.445890i −0.0613923 0.998114i \(-0.519554\pi\)
0.833696 + 0.552224i \(0.186221\pi\)
\(354\) −2.28580 3.95913i −0.121489 0.210425i
\(355\) −12.2839 + 0.00749361i −0.651960 + 0.000397719i
\(356\) 70.6777 3.74591
\(357\) −10.9792 0.0453668i −0.581079 0.00240107i
\(358\) 22.3965i 1.18369i
\(359\) −16.2462 + 28.1393i −0.857442 + 1.48513i 0.0169190 + 0.999857i \(0.494614\pi\)
−0.874361 + 0.485276i \(0.838719\pi\)
\(360\) −11.3743 6.55773i −0.599481 0.345623i
\(361\) 6.85497 + 11.8732i 0.360788 + 0.624903i
\(362\) 6.92925 + 4.00060i 0.364193 + 0.210267i
\(363\) 10.0433i 0.527134i
\(364\) 51.0073 + 29.7308i 2.67351 + 1.55832i
\(365\) −10.4110 + 6.01926i −0.544936 + 0.315062i
\(366\) 0.825761 1.43026i 0.0431632 0.0747608i
\(367\) −20.7516 + 11.9809i −1.08322 + 0.625400i −0.931764 0.363064i \(-0.881731\pi\)
−0.151460 + 0.988463i \(0.548397\pi\)
\(368\) −26.8429 + 15.4978i −1.39928 + 0.807877i
\(369\) 1.32753 2.29934i 0.0691083 0.119699i
\(370\) 25.5043 + 44.1126i 1.32591 + 2.29331i
\(371\) −17.4480 10.1699i −0.905853 0.527997i
\(372\) 2.74372i 0.142255i
\(373\) 9.59160 + 5.53771i 0.496634 + 0.286732i 0.727323 0.686296i \(-0.240764\pi\)
−0.230688 + 0.973028i \(0.574098\pi\)
\(374\) −5.10744 8.84635i −0.264100 0.457434i
\(375\) 9.67221 5.60788i 0.499471 0.289590i
\(376\) 12.4432 21.5523i 0.641710 1.11147i
\(377\) 30.5208i 1.57190i
\(378\) −6.65819 0.0275122i −0.342460 0.00141507i
\(379\) 32.7423 1.68186 0.840929 0.541145i \(-0.182009\pi\)
0.840929 + 0.541145i \(0.182009\pi\)
\(380\) −22.2855 + 0.0135949i −1.14322 + 0.000697406i
\(381\) 3.42512 + 5.93247i 0.175474 + 0.303930i
\(382\) −1.35695 + 0.783435i −0.0694275 + 0.0400840i
\(383\) −20.1371 11.6262i −1.02896 0.594069i −0.112271 0.993678i \(-0.535813\pi\)
−0.916686 + 0.399609i \(0.869146\pi\)
\(384\) −15.0096 −0.765956
\(385\) 2.91100 5.00123i 0.148358 0.254886i
\(386\) −38.2210 −1.94540
\(387\) −0.298733 0.172473i −0.0151854 0.00876732i
\(388\) 5.77323 3.33317i 0.293091 0.169216i
\(389\) −18.8131 32.5852i −0.953861 1.65214i −0.736954 0.675943i \(-0.763737\pi\)
−0.216907 0.976192i \(-0.569597\pi\)
\(390\) 0.0176782 + 28.9790i 0.000895173 + 1.46741i
\(391\) −21.0513 −1.06461
\(392\) 35.4237 + 20.8441i 1.78917 + 1.05279i
\(393\) 4.02540i 0.203054i
\(394\) −30.1247 + 52.1775i −1.51766 + 2.62867i
\(395\) −12.1591 + 21.0899i −0.611790 + 1.06115i
\(396\) −2.11922 3.67059i −0.106495 0.184454i
\(397\) 0.0498605 + 0.0287870i 0.00250243 + 0.00144478i 0.501251 0.865302i \(-0.332873\pi\)
−0.498748 + 0.866747i \(0.666207\pi\)
\(398\) 35.1144i 1.76013i
\(399\) −5.28252 + 3.02083i −0.264457 + 0.151231i
\(400\) −15.2428 + 26.4759i −0.762142 + 1.32380i
\(401\) 4.53797 7.85999i 0.226615 0.392509i −0.730188 0.683247i \(-0.760567\pi\)
0.956803 + 0.290738i \(0.0939007\pi\)
\(402\) 20.1810 11.6515i 1.00654 0.581126i
\(403\) −2.82391 + 1.63039i −0.140669 + 0.0812153i
\(404\) −11.9511 + 20.6999i −0.594590 + 1.02986i
\(405\) −1.11922 1.93581i −0.0556142 0.0961911i
\(406\) −0.163055 + 39.4607i −0.00809228 + 1.95840i
\(407\) 8.85704i 0.439027i
\(408\) 21.1014 + 12.1829i 1.04468 + 0.603145i
\(409\) 8.30602 + 14.3865i 0.410706 + 0.711364i 0.994967 0.100202i \(-0.0319488\pi\)
−0.584261 + 0.811566i \(0.698615\pi\)
\(410\) −12.9435 7.46242i −0.639235 0.368543i
\(411\) 5.61594 9.72709i 0.277014 0.479802i
\(412\) 71.5897i 3.52697i
\(413\) −2.42031 + 4.15237i −0.119096 + 0.204325i
\(414\) −12.7663 −0.627430
\(415\) −0.00903927 14.8176i −0.000443720 0.727367i
\(416\) −9.35504 16.2034i −0.458669 0.794437i
\(417\) 4.32139 2.49495i 0.211619 0.122178i
\(418\) −4.90310 2.83081i −0.239818 0.138459i
\(419\) 29.8759 1.45953 0.729766 0.683697i \(-0.239629\pi\)
0.729766 + 0.683697i \(0.239629\pi\)
\(420\) −0.0902883 + 25.6352i −0.00440562 + 1.25087i
\(421\) −19.3201 −0.941602 −0.470801 0.882239i \(-0.656035\pi\)
−0.470801 + 0.882239i \(0.656035\pi\)
\(422\) −10.5117 6.06893i −0.511701 0.295431i
\(423\) 3.67059 2.11922i 0.178470 0.103040i
\(424\) 22.4096 + 38.8145i 1.08831 + 1.88500i
\(425\) −17.9564 + 10.3963i −0.871011 + 0.504296i
\(426\) 13.8249 0.669817
\(427\) −1.73628 0.00717444i −0.0840243 0.000347195i
\(428\) 10.3485i 0.500213i
\(429\) −2.51858 + 4.36232i −0.121598 + 0.210615i
\(430\) −0.969525 + 1.68163i −0.0467546 + 0.0810956i
\(431\) 10.9981 + 19.0493i 0.529761 + 0.917572i 0.999397 + 0.0347127i \(0.0110516\pi\)
−0.469637 + 0.882860i \(0.655615\pi\)
\(432\) 5.29146 + 3.05502i 0.254585 + 0.146985i
\(433\) 2.72706i 0.131054i 0.997851 + 0.0655272i \(0.0208729\pi\)
−0.997851 + 0.0655272i \(0.979127\pi\)
\(434\) −3.65978 + 2.09286i −0.175675 + 0.100460i
\(435\) −11.4729 + 6.63319i −0.550081 + 0.318037i
\(436\) 39.2360 67.9587i 1.87906 3.25463i
