Properties

Label 735.2.q.g.214.1
Level $735$
Weight $2$
Character 735.214
Analytic conductor $5.869$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(79,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.1
Root \(1.05078 + 0.281555i\) of defining polynomial
Character \(\chi\) \(=\) 735.214
Dual form 735.2.q.g.79.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.17942 + 1.25829i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(2.16659 - 3.75264i) q^{4} +(-2.23607 - 0.00136408i) q^{5} +2.51658 q^{6} +5.87162i q^{8} +(0.500000 + 0.866025i) q^{9} +(4.87505 - 2.81065i) q^{10} +(-0.489068 + 0.847090i) q^{11} +(-3.75264 + 2.16659i) q^{12} -5.14977i q^{13} +(1.93581 + 1.11922i) q^{15} +(-3.05502 - 5.29146i) q^{16} +(3.59380 + 2.07488i) q^{17} +(-2.17942 - 1.25829i) q^{18} +(1.15001 + 1.99187i) q^{19} +(-4.84975 + 8.38820i) q^{20} -2.46156i q^{22} +(4.39324 - 2.53644i) q^{23} +(2.93581 - 5.08497i) q^{24} +(5.00000 + 0.00610036i) q^{25} +(6.47990 + 11.2235i) q^{26} -1.00000i q^{27} -5.92664 q^{29} +(-5.62724 - 0.00343282i) q^{30} +(0.316594 - 0.548357i) q^{31} +(3.14643 + 1.81659i) q^{32} +(0.847090 - 0.489068i) q^{33} -10.4432 q^{34} +4.33317 q^{36} +(-7.84188 + 4.52751i) q^{37} +(-5.01270 - 2.89408i) q^{38} +(-2.57488 + 4.45983i) q^{39} +(0.00800937 - 13.1293i) q^{40} -2.65505 q^{41} +0.344947i q^{43} +(2.11922 + 3.67059i) q^{44} +(-1.11685 - 1.93717i) q^{45} +(-6.38315 + 11.0559i) q^{46} +(-3.67059 + 2.11922i) q^{47} +6.11005i q^{48} +(-10.9048 + 6.27815i) q^{50} +(-2.07488 - 3.59380i) q^{51} +(-19.3252 - 11.1574i) q^{52} +(-6.61053 - 3.81659i) q^{53} +(1.25829 + 2.17942i) q^{54} +(1.09474 - 1.89348i) q^{55} -2.30001i q^{57} +(12.9167 - 7.45743i) q^{58} +(-0.908297 + 1.57322i) q^{59} +(8.39411 - 4.83952i) q^{60} +(0.328128 + 0.568335i) q^{61} +1.59347i q^{62} +3.07689 q^{64} +(-0.00702471 + 11.5152i) q^{65} +(-1.23078 + 2.13177i) q^{66} +(-8.01924 - 4.62991i) q^{67} +(15.5726 - 8.99083i) q^{68} -5.07288 q^{69} -5.49351 q^{71} +(-5.08497 + 2.93581i) q^{72} +(4.65758 + 2.68905i) q^{73} +(11.3938 - 19.7347i) q^{74} +(-4.32707 - 2.50528i) q^{75} +9.96636 q^{76} -12.9598i q^{78} +(-5.44346 - 9.42835i) q^{79} +(6.82402 + 11.8362i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(5.78648 - 3.34083i) q^{82} -6.62663i q^{83} +(-8.03316 - 4.64448i) q^{85} +(-0.434043 - 0.751785i) q^{86} +(5.13262 + 2.96332i) q^{87} +(-4.97379 - 2.87162i) q^{88} +(-8.15542 - 14.1256i) q^{89} +(4.87162 + 2.81659i) q^{90} -21.9817i q^{92} +(-0.548357 + 0.316594i) q^{93} +(5.33317 - 9.23733i) q^{94} +(-2.56878 - 4.45553i) q^{95} +(-1.81659 - 3.14643i) q^{96} -1.53844i q^{97} -0.978135 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 2 q^{5} + 8 q^{6} + 8 q^{9} + 4 q^{10} - 4 q^{15} + 24 q^{19} + 8 q^{20} + 12 q^{24} - 4 q^{25} + 12 q^{26} + 24 q^{29} - 12 q^{30} - 16 q^{31} - 16 q^{34} + 16 q^{36} - 4 q^{39} - 32 q^{40}+ \cdots - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.17942 + 1.25829i −1.54108 + 0.889745i −0.542313 + 0.840176i \(0.682451\pi\)
−0.998771 + 0.0495691i \(0.984215\pi\)
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 2.16659 3.75264i 1.08329 1.87632i
\(5\) −2.23607 0.00136408i −1.00000 0.000610036i
\(6\) 2.51658 1.02739
\(7\) 0 0
\(8\) 5.87162i 2.07593i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 4.87505 2.81065i 1.54163 0.888805i
\(11\) −0.489068 + 0.847090i −0.147459 + 0.255407i −0.930288 0.366830i \(-0.880443\pi\)
0.782828 + 0.622238i \(0.213776\pi\)
\(12\) −3.75264 + 2.16659i −1.08329 + 0.625440i
\(13\) 5.14977i 1.42829i −0.699998 0.714144i \(-0.746816\pi\)
0.699998 0.714144i \(-0.253184\pi\)
\(14\) 0 0
\(15\) 1.93581 + 1.11922i 0.499824 + 0.288980i
\(16\) −3.05502 5.29146i −0.763756 1.32286i
\(17\) 3.59380 + 2.07488i 0.871626 + 0.503233i 0.867888 0.496760i \(-0.165477\pi\)
0.00373753 + 0.999993i \(0.498810\pi\)
\(18\) −2.17942 1.25829i −0.513695 0.296582i
\(19\) 1.15001 + 1.99187i 0.263830 + 0.456967i 0.967256 0.253801i \(-0.0816810\pi\)
−0.703427 + 0.710768i \(0.748348\pi\)
\(20\) −4.84975 + 8.38820i −1.08444 + 1.87566i
\(21\) 0 0
\(22\) 2.46156i 0.524805i
\(23\) 4.39324 2.53644i 0.916054 0.528884i 0.0336802 0.999433i \(-0.489277\pi\)
0.882374 + 0.470548i \(0.155944\pi\)
\(24\) 2.93581 5.08497i 0.599270 1.03797i
\(25\) 5.00000 + 0.00610036i 0.999999 + 0.00122007i
\(26\) 6.47990 + 11.2235i 1.27081 + 2.20111i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −5.92664 −1.10055 −0.550275 0.834983i \(-0.685477\pi\)
−0.550275 + 0.834983i \(0.685477\pi\)
\(30\) −5.62724 0.00343282i −1.02739 0.000626745i
\(31\) 0.316594 0.548357i 0.0568620 0.0984879i −0.836193 0.548435i \(-0.815224\pi\)
0.893055 + 0.449947i \(0.148557\pi\)
\(32\) 3.14643 + 1.81659i 0.556216 + 0.321132i
\(33\) 0.847090 0.489068i 0.147459 0.0851357i
\(34\) −10.4432 −1.79100
\(35\) 0 0
\(36\) 4.33317 0.722196
\(37\) −7.84188 + 4.52751i −1.28920 + 0.744318i −0.978511 0.206194i \(-0.933892\pi\)
−0.310686 + 0.950513i \(0.600559\pi\)
\(38\) −5.01270 2.89408i −0.813168 0.469483i
\(39\) −2.57488 + 4.45983i −0.412311 + 0.714144i
\(40\) 0.00800937 13.1293i 0.00126639 2.07593i
\(41\) −2.65505 −0.414650 −0.207325 0.978272i \(-0.566476\pi\)
−0.207325 + 0.978272i \(0.566476\pi\)
\(42\) 0 0
\(43\) 0.344947i 0.0526039i 0.999654 + 0.0263020i \(0.00837314\pi\)
−0.999654 + 0.0263020i \(0.991627\pi\)
\(44\) 2.11922 + 3.67059i 0.319484 + 0.553362i
\(45\) −1.11685 1.93717i −0.166491 0.288777i
\(46\) −6.38315 + 11.0559i −0.941144 + 1.63011i
\(47\) −3.67059 + 2.11922i −0.535410 + 0.309119i −0.743217 0.669051i \(-0.766701\pi\)
0.207806 + 0.978170i \(0.433368\pi\)
\(48\) 6.11005i 0.881910i
\(49\) 0 0
\(50\) −10.9048 + 6.27815i −1.54217 + 0.887864i
\(51\) −2.07488 3.59380i −0.290542 0.503233i
\(52\) −19.3252 11.1574i −2.67993 1.54726i
\(53\) −6.61053 3.81659i −0.908027 0.524250i −0.0282311 0.999601i \(-0.508987\pi\)
−0.879796 + 0.475352i \(0.842321\pi\)
\(54\) 1.25829 + 2.17942i 0.171232 + 0.296582i
\(55\) 1.09474 1.89348i 0.147615 0.255317i
\(56\) 0 0
\(57\) 2.30001i 0.304644i
\(58\) 12.9167 7.45743i 1.69604 0.979209i
\(59\) −0.908297 + 1.57322i −0.118250 + 0.204815i −0.919074 0.394084i \(-0.871062\pi\)
0.800824 + 0.598900i \(0.204395\pi\)
\(60\) 8.39411 4.83952i 1.08367 0.624779i
\(61\) 0.328128 + 0.568335i 0.0420125 + 0.0727678i 0.886267 0.463175i \(-0.153290\pi\)
−0.844255 + 0.535942i \(0.819956\pi\)
\(62\) 1.59347i 0.202371i
\(63\) 0 0
\(64\) 3.07689 0.384611
\(65\) −0.00702471 + 11.5152i −0.000871308 + 1.42829i
\(66\) −1.23078 + 2.13177i −0.151498 + 0.262403i
\(67\) −8.01924 4.62991i −0.979706 0.565633i −0.0775244 0.996990i \(-0.524702\pi\)
−0.902181 + 0.431357i \(0.858035\pi\)
\(68\) 15.5726 8.99083i 1.88845 1.09030i
\(69\) −5.07288 −0.610703
\(70\) 0 0
\(71\) −5.49351 −0.651960 −0.325980 0.945377i \(-0.605694\pi\)
−0.325980 + 0.945377i \(0.605694\pi\)
\(72\) −5.08497 + 2.93581i −0.599270 + 0.345988i
\(73\) 4.65758 + 2.68905i 0.545128 + 0.314730i 0.747155 0.664650i \(-0.231419\pi\)
−0.202027 + 0.979380i \(0.564753\pi\)
\(74\) 11.3938 19.7347i 1.32451 2.29411i
\(75\) −4.32707 2.50528i −0.499647 0.289285i
\(76\) 9.96636 1.14322
\(77\) 0 0
\(78\) 12.9598i 1.46741i
\(79\) −5.44346 9.42835i −0.612437 1.06077i −0.990828 0.135127i \(-0.956856\pi\)
0.378391 0.925646i \(-0.376477\pi\)
\(80\) 6.82402 + 11.8362i 0.762949 + 1.32333i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 5.78648 3.34083i 0.639010 0.368933i
\(83\) 6.62663i 0.727367i −0.931523 0.363683i \(-0.881519\pi\)
0.931523 0.363683i \(-0.118481\pi\)
\(84\) 0 0
\(85\) −8.03316 4.64448i −0.871318 0.503765i
\(86\) −0.434043 0.751785i −0.0468041 0.0810671i
\(87\) 5.13262 + 2.96332i 0.550275 + 0.317701i
\(88\) −4.97379 2.87162i −0.530208 0.306116i
\(89\) −8.15542 14.1256i −0.864472 1.49731i −0.867570 0.497315i \(-0.834319\pi\)
0.00309785 0.999995i \(-0.499014\pi\)
\(90\) 4.87162 + 2.81659i 0.513514 + 0.296895i
\(91\) 0 0
\(92\) 21.9817i 2.29175i
\(93\) −0.548357 + 0.316594i −0.0568620 + 0.0328293i
\(94\) 5.33317 9.23733i 0.550075 0.952758i
\(95\) −2.56878 4.45553i −0.263551 0.457127i
\(96\) −1.81659 3.14643i −0.185405 0.321132i
\(97\) 1.53844i 0.156205i −0.996945 0.0781027i \(-0.975114\pi\)
0.996945 0.0781027i \(-0.0248862\pi\)
\(98\) 0 0
\(99\) −0.978135 −0.0983063
\(100\) 10.8558 18.7500i 1.08558 1.87500i
\(101\) −2.75805 + 4.77708i −0.274436 + 0.475338i −0.969993 0.243134i \(-0.921825\pi\)
0.695556 + 0.718471i \(0.255158\pi\)
\(102\) 9.04410 + 5.22161i 0.895499 + 0.517017i
\(103\) −14.3079 + 8.26066i −1.40980 + 0.813947i −0.995368 0.0961349i \(-0.969352\pi\)
−0.414429 + 0.910082i \(0.636019\pi\)
\(104\) 30.2375 2.96503
\(105\) 0 0
\(106\) 19.2095 1.86579
\(107\) 2.06824 1.19410i 0.199944 0.115438i −0.396685 0.917955i \(-0.629840\pi\)
0.596630 + 0.802517i \(0.296506\pi\)
\(108\) −3.75264 2.16659i −0.361098 0.208480i
\(109\) −9.05479 + 15.6833i −0.867291 + 1.50219i −0.00253705 + 0.999997i \(0.500808\pi\)
−0.864754 + 0.502196i \(0.832526\pi\)
\(110\) −0.00335777 + 5.50420i −0.000320150 + 0.524805i
\(111\) 9.05502 0.859465
\(112\) 0 0
\(113\) 4.04373i 0.380402i 0.981745 + 0.190201i \(0.0609140\pi\)
−0.981745 + 0.190201i \(0.939086\pi\)
\(114\) 2.89408 + 5.01270i 0.271056 + 0.469483i
\(115\) −9.82705 + 5.66566i −0.916377 + 0.528325i
\(116\) −12.8406 + 22.2405i −1.19222 + 2.06498i
\(117\) 4.45983 2.57488i 0.412311 0.238048i
\(118\) 4.57160i 0.420850i
\(119\) 0 0
\(120\) −6.57160 + 11.3663i −0.599903 + 1.03760i
\(121\) 5.02163 + 8.69771i 0.456511 + 0.790701i
\(122\) −1.43026 0.825761i −0.129490 0.0747608i
\(123\) 2.29934 + 1.32753i 0.207325 + 0.119699i
\(124\) −1.37186 2.37613i −0.123196 0.213383i
\(125\) −11.1803 0.0204612i −0.999998 0.00183011i
\(126\) 0 0
\(127\) 6.85023i 0.607860i −0.952694 0.303930i \(-0.901701\pi\)
0.952694 0.303930i \(-0.0982989\pi\)
\(128\) −12.9987 + 7.50481i −1.14893 + 0.663337i
\(129\) 0.172473 0.298733i 0.0151854 0.0263020i
\(130\) −14.4742 25.1054i −1.26947 2.20189i
\(131\) −2.01270 3.48610i −0.175850 0.304582i 0.764605 0.644499i \(-0.222934\pi\)
−0.940455 + 0.339918i \(0.889601\pi\)
\(132\) 4.23843i 0.368908i
\(133\) 0 0
\(134\) 23.3031 2.01308
\(135\) −0.00136408 + 2.23607i −0.000117402 + 0.192450i
\(136\) −12.1829 + 21.1014i −1.04468 + 1.80943i
\(137\) 9.72709 + 5.61594i 0.831041 + 0.479802i 0.854209 0.519930i \(-0.174042\pi\)
−0.0231680 + 0.999732i \(0.507375\pi\)
\(138\) 11.0559 6.38315i 0.941144 0.543370i
\(139\) −4.98991 −0.423238 −0.211619 0.977352i \(-0.567874\pi\)
−0.211619 + 0.977352i \(0.567874\pi\)
\(140\) 0 0
\(141\) 4.23843 0.356940
\(142\) 11.9727 6.91243i 1.00473 0.580078i
\(143\) 4.36232 + 2.51858i 0.364795 + 0.210615i
\(144\) 3.05502 5.29146i 0.254585 0.440955i
\(145\) 13.2524 + 0.00808443i 1.10055 + 0.000671376i
\(146\) −13.5344 −1.12012
\(147\) 0 0
\(148\) 39.2370i 3.22526i
\(149\) −7.24712 12.5524i −0.593707 1.02833i −0.993728 0.111825i \(-0.964330\pi\)
0.400021 0.916506i \(-0.369003\pi\)
\(150\) 12.5829 + 0.0153521i 1.02739 + 0.00125349i
\(151\) −3.94346 + 6.83028i −0.320914 + 0.555840i −0.980677 0.195634i \(-0.937324\pi\)
0.659763 + 0.751474i \(0.270657\pi\)
\(152\) −11.6955 + 6.75240i −0.948631 + 0.547692i
\(153\) 4.14977i 0.335489i
\(154\) 0 0
\(155\) −0.708674 + 1.22573i −0.0569221 + 0.0984531i
\(156\) 11.1574 + 19.3252i 0.893309 + 1.54726i
\(157\) −5.67792 3.27815i −0.453147 0.261625i 0.256011 0.966674i \(-0.417592\pi\)
−0.709159 + 0.705049i \(0.750925\pi\)
\(158\) 23.7272 + 13.6989i 1.88763 + 1.08983i
\(159\) 3.81659 + 6.61053i 0.302676 + 0.524250i
\(160\) −7.03316 4.06632i −0.556020 0.321471i
\(161\) 0 0
\(162\) 2.51658i 0.197721i
\(163\) −10.6138 + 6.12790i −0.831340 + 0.479974i −0.854311 0.519762i \(-0.826021\pi\)
0.0229712 + 0.999736i \(0.492687\pi\)
\(164\) −5.75240 + 9.96346i −0.449187 + 0.778015i
\(165\) −1.89482 + 1.09243i −0.147511 + 0.0850458i
\(166\) 8.33822 + 14.4422i 0.647171 + 1.12093i
\(167\) 2.13239i 0.165009i −0.996591 0.0825047i \(-0.973708\pi\)
0.996591 0.0825047i \(-0.0262920\pi\)
\(168\) 0 0
\(169\) −13.5201 −1.04001
\(170\) 23.3518 + 0.0142454i 1.79100 + 0.00109257i
\(171\) −1.15001 + 1.99187i −0.0879432 + 0.152322i
\(172\) 1.29446 + 0.747358i 0.0987017 + 0.0569855i
\(173\) −10.0013 + 5.77427i −0.760387 + 0.439009i −0.829435 0.558604i \(-0.811337\pi\)
0.0690479 + 0.997613i \(0.478004\pi\)
\(174\) −14.9149 −1.13069
\(175\) 0 0
\(176\) 5.97645 0.450492
\(177\) 1.57322 0.908297i 0.118250 0.0682718i
\(178\) 35.5482 + 20.5238i 2.66445 + 1.53832i
\(179\) 4.44978 7.70725i 0.332592 0.576067i −0.650427 0.759569i \(-0.725410\pi\)
0.983019 + 0.183502i \(0.0587434\pi\)
\(180\) −9.68927 0.00591081i −0.722196 0.000440566i
\(181\) 3.17940 0.236323 0.118161 0.992994i \(-0.462300\pi\)
0.118161 + 0.992994i \(0.462300\pi\)
\(182\) 0 0
\(183\) 0.656256i 0.0485119i
\(184\) 14.8930 + 25.7954i 1.09793 + 1.90167i
\(185\) 17.5412 10.1131i 1.28965 0.743532i
\(186\) 0.796734 1.37998i 0.0584194 0.101185i
\(187\) −3.51523 + 2.02952i −0.257059 + 0.148413i
\(188\) 18.3659i 1.33947i
\(189\) 0 0
\(190\) 11.2048 + 6.47821i 0.812881 + 0.469979i
\(191\) 0.311309 + 0.539203i 0.0225255 + 0.0390154i 0.877068 0.480365i \(-0.159496\pi\)
−0.854543 + 0.519381i \(0.826163\pi\)
\(192\) −2.66466 1.53844i −0.192306 0.111028i
\(193\) 13.1529 + 7.59383i 0.946767 + 0.546616i 0.892075 0.451887i \(-0.149249\pi\)
0.0546916 + 0.998503i \(0.482582\pi\)
\(194\) 1.93581 + 3.35292i 0.138983 + 0.240726i
\(195\) 5.76370 9.96897i 0.412747 0.713893i
\(196\) 0 0
\(197\) 23.9410i 1.70573i 0.522136 + 0.852863i \(0.325136\pi\)
−0.522136 + 0.852863i \(0.674864\pi\)
\(198\) 2.13177 1.23078i 0.151498 0.0874676i
\(199\) −6.97662 + 12.0839i −0.494560 + 0.856602i −0.999980 0.00627071i \(-0.998004\pi\)
0.505421 + 0.862873i \(0.331337\pi\)
\(200\) −0.0358190 + 29.3581i −0.00253279 + 2.07593i
\(201\) 4.62991 + 8.01924i 0.326569 + 0.565633i
\(202\) 13.8817i 0.976714i
\(203\) 0 0
\(204\) −17.9817 −1.25897