\(437\) −10.1045 + 5.83385i −0.483365 + 0.279071i
\(438\) 11.7212 6.76722i 0.560059 0.323350i
\(439\) −3.77183 + 6.53300i −0.180020 + 0.311803i −0.941887 0.335930i \(-0.890949\pi\)
0.761867 + 0.647733i \(0.224283\pi\)
\(440\) −11.1178 + 6.42792i −0.530021 + 0.306439i
\(441\) 3.44978 + 6.09089i 0.164275 + 0.290043i
\(442\) 53.7802i 2.55806i
\(443\) −9.03987 5.21917i −0.429497 0.247970i 0.269635 0.962963i \(-0.413097\pi\)
−0.699132 + 0.714992i \(0.746430\pi\)
\(444\) −19.6185 33.9802i −0.931053 1.61263i
\(445\) 18.2168 31.5969i 0.863559 1.49784i
\(446\) 19.9095 34.4843i 0.942743 1.63288i
\(447\) 14.4942i 0.685554i
\(448\) 4.04118 + 7.06680i 0.190928 + 0.333875i
\(449\) 1.73107 0.0816944 0.0408472 0.999165i \(-0.486994\pi\)
0.0408472 + 0.999165i \(0.486994\pi\)
\(450\) −10.8894 + 6.30474i −0.513332 + 0.297208i
\(451\) −1.29850 2.24907i −0.0611440 0.105905i
\(452\) 15.1747 8.76109i 0.713756 0.412087i
\(453\) −6.83028 3.94346i −0.320914 0.185280i
\(454\) −54.6055 −2.56276
\(455\) 26.4382 15.1402i 1.23944 0.709783i
\(456\) 13.5048 0.632421
\(457\) −26.7268 15.4307i −1.25023 0.721819i −0.279072 0.960270i \(-0.590027\pi\)
−0.971154 + 0.238452i \(0.923360\pi\)
\(458\) 4.52642 2.61333i 0.211506 0.122113i
\(459\) 2.07488 + 3.59380i 0.0968473 + 0.167744i
\(460\) 0.0299848 + 49.1525i 0.00139805 + 2.29175i
\(461\) 10.7294 0.499718 0.249859 0.968282i \(-0.419616\pi\)
0.249859 + 0.968282i \(0.419616\pi\)
\(462\) −3.27961 + 5.62663i −0.152581 + 0.261774i
\(463\) 11.1060i 0.516141i −0.966126 0.258071i \(-0.916913\pi\)
0.966126 0.258071i \(-0.0830867\pi\)
\(464\) 18.1060 31.3606i 0.840552 1.45588i
\(465\) −1.22660 0.707178i −0.0568820 0.0327946i
\(466\) −8.50481 14.7308i −0.393978 0.682389i
\(467\) −23.8932 13.7947i −1.10564 0.638344i −0.167946 0.985796i \(-0.553714\pi\)
−0.937698 + 0.347452i \(0.887047\pi\)
\(468\) 22.3148i 1.03150i
\(469\) −21.1661 12.3372i −0.977360 0.569677i
\(470\) −11.9379 20.6480i −0.550656 0.952422i
\(471\) 3.27815 5.67792i 0.151049 0.261625i
\(472\) 9.23733 5.33317i 0.425182 0.245479i
\(473\) −0.292201 + 0.168702i −0.0134354 + 0.00775694i
\(474\) 13.6989 23.7272i 0.629212 1.08983i
\(475\) −5.73788 + 9.96636i −0.263272 + 0.457288i
\(476\) 0.196582 47.5746i 0.00901034 2.18058i
\(477\) 7.63319i 0.349500i
\(478\) −6.33074 3.65505i −0.289561 0.167178i
\(479\) −5.00869 8.67530i −0.228853 0.396385i 0.728616 0.684923i \(-0.240164\pi\)
−0.957468 + 0.288538i \(0.906831\pi\)
\(480\) 4.05774 7.03812i 0.185209 0.321245i
\(481\) −23.3156 + 40.3839i −1.06310 + 1.84135i
\(482\) 22.3913i 1.01989i
\(483\) 6.66270 + 11.6511i 0.303163 + 0.530141i
\(484\) 43.5192 1.97814
\(485\) −0.00209857 3.44007i −9.52910e−5 0.156205i
\(486\) 1.25829 + 2.17942i 0.0570772 + 0.0988606i
\(487\) −26.6165 + 15.3671i −1.20611 + 0.696348i −0.961907 0.273376i \(-0.911860\pi\)
−0.244203 + 0.969724i \(0.578526\pi\)
\(488\) 3.33704 + 1.92664i 0.151061 + 0.0872150i
\(489\) −12.2558 −0.554227
\(490\) 34.2631 19.4337i 1.54785 0.877924i
\(491\) 4.14054 0.186860 0.0934301 0.995626i \(-0.470217\pi\)
0.0934301 + 0.995626i \(0.470217\pi\)
\(492\) 9.96346 + 5.75240i 0.449187 + 0.259338i
\(493\) 21.2992 12.2971i 0.959268 0.553833i
\(494\) −14.9039 25.8143i −0.670557 1.16144i
\(495\) −2.18718 + 0.00133426i −0.0983063 + 5.99704e-5i
\(496\) 3.86881 0.173715
\(497\) −7.21516 12.6171i −0.323644 0.565956i
\(498\) 16.6764i 0.747289i
\(499\) −0.774139 + 1.34085i −0.0346552 + 0.0600246i −0.882833 0.469687i \(-0.844367\pi\)
0.848178 + 0.529712i \(0.177700\pi\)
\(500\) 24.2999 + 41.9114i 1.08673 + 1.87433i
\(501\) −1.06620 1.84671i −0.0476341 0.0825047i
\(502\) 46.1486 + 26.6439i 2.05971 + 1.18918i
\(503\) 15.1658i 0.676210i −0.941108 0.338105i \(-0.890214\pi\)
0.941108 0.338105i \(-0.109786\pi\)
\(504\) 0.0641907 15.5347i 0.00285928 0.691971i
\(505\) 6.17370 + 10.6781i 0.274726 + 0.475170i
\(506\) −6.24359 + 10.8142i −0.277561 + 0.480750i
\(507\) −11.7088 + 6.76006i −0.520004 + 0.300225i
\(508\) −25.7064 + 14.8416i −1.14054 + 0.658491i
\(509\) −10.2327 + 17.7236i −0.453558 + 0.785586i −0.998604 0.0528204i \(-0.983179\pi\)
0.545046 + 0.838406i \(0.316512\pi\)
\(510\) 20.2161 11.6882i 0.895183 0.517563i
\(511\) −12.2933 7.16542i −0.543823 0.316980i
\(512\) 49.5528i 2.18994i
\(513\) 1.99187 + 1.15001i 0.0879432 + 0.0507741i
\(514\) −7.84471 13.5874i −0.346015 0.599316i
\(515\) 32.0047 + 18.4519i 1.41029 + 0.813087i
\(516\) 0.747358 1.29446i 0.0329006 0.0569855i
\(517\) 4.14576i 0.182330i
\(518\) −30.3608 + 52.0882i −1.33398 + 2.28862i
\(519\) 11.5485 0.506924
\(520\) −67.6130 + 0.0412464i −2.96503 + 0.00180878i
\(521\) −1.37337 2.37875i −0.0601685 0.104215i 0.834372 0.551202i \(-0.185830\pi\)
−0.894541 + 0.446987i \(0.852497\pi\)
\(522\) 12.9167 7.45743i 0.565347 0.326403i
\(523\) 34.5258 + 19.9335i 1.50971 + 0.871629i 0.999936 + 0.0113184i \(0.00360283\pi\)
0.509770 + 0.860311i \(0.329731\pi\)
\(524\) 17.4427 0.761990
\(525\) 11.4371 + 6.64771i 0.499157 + 0.290130i
\(526\) 70.5850 3.07765
\(527\) 2.27556 + 1.31379i 0.0991247 + 0.0572297i
\(528\) 5.17576 2.98823i 0.225246 0.130046i
\(529\) 1.36705 + 2.36780i 0.0594370 + 0.102948i
\(530\) 42.9538 0.0262034i 1.86579 0.00113820i
\(531\) 1.81659 0.0788335
\(532\) −13.0898 22.8901i −0.567514 0.992411i
\(533\) 13.6729i 0.592239i
\(534\) −20.5238 + 35.5482i −0.888150 + 1.53832i
\(535\) 4.62635 + 2.66727i 0.200015 + 0.115316i
\(536\) 27.1851 + 47.0859i 1.17422 + 2.03380i
\(537\) 7.70725 + 4.44978i 0.332592 + 0.192022i
\(538\) 18.6688i 0.804867i
\(539\) 6.84671 + 0.0565834i 0.294909 + 0.00243722i
\(540\) 8.38820 4.84975i 0.360971 0.208700i
\(541\) −13.2493 + 22.9485i −0.569633 + 0.986633i 0.426969 + 0.904266i \(0.359581\pi\)
−0.996602 + 0.0823667i \(0.973752\pi\)
\(542\) −68.0232 + 39.2732i −2.92185 + 1.68693i
\(543\) −2.75344 + 1.58970i −0.118161 + 0.0682205i
\(544\) −7.53844 + 13.0570i −0.323208 + 0.559813i
\(545\) −20.2685 35.0567i −0.868207 1.50166i
\(546\) −29.7652 + 17.0214i −1.27383 + 0.728447i
\(547\) 12.9090i 0.551950i 0.961165 + 0.275975i \(0.0890008\pi\)
−0.961165 + 0.275975i \(0.910999\pi\)
\(548\) 42.1492 + 24.3348i 1.80052 + 1.03953i
\(549\) 0.328128 + 0.568335i 0.0140042 + 0.0242559i
\(550\) 0.0150164 + 12.3078i 0.000640301 + 0.524805i
\(551\) 6.81568 11.8051i 0.290358 0.502914i
\(552\) 29.7860i 1.26778i
\(553\) −28.8038 0.119020i −1.22486 0.00506124i
\(554\) −31.3379 −1.33142
\(555\) −20.2476 + 0.0123518i −0.859465 + 0.000524305i
\(556\) 10.8111 + 18.7253i 0.458492 + 0.794131i
\(557\) 6.22247 3.59254i 0.263654 0.152221i −0.362346 0.932044i \(-0.618024\pi\)
0.626000 + 0.779823i \(0.284691\pi\)
\(558\) 1.37998 + 0.796734i 0.0584194 + 0.0337285i
\(559\) −1.77640 −0.0751336
\(560\) −36.1473 0.127312i −1.52750 0.00537992i
\(561\) 4.05903 0.171373
\(562\) 0.0891873 + 0.0514923i 0.00376214 + 0.00217207i
\(563\) −2.06720 + 1.19350i −0.0871220 + 0.0502999i −0.542928 0.839779i \(-0.682684\pi\)
0.455806 + 0.890079i \(0.349351\pi\)
\(564\) 9.18293 + 15.9053i 0.386671 + 0.669734i
\(565\) −0.00551598 9.04205i −0.000232059 0.380402i
\(566\) −27.2847 −1.14686
\(567\) 1.33233 2.28580i 0.0559527 0.0959947i
\(568\) 32.2558i 1.35342i
\(569\) 14.9271 25.8545i 0.625776 1.08388i −0.362615 0.931939i \(-0.618116\pi\)
0.988390 0.151936i \(-0.0485508\pi\)
\(570\) 6.46453 11.2127i 0.270769 0.469648i
\(571\) 9.73170 + 16.8558i 0.407259 + 0.705393i 0.994582 0.103960i \(-0.0331513\pi\)
−0.587322 + 0.809353i \(0.699818\pi\)
\(572\) −18.9027 10.9135i −0.790361 0.456315i
\(573\) 0.622618i 0.0260103i
\(574\) 0.0730463 17.6778i 0.00304889 0.737859i
\(575\) 21.9817 + 12.6554i 0.916699 + 0.527766i
\(576\) 1.53844 2.66466i 0.0641019 0.111028i
\(577\) 3.43108 1.98094i 0.142838 0.0824675i −0.426878 0.904309i \(-0.640387\pi\)
0.569716 + 0.821842i \(0.307053\pi\)
\(578\) −0.480727 + 0.277548i −0.0199956 + 0.0115445i
\(579\) 7.59383 13.1529i 0.315589 0.546616i
\(580\) −28.7428 49.7139i −1.19348 2.06426i
\(581\) 15.2196 8.70339i 0.631416 0.361078i
\(582\) 3.87162i 0.160484i
\(583\) 6.46600 + 3.73315i 0.267794 + 0.154611i
\(584\) 15.7891 + 27.3475i 0.653357 + 1.13165i
\(585\) −9.97599 5.75153i −0.412457 0.237797i
\(586\) 37.3026 64.6100i 1.54096 2.66901i
\(587\) 13.9419i 0.575446i −0.957714 0.287723i \(-0.907102\pi\)
0.957714 0.287723i \(-0.0928982\pi\)
\(588\) −26.3929 + 14.9485i −1.08843 + 0.616466i
\(589\) 1.45634 0.0600075
\(590\) −0.00623605 10.2224i −0.000256734 0.420850i
\(591\) −11.9705 20.7335i −0.492400 0.852863i
\(592\) 47.9143 27.6633i 1.96926 1.13696i
\(593\) 33.3396 + 19.2486i 1.36909 + 0.790447i 0.990812 0.135243i \(-0.0431816\pi\)
0.378282 + 0.925690i \(0.376515\pi\)
\(594\) 2.46156 0.100999
\(595\) −21.2179 12.3500i −0.869848 0.506300i
\(596\) −62.8061 −2.57264
\(597\) 12.0839 + 6.97662i 0.494560 + 0.285534i
\(598\) −56.9356 + 32.8718i −2.32827 + 1.34423i
\(599\) 8.74985 + 15.1552i 0.357509 + 0.619224i 0.987544 0.157343i \(-0.0502927\pi\)
−0.630035 + 0.776567i \(0.716959\pi\)
\(600\) −14.7101 25.4069i −0.600536 1.03723i
\(601\) 34.5192 1.40807 0.704033 0.710167i \(-0.251381\pi\)
0.704033 + 0.710167i \(0.251381\pi\)
\(602\) −2.29672 0.00949025i −0.0936074 0.000386794i
\(603\) 9.25982i 0.377089i
\(604\) 17.0877 29.5968i 0.695289 1.20428i
\(605\) 11.2168 19.4555i 0.456029 0.790979i
\(606\) −6.94086 12.0219i −0.281953 0.488357i
\(607\) 9.45318 + 5.45780i 0.383693 + 0.221525i 0.679424 0.733746i \(-0.262230\pi\)