\(205\) 5.93688 + 0.00362171i 0.414650 + 0.000252951i
\(206\) 20.7886 36.0069i 1.44841 2.50872i
\(207\) 4.39324 + 2.53644i 0.305351 + 0.176295i
\(208\) −27.2498 + 15.7327i −1.88943 + 1.09086i
\(209\) −2.24973 −0.155617
\(210\) 0 0
\(211\) 4.82315 0.332040 0.166020 0.986122i \(-0.446908\pi\)
0.166020 + 0.986122i \(0.446908\pi\)
\(212\) −28.6446 + 16.5380i −1.96732 + 1.13583i
\(213\) 4.75752 + 2.74676i 0.325980 + 0.188205i
\(214\) −3.00505 + 5.20489i −0.205421 + 0.355799i
\(215\) 0.000470536 0.771325i 3.20903e−5 0.0526039i
\(216\) 5.87162 0.399513
\(217\) 0 0
\(218\) 45.5742i 3.08667i
\(219\) −2.68905 4.65758i −0.181709 0.314730i
\(220\) −4.73370 8.21057i −0.319146 0.553557i
\(221\) 10.6852 18.5073i 0.718762 1.24493i
\(222\) −19.7347 + 11.3938i −1.32451 + 0.764705i
\(223\) 15.8227i 1.05956i 0.848134 + 0.529782i \(0.177726\pi\)
−0.848134 + 0.529782i \(0.822274\pi\)
\(224\) 0 0
\(225\) 2.49472 + 4.33317i 0.166314 + 0.288878i
\(226\) −5.08818 8.81299i −0.338461 0.586232i
\(227\) −18.7913 10.8492i −1.24722 0.720084i −0.276667 0.960966i \(-0.589230\pi\)
−0.970554 + 0.240882i \(0.922563\pi\)
\(228\) −8.63112 4.98318i −0.571610 0.330019i
\(229\) 1.03844 + 1.79864i 0.0686223 + 0.118857i 0.898295 0.439393i \(-0.144806\pi\)
−0.829673 + 0.558250i \(0.811473\pi\)
\(230\) 14.2882 24.7131i 0.942139 1.62954i
\(231\) 0 0
\(232\) 34.7990i 2.28467i
\(233\) 5.85348 3.37951i 0.383474 0.221399i −0.295854 0.955233i \(-0.595604\pi\)
0.679329 + 0.733834i \(0.262271\pi\)
\(234\) −6.47990 + 11.2235i −0.423604 + 0.733704i
\(235\) 8.21057 4.73370i 0.535599 0.308793i
\(236\) 3.93581 + 6.81702i 0.256199 + 0.443750i
\(237\) 10.8869i 0.707182i
\(238\) 0 0
\(239\) 2.90478 0.187894 0.0939472 0.995577i \(-0.470051\pi\)
0.0939472 + 0.995577i \(0.470051\pi\)
\(240\) 0.00833461 13.6625i 0.000537997 0.881909i
\(241\) −4.44875 + 7.70546i −0.286569 + 0.496352i −0.972988 0.230854i \(-0.925848\pi\)
0.686419 + 0.727206i \(0.259181\pi\)
\(242\) −21.8885 12.6373i −1.40705 0.812358i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 2.84367 0.182047
\(245\) 0 0
\(246\) −6.68165 −0.426007
\(247\) 10.2577 5.92227i 0.652680 0.376825i
\(248\) 3.21974 + 1.85892i 0.204454 + 0.118042i
\(249\) −3.31331 + 5.73883i −0.209973 + 0.363683i
\(250\) 24.3924 14.0235i 1.54271 0.886923i
\(251\) 21.1747 1.33653 0.668267 0.743921i \(-0.267036\pi\)
0.668267 + 0.743921i \(0.267036\pi\)
\(252\) 0 0
\(253\) 4.96196i 0.311956i
\(254\) 8.61958 + 14.9295i 0.540840 + 0.936763i
\(255\) 4.63468 + 8.03882i 0.290235 + 0.503410i
\(256\) 15.8096 27.3830i 0.988097 1.71143i
\(257\) −5.39917 + 3.11721i −0.336791 + 0.194446i −0.658852 0.752273i \(-0.728958\pi\)
0.322061 + 0.946719i \(0.395624\pi\)
\(258\) 0.868086i 0.0540447i
\(259\) 0 0
\(260\) 43.1973 + 24.9751i 2.67898 + 1.54889i
\(261\) −2.96332 5.13262i −0.183425 0.317701i
\(262\) 8.77304 + 5.06512i 0.542000 + 0.312924i
\(263\) −24.2903 14.0240i −1.49780 0.864756i −0.497805 0.867289i \(-0.665861\pi\)
−0.999997 + 0.00253231i \(0.999194\pi\)
\(264\) 2.87162 + 4.97379i 0.176736 + 0.306116i
\(265\) 14.7764 + 8.54318i 0.907707 + 0.524803i
\(266\) 0 0
\(267\) 16.3108i 0.998207i
\(268\) −34.7487 + 20.0622i −2.12262 + 1.22549i
\(269\) −3.70915 + 6.42444i −0.226151 + 0.391705i −0.956664 0.291194i \(-0.905948\pi\)
0.730513 + 0.682899i \(0.239281\pi\)
\(270\) −2.81065 4.87505i −0.171051 0.296686i
\(271\) −15.6058 27.0300i −0.947985 1.64196i −0.749662 0.661821i \(-0.769784\pi\)
−0.198323 0.980137i \(-0.563550\pi\)
\(272\) 25.3553i 1.53739i
\(273\) 0 0
\(274\) −28.2659 −1.70761
\(275\) −2.45050 + 4.23246i −0.147771 + 0.255227i
\(276\) −10.9908 + 19.0367i −0.661570 + 1.14587i
\(277\) 10.7843 + 6.22629i 0.647963 + 0.374102i 0.787675 0.616090i \(-0.211284\pi\)
−0.139712 + 0.990192i \(0.544618\pi\)
\(278\) 10.8751 6.27875i 0.652246 0.376574i
\(279\) 0.633188 0.0379080
\(280\) 0 0
\(281\) −0.0409225 −0.00244123 −0.00122061 0.999999i \(-0.500389\pi\)
−0.00122061 + 0.999999i \(0.500389\pi\)
\(282\) −9.23733 + 5.33317i −0.550075 + 0.317586i
\(283\) −9.38944 5.42100i −0.558144 0.322245i 0.194256 0.980951i \(-0.437771\pi\)
−0.752400 + 0.658706i \(0.771104\pi\)
\(284\) −11.9022 + 20.6152i −0.706264 + 1.22329i
\(285\) −0.00313741 + 5.14299i −0.000185844 + 0.304644i
\(286\) −12.6764 −0.749574
\(287\) 0 0
\(288\) 3.63319i 0.214088i
\(289\) 0.110288 + 0.191024i 0.00648752 + 0.0112367i
\(290\) −28.8927 + 16.6577i −1.69664 + 0.978174i
\(291\) −0.769222 + 1.33233i −0.0450926 + 0.0781027i
\(292\) 20.1821 11.6521i 1.18107 0.681890i
\(293\) 29.6455i 1.73191i 0.500125 + 0.865953i \(0.333287\pi\)
−0.500125 + 0.865953i \(0.666713\pi\)
\(294\) 0 0
\(295\) 2.03316 3.51658i 0.118375 0.204743i
\(296\) −26.5838 46.0445i −1.54515 2.67628i
\(297\) 0.847090 + 0.489068i 0.0491531 + 0.0283786i
\(298\) 31.5891 + 18.2380i 1.82991 + 1.05650i
\(299\) −13.0621 22.6242i −0.755399 1.30839i
\(300\) −18.7764 + 10.8100i −1.08406 + 0.624118i
\(301\) 0 0
\(302\) 19.8481i 1.14213i
\(303\) 4.77708 2.75805i 0.274436 0.158446i
\(304\) 7.02660 12.1704i 0.403003 0.698022i
\(305\) −0.732941 1.27128i −0.0419681 0.0727934i
\(306\) −5.22161 9.04410i −0.298500 0.517017i
\(307\) 31.6055i 1.80382i −0.431923 0.901910i \(-0.642165\pi\)
0.431923 0.901910i \(-0.357835\pi\)
\(308\) 0 0
\(309\) 16.5213 0.939865
\(310\) 0.00217362 3.56310i 0.000123454 0.202371i
\(311\) 11.0851 19.2000i 0.628581 1.08873i −0.359256 0.933239i \(-0.616969\pi\)
0.987837 0.155495i \(-0.0496972\pi\)
\(312\) −26.1864 15.1187i −1.48251 0.855930i
\(313\) 5.96321 3.44286i 0.337060 0.194602i −0.321911 0.946770i \(-0.604325\pi\)
0.658971 + 0.752168i \(0.270992\pi\)
\(314\) 16.4995 0.931118
\(315\) 0 0
\(316\) −47.1749 −2.65380
\(317\) 11.1186 6.41935i 0.624485 0.360547i −0.154128 0.988051i \(-0.549257\pi\)
0.778613 + 0.627504i \(0.215923\pi\)
\(318\) −16.6359 9.60476i −0.932897 0.538608i
\(319\) 2.89853 5.02040i 0.162286 0.281088i
\(320\) −6.88013 0.00419713i −0.384611 0.000234627i
\(321\) −2.38820 −0.133296
\(322\) 0 0
\(323\) 9.54453i 0.531072i
\(324\) 2.16659 + 3.75264i 0.120366 + 0.208480i
\(325\) 0.0314155 25.7488i 0.00174262 1.42829i
\(326\) 15.4214 26.7106i 0.854110 1.47936i
\(327\) 15.6833 9.05479i 0.867291 0.500731i
\(328\) 15.5895i 0.860784i
\(329\) 0 0
\(330\) 2.75501 4.76510i 0.151658 0.262310i
\(331\) 4.26678 + 7.39028i 0.234524 + 0.406207i 0.959134 0.282952i \(-0.0913137\pi\)
−0.724611 + 0.689159i \(0.757980\pi\)
\(332\) −24.8673 14.3572i −1.36477 0.787952i
\(333\) −7.84188 4.52751i −0.429732 0.248106i
\(334\) 2.68317 + 4.64738i 0.146816 + 0.254293i
\(335\) 17.9252 + 10.3637i 0.979360 + 0.566231i
\(336\) 0 0
\(337\) 29.1131i 1.58589i −0.609292 0.792946i \(-0.708546\pi\)
0.609292 0.792946i \(-0.291454\pi\)
\(338\) 29.4660 17.0122i 1.60274 0.925343i
\(339\) 2.02186 3.50197i 0.109813 0.190201i
\(340\) −34.8336 + 20.0829i −1.88912 + 1.08915i
\(341\) 0.309672 + 0.536367i 0.0167697 + 0.0290459i
\(342\) 5.78817i 0.312988i
\(343\) 0 0