−0.295731 + 0.955271i \(0.595563\pi\)
\(608\) 8.35639i 0.338896i
\(609\) −13.5471 7.89626i −0.548958 0.319972i
\(610\) 3.19703 1.84841i 0.129444 0.0748398i
\(611\) 10.9135 18.9027i 0.441512 0.764721i
\(612\) −15.5726 + 8.99083i −0.629484 + 0.363433i
\(613\) −22.6183 + 13.0587i −0.913543 + 0.527435i −0.881570 0.472054i \(-0.843513\pi\)
−0.0319739 + 0.999489i \(0.510179\pi\)
\(614\) −39.7689 + 68.8817i −1.60494 + 2.77984i
\(615\) 5.13968 2.97158i 0.207252 0.119825i
\(616\) −13.1279 7.65190i −0.528938 0.308304i
\(617\) 11.6689i 0.469772i −0.972023 0.234886i \(-0.924528\pi\)
0.972023 0.234886i \(-0.0754717\pi\)
\(618\) −36.0069 20.7886i −1.44841 0.836240i
\(619\) −0.411816 0.713286i −0.0165523 0.0286694i 0.857631 0.514266i \(-0.171936\pi\)
−0.874183 + 0.485597i \(0.838602\pi\)
\(620\) 3.06432 5.31505i 0.123066 0.213458i
\(621\) 2.53644 4.39324i 0.101784 0.176295i
\(622\) 55.7933i 2.23711i
\(623\) 43.1540 + 0.178316i 1.72893 + 0.00714408i
\(624\) 31.4653 1.25962
\(625\) 24.9999 0.0610036i 0.999997 0.00244014i
\(626\) 8.66423 + 15.0069i 0.346292 + 0.599796i
\(627\) 1.94832 1.12486i 0.0778084 0.0449227i
\(628\) 24.6034 + 14.2048i 0.981783 + 0.566833i
\(629\) 37.5763 1.49826
\(630\) −12.8673 7.48951i −0.512647 0.298389i
\(631\) −20.5920 −0.819755 −0.409877 0.912141i \(-0.634429\pi\)
−0.409877 + 0.912141i \(0.634429\pi\)
\(632\) 55.3597 + 31.9619i 2.20209 + 1.27138i
\(633\) 4.17697 2.41158i 0.166020 0.0958516i
\(634\) −16.1548 27.9810i −0.641590 1.11127i
\(635\) 0.00934428 + 15.3176i 0.000370817 + 0.607860i
\(636\) −33.0759 −1.31155
\(637\) 31.0688 + 18.2816i 1.23099 + 0.724342i
\(638\) 14.5888i 0.577575i
\(639\) −2.74676 + 4.75752i −0.108660 + 0.188205i
\(640\) −29.0762 16.7635i −1.14934 0.662636i
\(641\) −14.8371 25.6986i −0.586029 1.01503i −0.994746 0.102371i \(-0.967357\pi\)
0.408717 0.912661i \(-0.365976\pi\)
\(642\) −5.20489 3.00505i −0.205421 0.118600i
\(643\) 11.1286i 0.438870i 0.975627 + 0.219435i \(0.0704214\pi\)
−0.975627 + 0.219435i \(0.929579\pi\)
\(644\) −50.4861 + 28.8706i −1.98943 + 1.13766i
\(645\) −0.386070 0.667751i −0.0152015 0.0262927i
\(646\) −12.0098 + 20.8016i −0.472519 + 0.818426i
\(647\) 9.45991 5.46168i 0.371907 0.214721i −0.302384 0.953186i \(-0.597783\pi\)
0.674291 + 0.738465i \(0.264449\pi\)
\(648\) −5.08497 + 2.93581i −0.199757 + 0.115329i
\(649\) 0.888437 1.53882i 0.0348742 0.0604039i
\(650\) −32.3310 + 56.1571i −1.26813 + 2.20266i
\(651\) 0.00692225 1.67524i 0.000271304 0.0656580i
\(652\) 53.1065i 2.07981i
\(653\) 6.21006 + 3.58538i 0.243019 + 0.140307i 0.616563 0.787305i \(-0.288524\pi\)
−0.373545 + 0.927612i \(0.621858\pi\)
\(654\) 22.7871 + 39.4684i 0.891046 + 1.54334i
\(655\) 4.49577 7.79789i 0.175664 0.304689i
\(656\) −8.11125 + 14.0491i −0.316691 + 0.548525i
\(657\) 5.37811i 0.209820i
\(658\) 14.2111 24.3812i 0.554007 0.950477i
\(659\) −14.1232 −0.550161 −0.275080 0.961421i \(-0.588704\pi\)
−0.275080 + 0.961421i \(0.588704\pi\)
\(660\) −0.00578157 9.47742i −0.000225047 0.368908i
\(661\) −14.4608 25.0469i −0.562461 0.974212i −0.997281 0.0736941i \(-0.976521\pi\)
0.434819 0.900518i \(-0.356812\pi\)
\(662\) −18.5982 + 10.7377i −0.722841 + 0.417333i
\(663\) 18.5073 + 10.6852i 0.718762 + 0.414978i
\(664\) −38.9090 −1.50996
\(665\) −13.6070 0.0479243i −0.527656 0.00185843i
\(666\) 22.7877 0.883005
\(667\) −26.0372 15.0326i −1.00816 0.582063i
\(668\) 8.00210 4.62001i 0.309610 0.178754i
\(669\) 7.91134 + 13.7028i 0.305870 + 0.529782i
\(670\) 52.1072 0.0317873i 2.01308 0.00122805i
\(671\) 0.641907 0.0247806
\(672\) 9.61243 + 0.0397194i 0.370808 + 0.00153221i
\(673\) 14.4081i 0.555392i −0.960669 0.277696i \(-0.910429\pi\)
0.960669 0.277696i \(-0.0895709\pi\)
\(674\) 36.6327 63.4497i 1.41104 2.44399i
\(675\) −0.00610036 5.00000i −0.000234803 0.192450i
\(676\) −29.2925 50.7361i −1.12663 1.95139i
\(677\) −26.0991 15.0683i −1.00307 0.579123i −0.0939148 0.995580i \(-0.529938\pi\)
−0.909155 + 0.416457i \(0.863271\pi\)
\(678\) 10.1764i 0.390821i
\(679\) 3.53340 2.02059i 0.135599 0.0775430i
\(680\) 27.2706 + 47.1676i 1.04578 + 1.80880i
\(681\) 10.8492 18.7913i 0.415740 0.720084i
\(682\) 1.34981 0.779314i 0.0516870 0.0298415i
\(683\) −13.4380 + 7.75842i −0.514190 + 0.296868i −0.734554 0.678550i \(-0.762609\pi\)
0.220364 + 0.975418i \(0.429275\pi\)
\(684\) −4.98318 + 8.63112i −0.190537 + 0.330019i
\(685\) 21.7428 12.5709i 0.830748 0.480309i
\(686\) 40.0715 + 23.8024i 1.52994 + 0.908780i
\(687\) 2.07689i 0.0792383i
\(688\) 1.82527 + 1.05382i 0.0695878 + 0.0401766i
\(689\) 19.6546 + 34.0427i 0.748780 + 1.29692i
\(690\) −24.7305 14.2581i −0.941476 0.542796i
\(691\) −22.8917 + 39.6496i −0.870842 + 1.50834i −0.00971588 + 0.999953i \(0.503093\pi\)
−0.861127 + 0.508391i \(0.830241\pi\)
\(692\) 50.0418i 1.90230i
\(693\) −1.28468 2.24652i −0.0488009 0.0853381i
\(694\) −33.8297 −1.28416
\(695\) 11.1578 0.00680665i 0.423238 0.000258191i
\(696\) 17.3995 + 30.1368i 0.659526 + 1.14233i
\(697\) −9.54174 + 5.50893i −0.361419 + 0.208666i
\(698\) −53.9183 31.1298i −2.04084 1.17828i
\(699\) 6.75902 0.255650
\(700\) −28.8057 + 49.5591i −1.08875 + 1.87316i
\(701\) 24.0419 0.908050 0.454025 0.890989i \(-0.349988\pi\)
0.454025 + 0.890989i \(0.349988\pi\)
\(702\) 11.2235 + 6.47990i 0.423604 + 0.244568i
\(703\) 18.0364 10.4133i 0.680257 0.392747i
\(704\) −1.50481 2.60640i −0.0567145 0.0982325i
\(705\) 9.47742 0.00578157i 0.356940 0.000217747i
\(706\) −42.1653 −1.58691
\(707\) −7.34928 + 12.6087i −0.276398 + 0.474200i
\(708\) 7.87162i 0.295834i
\(709\) 9.19854 15.9323i 0.345459 0.598352i −0.639978 0.768393i \(-0.721057\pi\)
0.985437 + 0.170041i \(0.0543901\pi\)
\(710\) 26.7812 + 15.4403i 1.00508 + 0.579465i
\(711\) 5.44346 + 9.42835i 0.204146 + 0.353591i
\(712\) −82.9401 47.8855i −3.10831 1.79458i
\(713\) 3.21209i 0.120294i
\(714\) 23.8711 + 13.9138i 0.893355 + 0.520712i
\(715\) −9.75100 + 5.63768i −0.364667 + 0.210837i
\(716\) −19.2817 + 33.3969i −0.720590 + 1.24810i
\(717\) 2.51561 1.45239i 0.0939472 0.0542405i
\(718\) 70.8147 40.8849i 2.64278 1.52581i
\(719\) −8.12275 + 14.0690i −0.302927 + 0.524686i −0.976798 0.214164i \(-0.931297\pi\)
0.673870 + 0.738850i \(0.264631\pi\)
\(720\) 6.83846 + 11.8279i 0.254854 + 0.440799i
\(721\) −0.180617 + 43.7109i −0.00672654 + 1.62788i
\(722\) 34.5021i 1.28404i
\(723\) 7.70546 + 4.44875i 0.286569 + 0.165451i
\(724\) −6.88844 11.9311i −0.256007 0.443417i
\(725\) −29.6332 + 0.0361547i −1.10055 + 0.00134275i
\(726\) −12.6373 + 21.8885i −0.469015 + 0.812358i
\(727\) 42.6977i 1.58357i −0.610800 0.791785i \(-0.709152\pi\)
0.610800 0.791785i \(-0.290848\pi\)
\(728\) −39.7138 69.4474i −1.47189 2.57389i
\(729\) −1.00000 −0.0370370
\(730\) 30.2639 0.0184621i 1.12012 0.000683313i
\(731\) 0.715725 + 1.23967i 0.0264720 + 0.0458509i
\(732\) −2.46269 + 1.42184i −0.0910237 + 0.0525526i
\(733\) −40.4538 23.3560i −1.49420 0.862674i −0.494218 0.869338i \(-0.664545\pi\)
−0.999978 + 0.00666408i \(0.997879\pi\)
\(734\) 60.3020 2.22579
\(735\) −0.119804 + 15.6520i −0.00441904 + 0.577333i
\(736\) 18.4307 0.679366
\(737\) 7.84390 + 4.52868i 0.288934 + 0.166816i
\(738\) −5.78648 + 3.34083i −0.213003 + 0.122978i
\(739\) 3.52410 + 6.10393i 0.129636 + 0.224537i 0.923536 0.383513i \(-0.125286\pi\)
−0.793899 + 0.608049i \(0.791952\pi\)
\(740\) −0.0535225 87.7366i −0.00196753 3.22526i
\(741\) 11.8445 0.435120
\(742\) 25.2297 + 44.1192i 0.926212 + 1.61967i
\(743\) 8.55510i 0.313856i 0.987610 + 0.156928i \(0.0501591\pi\)
−0.987610 + 0.156928i \(0.949841\pi\)
\(744\) −1.85892 + 3.21974i −0.0681513 + 0.118042i
\(745\) −16.1879 + 28.0778i −0.593080 + 1.02869i
\(746\) −13.9361 24.1380i −0.510237 0.883756i
\(747\) −5.73883 3.31331i −0.209973 0.121228i
\(748\) 17.5885i 0.643099i
\(749\) −0.0261087 + 6.31853i −0.000953990 + 0.230874i
\(750\) −28.1362 + 0.0514923i −1.02739 + 0.00188023i
\(751\) 1.48823 2.57768i 0.0543062 0.0940611i −0.837594 0.546293i \(-0.816039\pi\)
0.891901 + 0.452232i \(0.149372\pi\)
\(752\) −22.4275 + 12.9485i −0.817846 + 0.472183i
\(753\) −18.3378 + 10.5873i −0.668267 + 0.385824i
\(754\) 38.4041 66.5178i 1.39859 2.42243i
\(755\) −8.82716 15.2676i −0.321253 0.555644i
\(756\) 9.90478 + 5.77323i 0.360233 + 0.209970i
\(757\) 43.6750i 1.58740i 0.608313 + 0.793698i \(0.291847\pi\)
−0.608313 + 0.793698i \(0.708153\pi\)
\(758\) −71.3592 41.1993i −2.59188 1.49643i
\(759\) −2.48098 4.29718i −0.0900539 0.155978i
\(760\) 26.1612 + 15.0829i 0.948965 + 0.547113i
\(761\) −13.3628 + 23.1451i −0.484402 + 0.839008i −0.999839 0.0179187i \(-0.994296\pi\)
0.515438 + 0.856927i \(0.327629\pi\)
\(762\) 17.2392i 0.624509i
\(763\) 24.1280 41.3949i 0.873491 1.49860i
\(764\) 2.69791 0.0976071
\(765\) 0.00566063 + 9.27916i 0.000204660 + 0.335489i
\(766\) 29.2581 + 50.6766i 1.05714 + 1.83102i
\(767\) 8.10170 4.67752i 0.292535 0.168895i
\(768\) 27.3830 + 15.8096i 0.988097 + 0.570478i
\(769\) 4.04661 0.145925 0.0729623 0.997335i \(-0.476755\pi\)
0.0729623 + 0.997335i \(0.476755\pi\)
\(770\) −12.6373 + 7.23692i −0.455416 + 0.260800i
\(771\) 6.23442 0.224527
\(772\) 56.9938 + 32.9054i 2.05125 + 1.18429i
\(773\) −5.46553 + 3.15553i −0.196581 + 0.113496i −0.595060 0.803681i \(-0.702872\pi\)
0.398478 + 0.917178i \(0.369538\pi\)
\(774\) 0.434043 + 0.751785i 0.0156014 + 0.0270224i
\(775\) −1.58631 2.73985i −0.0569821 0.0984184i
\(776\) −9.03316 −0.324272
\(777\) −11.8928 20.7970i −0.426653 0.746088i
\(778\) 94.6892i 3.39477i