\(344\) −2.02540 −0.109202
\(345\) 11.3433 + 0.00691983i 0.610703 + 0.000372551i
\(346\) 14.5314 25.1691i 0.781213 1.35310i
\(347\) 11.6418 + 6.72137i 0.624962 + 0.360822i 0.778798 0.627274i \(-0.215829\pi\)
−0.153836 + 0.988096i \(0.549163\pi\)
\(348\) 22.2405 12.8406i 1.19222 0.688328i
\(349\) −24.7397 −1.32429 −0.662144 0.749377i \(-0.730353\pi\)
−0.662144 + 0.749377i \(0.730353\pi\)
\(350\) 0 0
\(351\) −5.14977 −0.274874
\(352\) −3.07764 + 1.77687i −0.164039 + 0.0947077i
\(353\) −14.5103 8.37751i −0.772303 0.445890i 0.0613923 0.998114i \(-0.480446\pi\)
−0.833696 + 0.552224i \(0.813779\pi\)
\(354\) −2.28580 + 3.95913i −0.121489 + 0.210425i
\(355\) 12.2839 + 0.00749361i 0.651960 + 0.000397719i
\(356\) −70.6777 −3.74591
\(357\) 0 0
\(358\) 22.3965i 1.18369i
\(359\) −16.2462 28.1393i −0.857442 1.48513i −0.874361 0.485276i \(-0.838719\pi\)
0.0169190 0.999857i \(-0.494614\pi\)
\(360\) 11.3743 6.55773i 0.599481 0.345623i
\(361\) 6.85497 11.8732i 0.360788 0.624903i
\(362\) −6.92925 + 4.00060i −0.364193 + 0.210267i
\(363\) 10.0433i 0.527134i
\(364\) 0 0
\(365\) −10.4110 6.01926i −0.544936 0.315062i
\(366\) 0.825761 + 1.43026i 0.0431632 + 0.0747608i
\(367\) 20.7516 + 11.9809i 1.08322 + 0.625400i 0.931764 0.363064i \(-0.118269\pi\)
0.151460 + 0.988463i \(0.451603\pi\)
\(368\) −26.8429 15.4978i −1.39928 0.807877i
\(369\) −1.32753 2.29934i −0.0691083 0.119699i
\(370\) −25.5043 + 44.1126i −1.32591 + 2.29331i
\(371\) 0 0
\(372\) 2.74372i 0.142255i
\(373\) 9.59160 5.53771i 0.496634 0.286732i −0.230688 0.973028i \(-0.574098\pi\)
0.727323 + 0.686296i \(0.240764\pi\)
\(374\) 5.10744 8.84635i 0.264100 0.457434i
\(375\) 9.67221 + 5.60788i 0.499471 + 0.289590i
\(376\) −12.4432 21.5523i −0.641710 1.11147i
\(377\) 30.5208i 1.57190i
\(378\) 0 0
\(379\) 32.7423 1.68186 0.840929 0.541145i \(-0.182009\pi\)
0.840929 + 0.541145i \(0.182009\pi\)
\(380\) −22.2855 0.0135949i −1.14322 0.000697406i
\(381\) −3.42512 + 5.93247i −0.175474 + 0.303930i
\(382\) −1.35695 0.783435i −0.0694275 0.0400840i
\(383\) 20.1371 11.6262i 1.02896 0.594069i 0.112271 0.993678i \(-0.464187\pi\)
0.916686 + 0.399609i \(0.130854\pi\)
\(384\) 15.0096 0.765956
\(385\) 0 0
\(386\) −38.2210 −1.94540
\(387\) −0.298733 + 0.172473i −0.0151854 + 0.00876732i
\(388\) −5.77323 3.33317i −0.293091 0.169216i
\(389\) −18.8131 + 32.5852i −0.953861 + 1.65214i −0.216907 + 0.976192i \(0.569597\pi\)
−0.736954 + 0.675943i \(0.763737\pi\)
\(390\) −0.0176782 + 28.9790i −0.000895173 + 1.46741i
\(391\) 21.0513 1.06461
\(392\) 0 0
\(393\) 4.02540i 0.203054i
\(394\) −30.1247 52.1775i −1.51766 2.62867i
\(395\) 12.1591 + 21.0899i 0.611790 + 1.06115i
\(396\) −2.11922 + 3.67059i −0.106495 + 0.184454i
\(397\) −0.0498605 + 0.0287870i −0.00250243 + 0.00144478i −0.501251 0.865302i \(-0.667127\pi\)
0.498748 + 0.866747i \(0.333793\pi\)
\(398\) 35.1144i 1.76013i
\(399\) 0 0
\(400\) −15.2428 26.4759i −0.762142 1.32380i
\(401\) 4.53797 + 7.85999i 0.226615 + 0.392509i 0.956803 0.290738i \(-0.0939007\pi\)
−0.730188 + 0.683247i \(0.760567\pi\)
\(402\) −20.1810 11.6515i −1.00654 0.581126i
\(403\) −2.82391 1.63039i −0.140669 0.0812153i
\(404\) 11.9511 + 20.6999i 0.594590 + 1.02986i
\(405\) 1.11922 1.93581i 0.0556142 0.0961911i
\(406\) 0 0
\(407\) 8.85704i 0.439027i
\(408\) 21.1014 12.1829i 1.04468 0.603145i
\(409\) −8.30602 + 14.3865i −0.410706 + 0.711364i −0.994967 0.100202i \(-0.968051\pi\)
0.584261 + 0.811566i \(0.301385\pi\)
\(410\) −12.9435 + 7.46242i −0.639235 + 0.368543i
\(411\) −5.61594 9.72709i −0.277014 0.479802i
\(412\) 71.5897i 3.52697i
\(413\) 0 0
\(414\) −12.7663 −0.627430
\(415\) −0.00903927 + 14.8176i −0.000443720 + 0.727367i
\(416\) 9.35504 16.2034i 0.458669 0.794437i
\(417\) 4.32139 + 2.49495i 0.211619 + 0.122178i
\(418\) 4.90310 2.83081i 0.239818 0.138459i
\(419\) −29.8759 −1.45953 −0.729766 0.683697i \(-0.760371\pi\)
−0.729766 + 0.683697i \(0.760371\pi\)
\(420\) 0 0
\(421\) −19.3201 −0.941602 −0.470801 0.882239i \(-0.656035\pi\)
−0.470801 + 0.882239i \(0.656035\pi\)
\(422\) −10.5117 + 6.06893i −0.511701 + 0.295431i
\(423\) −3.67059 2.11922i −0.178470 0.103040i
\(424\) 22.4096 38.8145i 1.08831 1.88500i
\(425\) 17.9564 + 10.3963i 0.871011 + 0.504296i
\(426\) −13.8249 −0.669817
\(427\) 0 0
\(428\) 10.3485i 0.500213i
\(429\) −2.51858 4.36232i −0.121598 0.210615i
\(430\) 0.969525 + 1.68163i 0.0467546 + 0.0810956i
\(431\) 10.9981 19.0493i 0.529761 0.917572i −0.469637 0.882860i \(-0.655615\pi\)
0.999397 0.0347127i \(-0.0110516\pi\)
\(432\) −5.29146 + 3.05502i −0.254585 + 0.146985i
\(433\) 2.72706i 0.131054i 0.997851 + 0.0655272i \(0.0208729\pi\)
−0.997851 + 0.0655272i \(0.979127\pi\)
\(434\) 0 0
\(435\) −11.4729 6.63319i −0.550081 0.318037i
\(436\) 39.2360 + 67.9587i 1.87906 + 3.25463i
\(437\) 10.1045 + 5.83385i 0.483365 + 0.279071i
\(438\) 11.7212 + 6.76722i 0.560059 + 0.323350i
\(439\) 3.77183 + 6.53300i 0.180020 + 0.311803i 0.941887 0.335930i \(-0.109051\pi\)
−0.761867 + 0.647733i \(0.775717\pi\)
\(440\) 11.1178 + 6.42792i 0.530021 + 0.306439i
\(441\) 0 0
\(442\) 53.7802i 2.55806i
\(443\) −9.03987 + 5.21917i −0.429497 + 0.247970i −0.699132 0.714992i \(-0.746430\pi\)
0.269635 + 0.962963i \(0.413097\pi\)
\(444\) 19.6185 33.9802i 0.931053 1.61263i
\(445\) 18.2168 + 31.5969i 0.863559 + 1.49784i
\(446\) −19.9095 34.4843i −0.942743 1.63288i
\(447\) 14.4942i 0.685554i
\(448\) 0 0
\(449\) 1.73107 0.0816944 0.0408472 0.999165i \(-0.486994\pi\)
0.0408472 + 0.999165i \(0.486994\pi\)
\(450\) −10.8894 6.30474i −0.513332 0.297208i
\(451\) 1.29850 2.24907i 0.0611440 0.105905i
\(452\) 15.1747 + 8.76109i 0.713756 + 0.412087i
\(453\) 6.83028 3.94346i 0.320914 0.185280i
\(454\) 54.6055 2.56276
\(455\) 0 0
\(456\) 13.5048 0.632421
\(457\) −26.7268 + 15.4307i −1.25023 + 0.721819i −0.971154 0.238452i \(-0.923360\pi\)
−0.279072 + 0.960270i \(0.590027\pi\)
\(458\) −4.52642 2.61333i −0.211506 0.122113i
\(459\) 2.07488 3.59380i 0.0968473 0.167744i
\(460\) −0.0299848 + 49.1525i −0.00139805 + 2.29175i
\(461\) −10.7294 −0.499718 −0.249859 0.968282i \(-0.580384\pi\)
−0.249859 + 0.968282i \(0.580384\pi\)
\(462\) 0 0
\(463\) 11.1060i 0.516141i 0.966126 + 0.258071i \(0.0830867\pi\)
−0.966126 + 0.258071i \(0.916913\pi\)
\(464\) 18.1060 + 31.3606i 0.840552 + 1.45588i
\(465\) 1.22660 0.707178i 0.0568820 0.0327946i
\(466\) −8.50481 + 14.7308i −0.393978 + 0.682389i
\(467\) 23.8932 13.7947i 1.10564 0.638344i 0.167946 0.985796i \(-0.446286\pi\)
0.937698 + 0.347452i \(0.112953\pi\)
\(468\) 22.3148i 1.03150i
\(469\) 0 0
\(470\) −11.9379 + 20.6480i −0.550656 + 0.952422i
\(471\) 3.27815 + 5.67792i 0.151049 + 0.261625i
\(472\) −9.23733 5.33317i −0.425182 0.245479i
\(473\) −0.292201 0.168702i −0.0134354 0.00775694i
\(474\) −13.6989 23.7272i −0.629212 1.08983i
\(475\) 5.73788 + 9.96636i 0.263272 + 0.457288i
\(476\) 0 0
\(477\) 7.63319i 0.349500i
\(478\) −6.33074 + 3.65505i −0.289561 + 0.167178i
\(479\) 5.00869 8.67530i 0.228853 0.396385i −0.728616 0.684923i \(-0.759836\pi\)