\(779\) −3.05333 + 5.28852i −0.109397 + 0.189481i
\(780\) 24.9224 43.2277i 0.892365 1.54780i
\(781\) 2.68670 + 4.65350i 0.0961376 + 0.166515i
\(782\) 45.8796 + 26.4886i 1.64065 + 0.947230i
\(783\) 5.92664i 0.211801i
\(784\) −21.0783 37.2157i −0.752798 1.32913i
\(785\) 12.6917 7.33791i 0.452988 0.261901i
\(786\) −5.06512 + 8.77304i −0.180667 + 0.312924i
\(787\) 25.9595 14.9877i 0.925358 0.534256i 0.0400174 0.999199i \(-0.487259\pi\)
0.885340 + 0.464943i \(0.153925\pi\)
\(788\) 89.8419 51.8702i 3.20048 1.84780i
\(789\) −14.0240 + 24.2903i −0.499267 + 0.864756i
\(790\) 53.0369 30.6640i 1.88697 1.09098i
\(791\) 9.28737 5.31102i 0.330221 0.188838i
\(792\) 5.74324i 0.204077i
\(793\) 2.92679 + 1.68978i 0.103933 + 0.0600060i
\(794\) −0.0724448 0.125478i −0.00257097 0.00445305i
\(795\) −8.52515 + 14.7868i −0.302356 + 0.524434i
\(796\) −30.2309 + 52.3615i −1.07151 + 1.85590i
\(797\) 0.676527i 0.0239638i 0.999928 + 0.0119819i \(0.00381405\pi\)
−0.999928 + 0.0119819i \(0.996186\pi\)
\(798\) 15.3139 + 0.0632784i 0.542107 + 0.00224003i
\(799\) −17.5885 −0.622236
\(800\) 15.7211 9.10216i 0.555824 0.321810i
\(801\) −8.15542 14.1256i −0.288157 0.499103i
\(802\) −19.7803 + 11.4202i −0.698466 + 0.403260i
\(803\) 4.55574 + 2.63026i 0.160769 + 0.0928198i
\(804\) −40.1244 −1.41508
\(805\) −0.105701 + 30.0114i −0.00372548 + 1.05776i
\(806\) 8.20600 0.289044
\(807\) 6.42444 + 3.70915i 0.226151 + 0.130568i
\(808\) 28.0492 16.1942i 0.986768 0.569711i
\(809\) −25.0612 43.4072i −0.881104 1.52612i −0.850115 0.526596i \(-0.823468\pi\)
−0.0309881 0.999520i \(-0.509865\pi\)
\(810\) 0.00343282 + 5.62724i 0.000120617 + 0.197721i
\(811\) −36.4884 −1.28128 −0.640641 0.767841i \(-0.721331\pi\)
−0.640641 + 0.767841i \(0.721331\pi\)
\(812\) 34.2159 58.7021i 1.20074 2.06004i
\(813\) 31.2116i 1.09464i
\(814\) 11.1447 19.3032i 0.390622 0.676578i
\(815\) −23.7416 13.6879i −0.831633 0.479467i
\(816\) −12.6776 21.9583i −0.443806 0.768695i
\(817\) 0.687090 + 0.396691i 0.0240382 + 0.0138785i
\(818\) 41.8055i 1.46170i
\(819\) 0.0562992 13.6249i 0.00196725 0.476092i
\(820\) 12.8764 + 22.2711i 0.449662 + 0.777741i
\(821\) −19.3654 + 33.5419i −0.675858 + 1.17062i 0.300359 + 0.953826i \(0.402893\pi\)
−0.976217 + 0.216794i \(0.930440\pi\)
\(822\) −24.4790 + 14.1329i −0.853803 + 0.492943i
\(823\) −18.1702 + 10.4906i −0.633375 + 0.365679i −0.782058 0.623206i \(-0.785830\pi\)
0.148683 + 0.988885i \(0.452497\pi\)
\(824\) 48.5034 84.0104i 1.68970 2.92664i
\(825\) −4.23843 2.44017i −0.147563 0.0849558i
\(826\) 10.4998 6.00433i 0.365333 0.208917i
\(827\) 37.8114i 1.31483i 0.753528 + 0.657416i \(0.228350\pi\)
−0.753528 + 0.657416i \(0.771650\pi\)
\(828\) 19.0367 + 10.9908i 0.661570 + 0.381958i
\(829\) −26.6591 46.1749i −0.925908 1.60372i −0.790095 0.612985i \(-0.789969\pi\)
−0.135813 0.990734i \(-0.543365\pi\)
\(830\) −18.6251 + 32.3052i −0.646487 + 1.12133i
\(831\) 6.22629 10.7843i 0.215988 0.374102i
\(832\) 15.8453i 0.549336i
\(833\) 0.240057 29.0474i 0.00831747 1.00643i
\(834\) −12.5575 −0.434831
\(835\) −0.00290876 4.76817i −0.000100662 0.165009i
\(836\) 4.87423 + 8.44241i 0.168579 + 0.291987i
\(837\) −0.548357 + 0.316594i −0.0189540 + 0.0109431i
\(838\) −65.1121 37.5925i −2.24926 1.29861i
\(839\) −52.6452 −1.81752 −0.908758 0.417324i \(-0.862968\pi\)
−0.908758 + 0.417324i \(0.862968\pi\)
\(840\) 17.4743 30.0217i 0.602922 1.03585i
\(841\) 6.12510 0.211210
\(842\) 42.1066 + 24.3102i 1.45109 + 0.837786i
\(843\) −0.0354399 + 0.0204612i −0.00122061 + 0.000704722i
\(844\) 10.4498 + 18.0996i 0.359696 + 0.623012i
\(845\) −30.2319 + 0.0184426i −1.04001 + 0.000634443i
\(846\) −10.6663 −0.366717
\(847\) 26.5717 + 0.109797i 0.913015 + 0.00377266i
\(848\) 46.6392i 1.60160i
\(849\) 5.42100 9.38944i 0.186048 0.322245i
\(850\) 52.2161 0.0637075i 1.79100 0.00218515i
\(851\) −22.9675 39.7809i −0.787316 1.36367i
\(852\) −20.6152 11.9022i −0.706264 0.407762i
\(853\) 5.01225i 0.171616i 0.996312 + 0.0858081i \(0.0273472\pi\)
−0.996312 + 0.0858081i \(0.972653\pi\)
\(854\) 3.77505 + 2.20037i 0.129180 + 0.0752953i
\(855\) 2.57421 + 4.45239i 0.0880362 + 0.152268i
\(856\) 7.01129 12.1439i 0.239641 0.415071i
\(857\) −33.2737 + 19.2106i −1.13661 + 0.656222i −0.945589 0.325364i \(-0.894513\pi\)
−0.191021 + 0.981586i \(0.561180\pi\)
\(858\) 10.9781 6.33822i 0.374787 0.216383i
\(859\) 11.6709 20.2146i 0.398207 0.689714i −0.595298 0.803505i \(-0.702966\pi\)
0.993505 + 0.113791i \(0.0362994\pi\)
\(860\) 2.89348 1.67291i 0.0986670 0.0570457i
\(861\) 6.06893 + 3.53741i 0.206828 + 0.120555i
\(862\) 55.3553i 1.88541i
\(863\) −47.0908 27.1879i −1.60299 0.925486i −0.990885 0.134707i \(-0.956991\pi\)
−0.612103 0.790778i \(-0.709676\pi\)
\(864\) −1.81659 3.14643i −0.0618018 0.107044i
\(865\) 22.3715 + 12.8980i 0.760654 + 0.438546i
\(866\) 3.43144 5.94342i 0.116605 0.201966i
\(867\) 0.220576i 0.00749114i
\(868\) 7.25913 + 0.0299953i 0.246391 + 0.00101811i
\(869\) 10.6489 0.361239
\(870\) 33.3507 0.0203451i 1.13069 0.000689764i
\(871\) 23.8430 + 41.2972i 0.807888 + 1.39930i
\(872\) −92.0866 + 53.1662i −3.11845 + 1.80044i
\(873\) −1.33233 0.769222i −0.0450926 0.0260342i
\(874\) 29.3627 0.993208
\(875\) 14.7312 + 25.6514i 0.498005 + 0.867174i
\(876\) −23.3043 −0.787378
\(877\) −24.6434 14.2279i −0.832148 0.480441i 0.0224397 0.999748i \(-0.492857\pi\)
−0.854587 + 0.519307i \(0.826190\pi\)
\(878\) 16.4408 9.49211i 0.554851 0.320343i
\(879\) 14.8227 + 25.6737i 0.499958 + 0.865953i
\(880\) 13.3638 0.00815238i 0.450492 0.000274817i
\(881\) −6.50466 −0.219148 −0.109574 0.993979i \(-0.534949\pi\)
−0.109574 + 0.993979i \(0.534949\pi\)
\(882\) 0.145580 17.6155i 0.00490192 0.593143i
\(883\) 34.7640i 1.16990i 0.811069 + 0.584951i \(0.198886\pi\)
−0.811069 + 0.584951i \(0.801114\pi\)
\(884\) −46.3007 + 80.1952i −1.55726 + 2.69726i
\(885\) 3.51906 + 2.02887i 0.118292 + 0.0681996i
\(886\) 13.1345 + 22.7496i 0.441261 + 0.764286i
\(887\) 25.4214 + 14.6770i 0.853566 + 0.492807i 0.861853 0.507159i \(-0.169304\pi\)
−0.00828615 + 0.999966i \(0.502638\pi\)
\(888\) 53.1676i 1.78419i
\(889\) −15.7332 + 8.99707i −0.527673 + 0.301752i
\(890\) −79.4601 + 45.9410i −2.66351 + 1.53995i
\(891\) −0.489068 + 0.847090i −0.0163844 + 0.0283786i
\(892\) −59.3768 + 34.2812i −1.98808 + 1.14782i
\(893\) −8.44241 + 4.87423i −0.282514 + 0.163110i
\(894\) 18.2380 31.5891i 0.609968 1.05650i
\(895\) 9.96053 + 17.2279i 0.332944 + 0.575864i
\(896\) 0.164091 39.7114i 0.00548189 1.32666i
\(897\) 26.1242i 0.872260i
\(898\) −3.77274 2.17819i −0.125898 0.0726872i
\(899\) 1.87634 + 3.24992i 0.0625795 + 0.108391i
\(900\) 21.6659 0.0264339i 0.722195 0.000881131i
\(901\) 15.8380 27.4322i 0.527640 0.913899i
\(902\) 6.53556i 0.217610i
\(903\) 0.459584 0.788480i 0.0152940 0.0262390i
\(904\) −23.7432 −0.789688
\(905\) −7.10934 + 0.00433696i −0.236323 + 0.000144165i
\(906\) 9.92404 + 17.1889i 0.329704 + 0.571064i
\(907\) −31.4256 + 18.1436i −1.04347 + 0.602447i −0.920814 0.390002i \(-0.872474\pi\)
−0.122655 + 0.992449i \(0.539141\pi\)
\(908\) 81.4259 + 47.0113i 2.70221 + 1.56012i
\(909\) 5.51610 0.182958
\(910\) −76.6708 0.270037i −2.54161 0.00895165i
\(911\) 51.6732 1.71201 0.856004 0.516968i \(-0.172940\pi\)
0.856004 + 0.516968i \(0.172940\pi\)
\(912\) −12.1704 7.02660i −0.403003 0.232674i
\(913\) −5.61335 + 3.24087i −0.185775 + 0.107257i
\(914\) 38.8326 + 67.2601i 1.28447 + 2.22477i
\(915\) 0.000895188 1.46743i 2.95940e−5 0.0485118i
\(916\) −8.99952 −0.297353
\(917\) 10.6501 + 0.0440071i 0.351698 + 0.00145324i
\(918\) 10.4432i 0.344678i
\(919\) −20.5188 + 35.5397i −0.676854 + 1.17235i 0.299069 + 0.954231i \(0.403324\pi\)
−0.975923 + 0.218114i \(0.930010\pi\)
\(920\) 33.2666 57.7007i 1.09677 1.90233i
\(921\) −15.8027 27.3712i −0.520718 0.901910i
\(922\) −23.3839 13.5007i −0.770107 0.444621i
\(923\) 28.2903i 0.931187i
\(924\) 9.73455 5.56674i 0.320243 0.183132i
\(925\) −39.2370 22.5897i −1.29010 0.742745i
\(926\) −13.9746 + 24.2047i −0.459234 + 0.795417i
\(927\) 14.3079 8.26066i 0.469932 0.271316i
\(928\) −18.6478 + 10.7663i −0.612144 + 0.353421i
\(929\) −1.49260 + 2.58526i −0.0489706 + 0.0848196i −0.889472 0.456990i \(-0.848927\pi\)
0.840501 + 0.541810i \(0.182261\pi\)
\(930\) 1.78343 + 3.08465i 0.0584811 + 0.101150i
\(931\) −7.93455 14.0091i −0.260044 0.459131i
\(932\) 29.2880i 0.959361i
\(933\) −19.2000 11.0851i −0.628581 0.362911i
\(934\) 34.7155 + 60.1291i 1.13593 + 1.96748i
\(935\) 7.86305 + 4.53334i 0.257149 + 0.148256i
\(936\) −15.1187 + 26.1864i −0.494171 + 0.855930i
\(937\) 26.1169i 0.853201i −0.904440 0.426601i \(-0.859711\pi\)
0.904440 0.426601i \(-0.140289\pi\)
\(938\) 30.6062 + 53.5210i 0.999327 + 1.74752i
\(939\) −6.88572 −0.224707
\(940\) 0.0250525 + 41.0673i 0.000817124 + 1.33947i
\(941\) −5.10580 8.84351i −0.166444 0.288290i 0.770723 0.637171i \(-0.219895\pi\)
−0.937167 + 0.348880i \(0.886562\pi\)
\(942\) −14.2889 + 8.24973i −0.465559 + 0.268791i
\(943\) 11.6643 + 6.73438i 0.379842 + 0.219302i
\(944\) −11.0995 −0.361257
\(945\) 5.13386 2.93998i 0.167005 0.0956374i
\(946\) 0.849106 0.0276068
\(947\) 40.3086 + 23.2722i 1.30985 + 0.756245i 0.982072 0.188509i \(-0.0603653\pi\)
0.327783 + 0.944753i \(0.393699\pi\)
\(948\) −40.8547 + 23.5875i −1.32690 + 0.766085i
\(949\) 13.8480 + 23.9854i 0.449525 + 0.778600i
\(950\) 25.0458 14.5010i 0.812594 0.470474i
\(951\) 12.8387 0.416324
\(952\) −32.4634 + 55.6955i −1.05215 + 1.80510i