0.957468 + 0.288538i \(0.0931692\pi\)
\(480\) 4.05774 + 7.03812i 0.185209 + 0.321245i
\(481\) 23.3156 + 40.3839i 1.06310 + 1.84135i
\(482\) 22.3913i 1.01989i
\(483\) 0 0
\(484\) 43.5192 1.97814
\(485\) −0.00209857 + 3.44007i −9.52910e−5 + 0.156205i
\(486\) −1.25829 + 2.17942i −0.0570772 + 0.0988606i
\(487\) −26.6165 15.3671i −1.20611 0.696348i −0.244203 0.969724i \(-0.578526\pi\)
−0.961907 + 0.273376i \(0.911860\pi\)
\(488\) −3.33704 + 1.92664i −0.151061 + 0.0872150i
\(489\) 12.2558 0.554227
\(490\) 0 0
\(491\) 4.14054 0.186860 0.0934301 0.995626i \(-0.470217\pi\)
0.0934301 + 0.995626i \(0.470217\pi\)
\(492\) 9.96346 5.75240i 0.449187 0.259338i
\(493\) −21.2992 12.2971i −0.959268 0.553833i
\(494\) −14.9039 + 25.8143i −0.670557 + 1.16144i
\(495\) 2.18718 + 0.00133426i 0.0983063 + 5.99704e-5i
\(496\) −3.86881 −0.173715
\(497\) 0 0
\(498\) 16.6764i 0.747289i
\(499\) −0.774139 1.34085i −0.0346552 0.0600246i 0.848178 0.529712i \(-0.177700\pi\)
−0.882833 + 0.469687i \(0.844367\pi\)
\(500\) −24.2999 + 41.9114i −1.08673 + 1.87433i
\(501\) −1.06620 + 1.84671i −0.0476341 + 0.0825047i
\(502\) −46.1486 + 26.6439i −2.05971 + 1.18918i
\(503\) 15.1658i 0.676210i −0.941108 0.338105i \(-0.890214\pi\)
0.941108 0.338105i \(-0.109786\pi\)
\(504\) 0 0
\(505\) 6.17370 10.6781i 0.274726 0.475170i
\(506\) −6.24359 10.8142i −0.277561 0.480750i
\(507\) 11.7088 + 6.76006i 0.520004 + 0.300225i
\(508\) −25.7064 14.8416i −1.14054 0.658491i
\(509\) 10.2327 + 17.7236i 0.453558 + 0.785586i 0.998604 0.0528204i \(-0.0168211\pi\)
−0.545046 + 0.838406i \(0.683488\pi\)
\(510\) −20.2161 11.6882i −0.895183 0.517563i
\(511\) 0 0
\(512\) 49.5528i 2.18994i
\(513\) 1.99187 1.15001i 0.0879432 0.0507741i
\(514\) 7.84471 13.5874i 0.346015 0.599316i
\(515\) 32.0047 18.4519i 1.41029 0.813087i
\(516\) −0.747358 1.29446i −0.0329006 0.0569855i
\(517\) 4.14576i 0.182330i
\(518\) 0 0
\(519\) 11.5485 0.506924
\(520\) −67.6130 0.0412464i −2.96503 0.00180878i
\(521\) 1.37337 2.37875i 0.0601685 0.104215i −0.834372 0.551202i \(-0.814170\pi\)
0.894541 + 0.446987i \(0.147503\pi\)
\(522\) 12.9167 + 7.45743i 0.565347 + 0.326403i
\(523\) −34.5258 + 19.9335i −1.50971 + 0.871629i −0.509770 + 0.860311i \(0.670269\pi\)
−0.999936 + 0.0113184i \(0.996397\pi\)
\(524\) −17.4427 −0.761990
\(525\) 0 0
\(526\) 70.5850 3.07765
\(527\) 2.27556 1.31379i 0.0991247 0.0572297i
\(528\) −5.17576 2.98823i −0.225246 0.130046i
\(529\) 1.36705 2.36780i 0.0594370 0.102948i
\(530\) −42.9538 0.0262034i −1.86579 0.00113820i
\(531\) −1.81659 −0.0788335
\(532\) 0 0
\(533\) 13.6729i 0.592239i
\(534\) −20.5238 35.5482i −0.888150 1.53832i
\(535\) −4.62635 + 2.66727i −0.200015 + 0.115316i
\(536\) 27.1851 47.0859i 1.17422 2.03380i
\(537\) −7.70725 + 4.44978i −0.332592 + 0.192022i
\(538\) 18.6688i 0.804867i
\(539\) 0 0
\(540\) 8.38820 + 4.84975i 0.360971 + 0.208700i
\(541\) −13.2493 22.9485i −0.569633 0.986633i −0.996602 0.0823667i \(-0.973752\pi\)
0.426969 0.904266i \(-0.359581\pi\)
\(542\) 68.0232 + 39.2732i 2.92185 + 1.68693i
\(543\) −2.75344 1.58970i −0.118161 0.0682205i
\(544\) 7.53844 + 13.0570i 0.323208 + 0.559813i
\(545\) 20.2685 35.0567i 0.868207 1.50166i
\(546\) 0 0
\(547\) 12.9090i 0.551950i −0.961165 0.275975i \(-0.910999\pi\)
0.961165 0.275975i \(-0.0890008\pi\)
\(548\) 42.1492 24.3348i 1.80052 1.03953i
\(549\) −0.328128 + 0.568335i −0.0140042 + 0.0242559i
\(550\) 0.0150164 12.3078i 0.000640301 0.524805i
\(551\) −6.81568 11.8051i −0.290358 0.502914i
\(552\) 29.7860i 1.26778i
\(553\) 0 0
\(554\) −31.3379 −1.33142
\(555\) −20.2476 0.0123518i −0.859465 0.000524305i
\(556\) −10.8111 + 18.7253i −0.458492 + 0.794131i
\(557\) 6.22247 + 3.59254i 0.263654 + 0.152221i 0.626000 0.779823i \(-0.284691\pi\)
−0.362346 + 0.932044i \(0.618024\pi\)
\(558\) −1.37998 + 0.796734i −0.0584194 + 0.0337285i
\(559\) 1.77640 0.0751336
\(560\) 0 0
\(561\) 4.05903 0.171373
\(562\) 0.0891873 0.0514923i 0.00376214 0.00217207i
\(563\) 2.06720 + 1.19350i 0.0871220 + 0.0502999i 0.542928 0.839779i \(-0.317316\pi\)
−0.455806 + 0.890079i \(0.650649\pi\)
\(564\) 9.18293 15.9053i 0.386671 0.669734i
\(565\) 0.00551598 9.04205i 0.000232059 0.380402i
\(566\) 27.2847 1.14686
\(567\) 0 0
\(568\) 32.2558i 1.35342i
\(569\) 14.9271 + 25.8545i 0.625776 + 1.08388i 0.988390 + 0.151936i \(0.0485508\pi\)
−0.362615 + 0.931939i \(0.618116\pi\)
\(570\) −6.46453 11.2127i −0.270769 0.469648i
\(571\) 9.73170 16.8558i 0.407259 0.705393i −0.587322 0.809353i \(-0.699818\pi\)
0.994582 + 0.103960i \(0.0331513\pi\)
\(572\) 18.9027 10.9135i 0.790361 0.456315i
\(573\) 0.622618i 0.0260103i
\(574\) 0 0
\(575\) 21.9817 12.6554i 0.916699 0.527766i
\(576\) 1.53844 + 2.66466i 0.0641019 + 0.111028i
\(577\) −3.43108 1.98094i −0.142838 0.0824675i 0.426878 0.904309i \(-0.359613\pi\)
−0.569716 + 0.821842i \(0.692947\pi\)
\(578\) −0.480727 0.277548i −0.0199956 0.0115445i
\(579\) −7.59383 13.1529i −0.315589 0.546616i
\(580\) 28.7428 49.7139i 1.19348 2.06426i
\(581\) 0 0
\(582\) 3.87162i 0.160484i
\(583\) 6.46600 3.73315i 0.267794 0.154611i
\(584\) −15.7891 + 27.3475i −0.653357 + 1.13165i
\(585\) −9.97599 + 5.75153i −0.412457 + 0.237797i
\(586\) −37.3026 64.6100i −1.54096 2.66901i
\(587\) 13.9419i 0.575446i −0.957714 0.287723i \(-0.907102\pi\)
0.957714 0.287723i \(-0.0928982\pi\)
\(588\) 0 0
\(589\) 1.45634 0.0600075
\(590\) −0.00623605 + 10.2224i −0.000256734 + 0.420850i
\(591\) 11.9705 20.7335i 0.492400 0.852863i
\(592\) 47.9143 + 27.6633i 1.96926 + 1.13696i
\(593\) −33.3396 + 19.2486i −1.36909 + 0.790447i −0.990812 0.135243i \(-0.956818\pi\)
−0.378282 + 0.925690i \(0.623485\pi\)
\(594\) −2.46156 −0.100999
\(595\) 0 0
\(596\) −62.8061 −2.57264
\(597\) 12.0839 6.97662i 0.494560 0.285534i
\(598\) 56.9356 + 32.8718i 2.32827 + 1.34423i
\(599\) 8.74985 15.1552i 0.357509 0.619224i −0.630035 0.776567i \(-0.716959\pi\)
0.987544 + 0.157343i \(0.0502927\pi\)
\(600\) 14.7101 25.4069i 0.600536 1.03723i
\(601\) −34.5192 −1.40807 −0.704033 0.710167i \(-0.748619\pi\)
−0.704033 + 0.710167i \(0.748619\pi\)
\(602\) 0 0
\(603\) 9.25982i 0.377089i
\(604\) 17.0877 + 29.5968i 0.695289 + 1.20428i
\(605\) −11.2168 19.4555i −0.456029 0.790979i
\(606\) −6.94086 + 12.0219i −0.281953 + 0.488357i
\(607\) −9.45318 + 5.45780i −0.383693 + 0.221525i −0.679424 0.733746i \(-0.737770\pi\)
0.295731 + 0.955271i \(0.404437\pi\)
\(608\) 8.35639i 0.338896i
\(609\) 0 0
\(610\) 3.19703 + 1.84841i 0.129444 + 0.0748398i
\(611\) 10.9135 + 18.9027i 0.441512 + 0.764721i
\(612\) 15.5726 + 8.99083i 0.629484 + 0.363433i
\(613\) −22.6183 13.0587i −0.913543 0.527435i −0.0319739 0.999489i \(-0.510179\pi\)
−0.881570 + 0.472054i \(0.843513\pi\)
\(614\) 39.7689 + 68.8817i 1.60494 + 2.77984i
\(615\) −5.13968 2.97158i −0.207252 0.119825i
\(616\) 0 0
\(617\) 11.6689i 0.469772i 0.972023 + 0.234886i \(0.0754717\pi\)
−0.972023 + 0.234886i \(0.924528\pi\)
\(618\) −36.0069 + 20.7886i −1.44841 + 0.836240i