\(953\) 30.6348i 0.992358i 0.868220 + 0.496179i \(0.165264\pi\)
−0.868220 + 0.496179i \(0.834736\pi\)
\(954\) 9.60476 16.6359i 0.310966 0.538608i
\(955\) 0.695373 1.20612i 0.0225017 0.0390291i
\(956\) 6.29345 + 10.9006i 0.203545 + 0.352550i
\(957\) 5.02040 + 2.89853i 0.162286 + 0.0936961i
\(958\) 25.2095i 0.814483i
\(959\) 25.6738 + 14.9646i 0.829051 + 0.483232i
\(960\) 5.95627 3.44370i 0.192238 0.111145i
\(961\) 15.2995 26.4996i 0.493533 0.854825i
\(962\) 101.629 58.6757i 3.27666 1.89178i
\(963\) 2.06824 1.19410i 0.0666481 0.0384793i
\(964\) −19.2772 + 33.3891i −0.620877 + 1.07539i
\(965\) 29.4004 16.9983i 0.946433 0.547193i
\(966\) 0.139566 33.7762i 0.00449046 1.08673i
\(967\) 57.4401i 1.84715i −0.383419 0.923575i \(-0.625253\pi\)
0.383419 0.923575i \(-0.374747\pi\)
\(968\) −51.0696 29.4851i −1.64144 0.947686i
\(969\) −4.77226 8.26580i −0.153307 0.265536i
\(970\) −4.32403 + 7.50000i −0.138836 + 0.240810i
\(971\) −24.0908 + 41.7265i −0.773110 + 1.33907i 0.162740 + 0.986669i \(0.447967\pi\)
−0.935850 + 0.352397i \(0.885367\pi\)
\(972\) 4.33317i 0.138987i
\(973\) 6.55373 + 11.4605i 0.210103 + 0.367407i
\(974\) 77.3449 2.47829
\(975\) −12.9016 22.2834i −0.413182 0.713641i
\(976\) −2.00488 3.47255i −0.0641746 0.111154i
\(977\) 11.9099 6.87617i 0.381031 0.219988i −0.297236 0.954804i \(-0.596065\pi\)
0.678267 + 0.734816i \(0.262731\pi\)
\(978\) 26.7106 + 15.4214i 0.854110 + 0.493121i
\(979\) −15.9542 −0.509898
\(980\) −67.8229 0.519132i −2.16652 0.0165831i
\(981\) −18.1096 −0.578194
\(982\) −9.02399 5.21001i −0.287967 0.166258i
\(983\) −33.0773 + 19.0972i −1.05500 + 0.609106i −0.924046 0.382282i \(-0.875138\pi\)
−0.130957 + 0.991388i \(0.541805\pi\)
\(984\) −7.79473 13.5009i −0.248487 0.430392i
\(985\) −0.0326575 53.5337i −0.00104055 1.70572i
\(986\) −61.8933 −1.97108
\(987\) 5.56674 + 9.73455i 0.177191 + 0.309854i
\(988\) 51.3245i 1.63285i
\(989\) 0.874937 1.51544i 0.0278214 0.0481880i
\(990\) 4.76846 + 2.74919i 0.151552 + 0.0873751i
\(991\) −19.7600 34.2253i −0.627697 1.08720i −0.988013 0.154372i \(-0.950665\pi\)
0.360316 0.932830i \(-0.382669\pi\)
\(992\) −1.99228 1.15025i −0.0632551 0.0365204i
\(993\) 8.53357i 0.270805i
\(994\) −0.151139 + 36.5768i −0.00479382 + 1.16015i
\(995\) 15.6167 + 27.0108i 0.495082 + 0.856300i
\(996\) 14.3572 24.8673i 0.454924 0.787952i
\(997\) −9.98438 + 5.76448i −0.316208 + 0.182563i −0.649701 0.760190i \(-0.725106\pi\)
0.333493 + 0.942753i \(0.391773\pi\)
\(998\) 3.37435 1.94818i 0.106813 0.0616687i
\(999\) −4.52751 + 7.84188i −0.143244 + 0.248106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.2.q.a.79.1 yes 16
3.2 odd 2 315.2.bf.b.289.8 16
4.3 odd 2 1680.2.di.d.289.4 16
5.2 odd 4 525.2.i.k.226.4 8
5.3 odd 4 525.2.i.h.226.1 8
5.4 even 2 inner 105.2.q.a.79.8 yes 16
7.2 even 3 735.2.d.d.589.8 8
7.3 odd 6 735.2.q.g.214.8 16
7.4 even 3 inner 105.2.q.a.4.8 yes 16
7.5 odd 6 735.2.d.e.589.8 8
7.6 odd 2 735.2.q.g.79.1 16
15.14 odd 2 315.2.bf.b.289.1 16
20.19 odd 2 1680.2.di.d.289.5 16
21.2 odd 6 2205.2.d.s.1324.1 8
21.5 even 6 2205.2.d.o.1324.1 8
21.11 odd 6 315.2.bf.b.109.1 16
28.11 odd 6 1680.2.di.d.529.5 16
35.2 odd 12 3675.2.a.bp.1.1 4
35.4 even 6 inner 105.2.q.a.4.1 16
35.9 even 6 735.2.d.d.589.1 8
35.12 even 12 3675.2.a.bn.1.1 4
35.18 odd 12 525.2.i.h.151.1 8
35.19 odd 6 735.2.d.e.589.1 8
35.23 odd 12 3675.2.a.bz.1.4 4
35.24 odd 6 735.2.q.g.214.1 16
35.32 odd 12 525.2.i.k.151.4 8
35.33 even 12 3675.2.a.cb.1.4 4
35.34 odd 2 735.2.q.g.79.8 16
105.44 odd 6 2205.2.d.s.1324.8 8
105.74 odd 6 315.2.bf.b.109.8 16
105.89 even 6 2205.2.d.o.1324.8 8
140.39 odd 6 1680.2.di.d.529.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.1 16 35.4 even 6 inner
105.2.q.a.4.8 yes 16 7.4 even 3 inner
105.2.q.a.79.1 yes 16 1.1 even 1 trivial
105.2.q.a.79.8 yes 16 5.4 even 2 inner
315.2.bf.b.109.1 16 21.11 odd 6
315.2.bf.b.109.8 16 105.74 odd 6
315.2.bf.b.289.1 16 15.14 odd 2
315.2.bf.b.289.8 16 3.2 odd 2
525.2.i.h.151.1 8 35.18 odd 12
525.2.i.h.226.1 8 5.3 odd 4
525.2.i.k.151.4 8 35.32 odd 12
525.2.i.k.226.4 8 5.2 odd 4
735.2.d.d.589.1 8 35.9 even 6
735.2.d.d.589.8 8 7.2 even 3
735.2.d.e.589.1 8 35.19 odd 6
735.2.d.e.589.8 8 7.5 odd 6
735.2.q.g.79.1 16 7.6 odd 2
735.2.q.g.79.8 16 35.34 odd 2
735.2.q.g.214.1 16 35.24 odd 6
735.2.q.g.214.8 16 7.3 odd 6
1680.2.di.d.289.4 16 4.3 odd 2
1680.2.di.d.289.5 16 20.19 odd 2
1680.2.di.d.529.4 16 140.39 odd 6
1680.2.di.d.529.5 16 28.11 odd 6
2205.2.d.o.1324.1 8 21.5 even 6
2205.2.d.o.1324.8 8 105.89 even 6
2205.2.d.s.1324.1 8 21.2 odd 6
2205.2.d.s.1324.8 8 105.44 odd 6
3675.2.a.bn.1.1 4 35.12 even 12
3675.2.a.bp.1.1 4 35.2 odd 12
3675.2.a.bz.1.4 4 35.23 odd 12
3675.2.a.cb.1.4 4 35.33 even 12