\(619\) 0.411816 0.713286i 0.0165523 0.0286694i −0.857631 0.514266i \(-0.828064\pi\)
0.874183 + 0.485597i \(0.161398\pi\)
\(620\) 3.06432 + 5.31505i 0.123066 + 0.213458i
\(621\) −2.53644 4.39324i −0.101784 0.176295i
\(622\) 55.7933i 2.23711i
\(623\) 0 0
\(624\) 31.4653 1.25962
\(625\) 24.9999 + 0.0610036i 0.999997 + 0.00244014i
\(626\) −8.66423 + 15.0069i −0.346292 + 0.599796i
\(627\) 1.94832 + 1.12486i 0.0778084 + 0.0449227i
\(628\) −24.6034 + 14.2048i −0.981783 + 0.566833i
\(629\) −37.5763 −1.49826
\(630\) 0 0
\(631\) −20.5920 −0.819755 −0.409877 0.912141i \(-0.634429\pi\)
−0.409877 + 0.912141i \(0.634429\pi\)
\(632\) 55.3597 31.9619i 2.20209 1.27138i
\(633\) −4.17697 2.41158i −0.166020 0.0958516i
\(634\) −16.1548 + 27.9810i −0.641590 + 1.11127i
\(635\) −0.00934428 + 15.3176i −0.000370817 + 0.607860i
\(636\) 33.0759 1.31155
\(637\) 0 0
\(638\) 14.5888i 0.577575i
\(639\) −2.74676 4.75752i −0.108660 0.188205i
\(640\) 29.0762 16.7635i 1.14934 0.662636i
\(641\) −14.8371 + 25.6986i −0.586029 + 1.01503i 0.408717 + 0.912661i \(0.365976\pi\)
−0.994746 + 0.102371i \(0.967357\pi\)
\(642\) 5.20489 3.00505i 0.205421 0.118600i
\(643\) 11.1286i 0.438870i 0.975627 + 0.219435i \(0.0704214\pi\)
−0.975627 + 0.219435i \(0.929579\pi\)
\(644\) 0 0
\(645\) −0.386070 + 0.667751i −0.0152015 + 0.0262927i
\(646\) −12.0098 20.8016i −0.472519 0.818426i
\(647\) −9.45991 5.46168i −0.371907 0.214721i 0.302384 0.953186i \(-0.402217\pi\)
−0.674291 + 0.738465i \(0.735551\pi\)
\(648\) −5.08497 2.93581i −0.199757 0.115329i
\(649\) −0.888437 1.53882i −0.0348742 0.0604039i
\(650\) 32.3310 + 56.1571i 1.26813 + 2.20266i
\(651\) 0 0
\(652\) 53.1065i 2.07981i
\(653\) 6.21006 3.58538i 0.243019 0.140307i −0.373545 0.927612i \(-0.621858\pi\)
0.616563 + 0.787305i \(0.288524\pi\)
\(654\) −22.7871 + 39.4684i −0.891046 + 1.54334i
\(655\) 4.49577 + 7.79789i 0.175664 + 0.304689i
\(656\) 8.11125 + 14.0491i 0.316691 + 0.548525i
\(657\) 5.37811i 0.209820i
\(658\) 0 0
\(659\) −14.1232 −0.550161 −0.275080 0.961421i \(-0.588704\pi\)
−0.275080 + 0.961421i \(0.588704\pi\)
\(660\) −0.00578157 + 9.47742i −0.000225047 + 0.368908i
\(661\) 14.4608 25.0469i 0.562461 0.974212i −0.434819 0.900518i \(-0.643188\pi\)
0.997281 0.0736941i \(-0.0234789\pi\)
\(662\) −18.5982 10.7377i −0.722841 0.417333i
\(663\) −18.5073 + 10.6852i −0.718762 + 0.414978i
\(664\) 38.9090 1.50996
\(665\) 0 0
\(666\) 22.7877 0.883005
\(667\) −26.0372 + 15.0326i −1.00816 + 0.582063i
\(668\) −8.00210 4.62001i −0.309610 0.178754i
\(669\) 7.91134 13.7028i 0.305870 0.529782i
\(670\) −52.1072 0.0317873i −2.01308 0.00122805i
\(671\) −0.641907 −0.0247806
\(672\) 0 0
\(673\) 14.4081i 0.555392i 0.960669 + 0.277696i \(0.0895709\pi\)
−0.960669 + 0.277696i \(0.910429\pi\)
\(674\) 36.6327 + 63.4497i 1.41104 + 2.44399i
\(675\) 0.00610036 5.00000i 0.000234803 0.192450i
\(676\) −29.2925 + 50.7361i −1.12663 + 1.95139i
\(677\) 26.0991 15.0683i 1.00307 0.579123i 0.0939148 0.995580i \(-0.470062\pi\)
0.909155 + 0.416457i \(0.136729\pi\)
\(678\) 10.1764i 0.390821i
\(679\) 0 0
\(680\) 27.2706 47.1676i 1.04578 1.80880i
\(681\) 10.8492 + 18.7913i 0.415740 + 0.720084i
\(682\) −1.34981 0.779314i −0.0516870 0.0298415i
\(683\) −13.4380 7.75842i −0.514190 0.296868i 0.220364 0.975418i \(-0.429275\pi\)
−0.734554 + 0.678550i \(0.762609\pi\)
\(684\) 4.98318 + 8.63112i 0.190537 + 0.330019i
\(685\) −21.7428 12.5709i −0.830748 0.480309i
\(686\) 0 0
\(687\) 2.07689i 0.0792383i
\(688\) 1.82527 1.05382i 0.0695878 0.0401766i
\(689\) −19.6546 + 34.0427i −0.748780 + 1.29692i
\(690\) −24.7305 + 14.2581i −0.941476 + 0.542796i
\(691\) 22.8917 + 39.6496i 0.870842 + 1.50834i 0.861127 + 0.508391i \(0.169759\pi\)
0.00971588 + 0.999953i \(0.496907\pi\)
\(692\) 50.0418i 1.90230i
\(693\) 0 0
\(694\) −33.8297 −1.28416
\(695\) 11.1578 + 0.00680665i 0.423238 + 0.000258191i
\(696\) −17.3995 + 30.1368i −0.659526 + 1.14233i
\(697\) −9.54174 5.50893i −0.361419 0.208666i
\(698\) 53.9183 31.1298i 2.04084 1.17828i
\(699\) −6.75902 −0.255650
\(700\) 0 0
\(701\) 24.0419 0.908050 0.454025 0.890989i \(-0.349988\pi\)
0.454025 + 0.890989i \(0.349988\pi\)
\(702\) 11.2235 6.47990i 0.423604 0.244568i
\(703\) −18.0364 10.4133i −0.680257 0.392747i
\(704\) −1.50481 + 2.60640i −0.0567145 + 0.0982325i
\(705\) −9.47742 0.00578157i −0.356940 0.000217747i
\(706\) 42.1653 1.58691
\(707\) 0 0
\(708\) 7.87162i 0.295834i
\(709\) 9.19854 + 15.9323i 0.345459 + 0.598352i 0.985437 0.170041i \(-0.0543901\pi\)
−0.639978 + 0.768393i \(0.721057\pi\)
\(710\) −26.7812 + 15.4403i −1.00508 + 0.579465i
\(711\) 5.44346 9.42835i 0.204146 0.353591i
\(712\) 82.9401 47.8855i 3.10831 1.79458i
\(713\) 3.21209i 0.120294i
\(714\) 0 0
\(715\) −9.75100 5.63768i −0.364667 0.210837i
\(716\) −19.2817 33.3969i −0.720590 1.24810i
\(717\) −2.51561 1.45239i −0.0939472 0.0542405i
\(718\) 70.8147 + 40.8849i 2.64278 + 1.52581i
\(719\) 8.12275 + 14.0690i 0.302927 + 0.524686i 0.976798 0.214164i \(-0.0687027\pi\)
−0.673870 + 0.738850i \(0.735369\pi\)
\(720\) −6.83846 + 11.8279i −0.254854 + 0.440799i
\(721\) 0 0
\(722\) 34.5021i 1.28404i
\(723\) 7.70546 4.44875i 0.286569 0.165451i
\(724\) 6.88844 11.9311i 0.256007 0.443417i
\(725\) −29.6332 0.0361547i −1.10055 0.00134275i
\(726\) 12.6373 + 21.8885i 0.469015 + 0.812358i
\(727\) 42.6977i 1.58357i −0.610800 0.791785i \(-0.709152\pi\)
0.610800 0.791785i \(-0.290848\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 30.2639 + 0.0184621i 1.12012 + 0.000683313i
\(731\) −0.715725 + 1.23967i −0.0264720 + 0.0458509i
\(732\) −2.46269 1.42184i −0.0910237 0.0525526i
\(733\) 40.4538 23.3560i 1.49420 0.862674i 0.494218 0.869338i \(-0.335455\pi\)
0.999978 + 0.00666408i \(0.00212126\pi\)
\(734\) −60.3020 −2.22579
\(735\) 0 0
\(736\) 18.4307 0.679366
\(737\) 7.84390 4.52868i 0.288934 0.166816i
\(738\) 5.78648 + 3.34083i 0.213003 + 0.122978i
\(739\) 3.52410 6.10393i 0.129636 0.224537i −0.793899 0.608049i \(-0.791952\pi\)
0.923536 + 0.383513i \(0.125286\pi\)
\(740\) 0.0535225 87.7366i 0.00196753 3.22526i
\(741\) −11.8445 −0.435120
\(742\) 0 0
\(743\) 8.55510i 0.313856i −0.987610 0.156928i \(-0.949841\pi\)
0.987610 0.156928i \(-0.0501591\pi\)
\(744\) −1.85892 3.21974i −0.0681513 0.118042i
\(745\) 16.1879 + 28.0778i 0.593080 + 1.02869i
\(746\) −13.9361 + 24.1380i −0.510237 + 0.883756i
\(747\) 5.73883 3.31331i 0.209973 0.121228i
\(748\) 17.5885i 0.643099i
\(749\) 0 0
\(750\) −28.1362 0.0514923i −1.02739 0.00188023i
\(751\) 1.48823 + 2.57768i 0.0543062 + 0.0940611i 0.891901 0.452232i \(-0.149372\pi\)
−0.837594 + 0.546293i \(0.816039\pi\)
\(752\) 22.4275 + 12.9485i 0.817846 + 0.472183i
\(753\) −18.3378 10.5873i −0.668267 0.385824i
\(754\) −38.4041 66.5178i −1.39859 2.42243i
\(755\) 8.82716 15.2676i 0.321253 0.555644i
\(756\) 0 0
\(757\) 43.6750i 1.58740i −0.608313 0.793698i \(-0.708153\pi\)
0.608313 0.793698i \(-0.291847\pi\)
\(758\) −71.3592 + 41.1993i −2.59188 + 1.49643i
\(759\) 2.48098 4.29718i 0.0900539 0.155978i
\(760\) 26.1612 15.0829i 0.948965 0.547113i
\(761\) 13.3628 + 23.1451i 0.484402 + 0.839008i 0.999839 0.0179187i \(-0.00570401\pi\)
−0.515438 + 0.856927i \(0.672371\pi\)
\(762\) 17.2392i 0.624509i
\(763\) 0 0
\(764\) 2.69791 0.0976071
\(765\) 0.00566063 9.27916i 0.000204660 0.335489i
\(766\) −29.2581 + 50.6766i −1.05714 + 1.83102i
\(767\) 8.10170 + 4.67752i 0.292535 + 0.168895i
\(768\) −27.3830 + 15.8096i −0.988097 + 0.570478i
\(769\) −4.04661 −0.145925 −0.0729623 0.997335i \(-0.523245\pi\)
−0.0729623 + 0.997335i \(0.523245\pi\)
\(770\) 0 0
\(771\) 6.23442 0.224527
\(772\) 56.9938 32.9054i 2.05125 1.18429i
\(773\) 5.46553 + 3.15553i 0.196581 + 0.113496i 0.595060 0.803681i \(-0.297128\pi\)
−0.398478 + 0.917178i \(0.630462\pi\)
\(774\) 0.434043 0.751785i 0.0156014 0.0270224i
\(775\) 1.58631 2.73985i 0.0569821 0.0984184i
\(776\) 9.03316 0.324272
\(777\) 0 0
\(778\) 94.6892i 3.39477i
\(779\) −3.05333 5.28852i −0.109397 0.189481i
\(780\) −24.9224 43.2277i −0.892365 1.54780i
\(781\) 2.68670 4.65350i 0.0961376 0.166515i
\(782\) −45.8796 + 26.4886i −1.64065 + 0.947230i
\(783\) 5.92664i 0.211801i
\(784\) 0 0
\(785\) 12.6917 + 7.33791i 0.452988 + 0.261901i
\(786\) −5.06512 8.77304i −0.180667 0.312924i
\(787\) −25.9595 14.9877i −0.925358 0.534256i −0.0400174 0.999199i \(-0.512741\pi\)
−0.885340 + 0.464943i \(0.846075\pi\)
\(788\) 89.8419 + 51.8702i 3.20048 + 1.84780i
\(789\) 14.0240 + 24.2903i 0.499267 + 0.864756i
\(790\) −53.0369 30.6640i −1.88697 1.09098i
\(791\) 0 0
\(792\) 5.74324i 0.204077i
\(793\) 2.92679 1.68978i 0.103933 0.0600060i
\(794\) 0.0724448 0.125478i 0.00257097 0.00445305i
\(795\) −8.52515 14.7868i −0.302356 0.524434i
\(796\) 30.2309 + 52.3615i 1.07151 + 1.85590i
\(797\) 0.676527i 0.0239638i 0.999928 + 0.0119819i \(0.00381405\pi\)
−0.999928 + 0.0119819i \(0.996186\pi\)
\(798\) 0 0
\(799\) −17.5885 −0.622236
\(800\) 15.7211 + 9.10216i 0.555824 + 0.321810i
\(801\) 8.15542 14.1256i 0.288157 0.499103i
\(802\) −19.7803 11.4202i −0.698466 0.403260i
\(803\) −4.55574 + 2.63026i −0.160769 + 0.0928198i
\(804\) 40.1244 1.41508
\(805\) 0 0
\(806\) 8.20600 0.289044
\(807\) 6.42444 3.70915i 0.226151 0.130568i
\(808\) −28.0492 16.1942i −0.986768 0.569711i
\(809\) −25.0612 + 43.4072i −0.881104 + 1.52612i −0.0309881 + 0.999520i \(0.509865\pi\)
−0.850115 + 0.526596i \(0.823468\pi\)
\(810\) −0.00343282 + 5.62724i −0.000120617 + 0.197721i
\(811\) 36.4884 1.28128 0.640641 0.767841i \(-0.278669\pi\)
0.640641 + 0.767841i \(0.278669\pi\)
\(812\) 0 0
\(813\) 31.2116i 1.09464i
\(814\) 11.1447 + 19.3032i 0.390622 + 0.676578i
\(815\) 23.7416 13.6879i 0.831633 0.479467i
\(816\) −12.6776 + 21.9583i −0.443806 + 0.768695i
\(817\) −0.687090 + 0.396691i −0.0240382 + 0.0138785i
\(818\) 41.8055i 1.46170i
\(819\) 0 0
\(820\) 12.8764 22.2711i 0.449662 0.777741i
\(821\) −19.3654 33.5419i −0.675858 1.17062i −0.976217 0.216794i \(-0.930440\pi\)
0.300359 0.953826i \(-0.402893\pi\)
\(822\) 24.4790 + 14.1329i 0.853803 + 0.492943i
\(823\) −18.1702 10.4906i −0.633375 0.365679i 0.148683 0.988885i \(-0.452497\pi\)
−0.782058 + 0.623206i \(0.785830\pi\)
\(824\) −48.5034 84.0104i −1.68970 2.92664i
\(825\) 4.23843 2.44017i 0.147563 0.0849558i
\(826\) 0 0
\(827\) 37.8114i 1.31483i −0.753528 0.657416i \(-0.771650\pi\)
0.753528 0.657416i \(-0.228350\pi\)
\(828\) 19.0367 10.9908i 0.661570 0.381958i
\(829\) 26.6591 46.1749i 0.925908 1.60372i 0.135813 0.990734i \(-0.456635\pi\)
0.790095 0.612985i \(-0.210031\pi\)
\(830\) −18.6251 32.3052i −0.646487 1.12133i
\(831\) −6.22629 10.7843i −0.215988 0.374102i
\(832\) 15.8453i 0.549336i
\(833\) 0 0
\(834\) −12.5575 −0.434831
\(835\) −0.00290876 + 4.76817i −0.000100662 + 0.165009i
\(836\) −4.87423 + 8.44241i −0.168579 + 0.291987i
\(837\) −0.548357 0.316594i −0.0189540 0.0109431i
\(838\) 65.1121 37.5925i 2.24926 1.29861i
\(839\) 52.6452 1.81752 0.908758 0.417324i \(-0.137032\pi\)
0.908758 + 0.417324i \(0.137032\pi\)
\(840\) 0 0
\(841\) 6.12510 0.211210
\(842\) 42.1066 24.3102i 1.45109 0.837786i
\(843\) 0.0354399 + 0.0204612i 0.00122061 + 0.000704722i
\(844\) 10.4498 18.0996i 0.359696 0.623012i
\(845\) 30.2319 + 0.0184426i 1.04001 + 0.000634443i
\(846\) 10.6663 0.366717
\(847\) 0 0
\(848\) 46.6392i 1.60160i
\(849\) 5.42100 + 9.38944i 0.186048 + 0.322245i
\(850\) −52.2161 0.0637075i −1.79100 0.00218515i
\(851\) −22.9675 + 39.7809i −0.787316 + 1.36367i
\(852\) 20.6152 11.9022i 0.706264 0.407762i
\(853\) 5.01225i 0.171616i 0.996312 + 0.0858081i \(0.0273472\pi\)
−0.996312 + 0.0858081i \(0.972653\pi\)
\(854\) 0 0
\(855\) 2.57421 4.45239i 0.0880362 0.152268i
\(856\) 7.01129 + 12.1439i 0.239641 + 0.415071i
\(857\) 33.2737 + 19.2106i 1.13661 + 0.656222i 0.945589 0.325364i \(-0.105487\pi\)
0.191021 + 0.981586i \(0.438820\pi\)
\(858\) 10.9781 + 6.33822i 0.374787 + 0.216383i
\(859\) −11.6709 20.2146i −0.398207 0.689714i 0.595298 0.803505i \(-0.297034\pi\)
−0.993505 + 0.113791i \(0.963701\pi\)
\(860\) −2.89348 1.67291i −0.0986670 0.0570457i
\(861\) 0 0
\(862\) 55.3553i 1.88541i
\(863\) −47.0908 + 27.1879i −1.60299 + 0.925486i −0.612103 + 0.790778i \(0.709676\pi\)
−0.990885 + 0.134707i \(0.956991\pi\)
\(864\) 1.81659 3.14643i 0.0618018 0.107044i
\(865\) 22.3715 12.8980i 0.760654 0.438546i
\(866\) −3.43144 5.94342i −0.116605 0.201966i
\(867\) 0.220576i 0.00749114i
\(868\) 0 0
\(869\) 10.6489 0.361239
\(870\) 33.3507 + 0.0203451i 1.13069 + 0.000689764i
\(871\) −23.8430 + 41.2972i −0.807888 + 1.39930i
\(872\) −92.0866 53.1662i −3.11845 1.80044i
\(873\) 1.33233 0.769222i 0.0450926 0.0260342i
\(874\) −29.3627 −0.993208
\(875\) 0 0
\(876\) −23.3043 −0.787378
\(877\) −24.6434 + 14.2279i −0.832148 + 0.480441i −0.854587 0.519307i \(-0.826190\pi\)
0.0224397 + 0.999748i \(0.492857\pi\)
\(878\) −16.4408 9.49211i −0.554851 0.320343i
\(879\) 14.8227 25.6737i 0.499958 0.865953i
\(880\) −13.3638 0.00815238i −0.450492 0.000274817i
\(881\) 6.50466 0.219148 0.109574 0.993979i \(-0.465051\pi\)
0.109574 + 0.993979i \(0.465051\pi\)
\(882\) 0 0
\(883\) 34.7640i 1.16990i −0.811069 0.584951i \(-0.801114\pi\)
0.811069 0.584951i \(-0.198886\pi\)
\(884\) −46.3007 80.1952i −1.55726 2.69726i
\(885\) −3.51906 + 2.02887i −0.118292 + 0.0681996i
\(886\) 13.1345 22.7496i 0.441261 0.764286i
\(887\) −25.4214 + 14.6770i −0.853566 + 0.492807i −0.861853 0.507159i \(-0.830696\pi\)
0.00828615 + 0.999966i \(0.497362\pi\)
\(888\) 53.1676i 1.78419i
\(889\) 0 0
\(890\) −79.4601 45.9410i −2.66351 1.53995i
\(891\) −0.489068 0.847090i −0.0163844 0.0283786i
\(892\) 59.3768 + 34.2812i 1.98808 + 1.14782i
\(893\) −8.44241 4.87423i −0.282514 0.163110i
\(894\) −18.2380 31.5891i −0.609968 1.05650i
\(895\) −9.96053 + 17.2279i −0.332944 + 0.575864i
\(896\) 0 0
\(897\) 26.1242i 0.872260i
\(898\) −3.77274 + 2.17819i −0.125898 + 0.0726872i
\(899\) −1.87634 + 3.24992i −0.0625795 + 0.108391i
\(900\) 21.6659 + 0.0264339i 0.722195 + 0.000881131i
\(901\) −15.8380 27.4322i −0.527640 0.913899i
\(902\) 6.53556i 0.217610i
\(903\) 0 0
\(904\) −23.7432 −0.789688
\(905\) −7.10934 0.00433696i −0.236323 0.000144165i
\(906\) −9.92404 + 17.1889i −0.329704 + 0.571064i
\(907\) −31.4256 18.1436i −1.04347 0.602447i −0.122655 0.992449i \(-0.539141\pi\)
−0.920814 + 0.390002i \(0.872474\pi\)
\(908\) −81.4259 + 47.0113i −2.70221 + 1.56012i
\(909\) −5.51610 −0.182958
\(910\) 0 0
\(911\) 51.6732 1.71201 0.856004 0.516968i \(-0.172940\pi\)
0.856004 + 0.516968i \(0.172940\pi\)
\(912\) −12.1704 + 7.02660i −0.403003 + 0.232674i
\(913\) 5.61335 + 3.24087i 0.185775 + 0.107257i
\(914\) 38.8326 67.2601i 1.28447 2.22477i
\(915\) −0.000895188 1.46743i −2.95940e−5 0.0485118i
\(916\) 8.99952 0.297353
\(917\) 0 0
\(918\) 10.4432i 0.344678i
\(919\) −20.5188 35.5397i −0.676854 1.17235i −0.975923 0.218114i \(-0.930010\pi\)
0.299069 0.954231i \(-0.403324\pi\)
\(920\) −33.2666 57.7007i −1.09677 1.90233i
\(921\) −15.8027 + 27.3712i −0.520718 + 0.901910i
\(922\) 23.3839 13.5007i 0.770107 0.444621i
\(923\) 28.2903i 0.931187i
\(924\) 0 0
\(925\) −39.2370 + 22.5897i −1.29010 + 0.742745i
\(926\) −13.9746 24.2047i −0.459234 0.795417i
\(927\) −14.3079 8.26066i −0.469932 0.271316i
\(928\) −18.6478 10.7663i −0.612144 0.353421i
\(929\) 1.49260 + 2.58526i 0.0489706 + 0.0848196i 0.889472 0.456990i \(-0.151073\pi\)
−0.840501 + 0.541810i \(0.817739\pi\)
\(930\) −1.78343 + 3.08465i −0.0584811 + 0.101150i
\(931\) 0 0
\(932\) 29.2880i 0.959361i
\(933\) −19.2000 + 11.0851i −0.628581 + 0.362911i
\(934\) −34.7155 + 60.1291i −1.13593 + 1.96748i
\(935\) 7.86305 4.53334i 0.257149 0.148256i
\(936\) 15.1187 + 26.1864i 0.494171 + 0.855930i
\(937\) 26.1169i 0.853201i −0.904440 0.426601i \(-0.859711\pi\)
0.904440 0.426601i \(-0.140289\pi\)
\(938\) 0 0
\(939\) −6.88572 −0.224707
\(940\) 0.0250525 41.0673i 0.000817124 1.33947i
\(941\) 5.10580 8.84351i 0.166444 0.288290i −0.770723 0.637171i \(-0.780105\pi\)
0.937167 + 0.348880i \(0.113438\pi\)
\(942\) −14.2889 8.24973i −0.465559 0.268791i
\(943\) −11.6643 + 6.73438i −0.379842 + 0.219302i
\(944\) 11.0995 0.361257
\(945\) 0 0
\(946\) 0.849106 0.0276068
\(947\) 40.3086 23.2722i 1.30985 0.756245i 0.327783 0.944753i \(-0.393699\pi\)
0.982072 + 0.188509i \(0.0603653\pi\)
\(948\) 40.8547 + 23.5875i 1.32690 + 0.766085i
\(949\) 13.8480 23.9854i 0.449525 0.778600i
\(950\) −25.0458 14.5010i −0.812594 0.470474i
\(951\) −12.8387 −0.416324
\(952\) 0 0
\(953\) 30.6348i 0.992358i −0.868220 0.496179i \(-0.834736\pi\)
0.868220 0.496179i \(-0.165264\pi\)
\(954\) 9.60476 + 16.6359i 0.310966 + 0.538608i
\(955\) −0.695373 1.20612i −0.0225017 0.0390291i
\(956\) 6.29345 10.9006i 0.203545 0.352550i
\(957\) −5.02040 + 2.89853i −0.162286 + 0.0936961i
\(958\) 25.2095i 0.814483i
\(959\) 0 0
\(960\) 5.95627 + 3.44370i 0.192238 + 0.111145i
\(961\) 15.2995 + 26.4996i 0.493533 + 0.854825i
\(962\) −101.629 58.6757i −3.27666 1.89178i
\(963\) 2.06824 + 1.19410i 0.0666481 + 0.0384793i
\(964\) 19.2772 + 33.3891i 0.620877 + 1.07539i
\(965\) −29.4004 16.9983i −0.946433 0.547193i
\(966\) 0 0
\(967\) 57.4401i 1.84715i 0.383419 + 0.923575i \(0.374747\pi\)
−0.383419 + 0.923575i \(0.625253\pi\)
\(968\) −51.0696 + 29.4851i −1.64144 + 0.947686i
\(969\) 4.77226 8.26580i 0.153307 0.265536i
\(970\) −4.32403 7.50000i −0.138836 0.240810i
\(971\) 24.0908 + 41.7265i 0.773110 + 1.33907i 0.935850 + 0.352397i \(0.114633\pi\)
−0.162740 + 0.986669i \(0.552033\pi\)
\(972\) 4.33317i 0.138987i
\(973\) 0 0
\(974\) 77.3449 2.47829
\(975\) −12.9016 + 22.2834i −0.413182 + 0.713641i
\(976\) 2.00488 3.47255i 0.0641746 0.111154i
\(977\) 11.9099 + 6.87617i 0.381031 + 0.219988i 0.678267 0.734816i \(-0.262731\pi\)
−0.297236 + 0.954804i \(0.596065\pi\)
\(978\) −26.7106 + 15.4214i −0.854110 + 0.493121i
\(979\) 15.9542 0.509898
\(980\) 0 0
\(981\) −18.1096 −0.578194
\(982\) −9.02399 + 5.21001i −0.287967 + 0.166258i
\(983\) 33.0773 + 19.0972i 1.05500 + 0.609106i 0.924046 0.382282i \(-0.124862\pi\)
0.130957 + 0.991388i \(0.458195\pi\)
\(984\) −7.79473 + 13.5009i −0.248487 + 0.430392i
\(985\) 0.0326575 53.5337i 0.00104055 1.70572i
\(986\) 61.8933 1.97108
\(987\) 0 0
\(988\) 51.3245i 1.63285i
\(989\) 0.874937 + 1.51544i 0.0278214 + 0.0481880i
\(990\) −4.76846 + 2.74919i −0.151552 + 0.0873751i
\(991\) −19.7600 + 34.2253i −0.627697 + 1.08720i 0.360316 + 0.932830i \(0.382669\pi\)
−0.988013 + 0.154372i \(0.950665\pi\)
\(992\) 1.99228 1.15025i 0.0632551 0.0365204i
\(993\) 8.53357i 0.270805i
\(994\) 0 0
\(995\) 15.6167 27.0108i 0.495082 0.856300i
\(996\) 14.3572 + 24.8673i 0.454924 + 0.787952i
\(997\) 9.98438 + 5.76448i 0.316208 + 0.182563i 0.649701 0.760190i \(-0.274894\pi\)
−0.333493 + 0.942753i \(0.608227\pi\)
\(998\) 3.37435 + 1.94818i 0.106813 + 0.0616687i
\(999\) 4.52751 + 7.84188i 0.143244 + 0.248106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.q.g.214.1 16
5.4 even 2 inner 735.2.q.g.214.8 16
7.2 even 3 inner 735.2.q.g.79.8 16
7.3 odd 6 735.2.d.d.589.1 8
7.4 even 3 735.2.d.e.589.1 8
7.5 odd 6 105.2.q.a.79.8 yes 16
7.6 odd 2 105.2.q.a.4.1 16
21.5 even 6 315.2.bf.b.289.1 16
21.11 odd 6 2205.2.d.o.1324.8 8
21.17 even 6 2205.2.d.s.1324.8 8
21.20 even 2 315.2.bf.b.109.8 16
28.19 even 6 1680.2.di.d.289.5 16
28.27 even 2 1680.2.di.d.529.4 16
35.3 even 12 3675.2.a.bp.1.1 4
35.4 even 6 735.2.d.e.589.8 8
35.9 even 6 inner 735.2.q.g.79.1 16
35.12 even 12 525.2.i.h.226.1 8
35.13 even 4 525.2.i.k.151.4 8
35.17 even 12 3675.2.a.bz.1.4 4
35.18 odd 12 3675.2.a.bn.1.1 4
35.19 odd 6 105.2.q.a.79.1 yes 16
35.24 odd 6 735.2.d.d.589.8 8
35.27 even 4 525.2.i.h.151.1 8
35.32 odd 12 3675.2.a.cb.1.4 4
35.33 even 12 525.2.i.k.226.4 8
35.34 odd 2 105.2.q.a.4.8 yes 16
105.59 even 6 2205.2.d.s.1324.1 8
105.74 odd 6 2205.2.d.o.1324.1 8
105.89 even 6 315.2.bf.b.289.8 16
105.104 even 2 315.2.bf.b.109.1 16
140.19 even 6 1680.2.di.d.289.4 16
140.139 even 2 1680.2.di.d.529.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.1 16 7.6 odd 2
105.2.q.a.4.8 yes 16 35.34 odd 2
105.2.q.a.79.1 yes 16 35.19 odd 6
105.2.q.a.79.8 yes 16 7.5 odd 6
315.2.bf.b.109.1 16 105.104 even 2
315.2.bf.b.109.8 16 21.20 even 2
315.2.bf.b.289.1 16 21.5 even 6
315.2.bf.b.289.8 16 105.89 even 6
525.2.i.h.151.1 8 35.27 even 4
525.2.i.h.226.1 8 35.12 even 12
525.2.i.k.151.4 8 35.13 even 4
525.2.i.k.226.4 8 35.33 even 12
735.2.d.d.589.1 8 7.3 odd 6
735.2.d.d.589.8 8 35.24 odd 6
735.2.d.e.589.1 8 7.4 even 3
735.2.d.e.589.8 8 35.4 even 6
735.2.q.g.79.1 16 35.9 even 6 inner
735.2.q.g.79.8 16 7.2 even 3 inner
735.2.q.g.214.1 16 1.1 even 1 trivial
735.2.q.g.214.8 16 5.4 even 2 inner
1680.2.di.d.289.4 16 140.19 even 6
1680.2.di.d.289.5 16 28.19 even 6
1680.2.di.d.529.4 16 28.27 even 2
1680.2.di.d.529.5 16 140.139 even 2
2205.2.d.o.1324.1 8 105.74 odd 6
2205.2.d.o.1324.8 8 21.11 odd 6
2205.2.d.s.1324.1 8 105.59 even 6
2205.2.d.s.1324.8 8 21.17 even 6
3675.2.a.bn.1.1 4 35.18 odd 12
3675.2.a.bp.1.1 4 35.3 even 12
3675.2.a.bz.1.4 4 35.17 even 12
3675.2.a.cb.1.4 4 35.32 odd 12