Properties

Label 2205.2.d.o.1324.8
Level $2205$
Weight $2$
Character 2205.1324
Analytic conductor $17.607$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,2,Mod(1324,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.1324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,-2,0,0,0,0,-4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2058981376.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 18x^{4} - 34x^{3} + 32x^{2} - 8x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1324.8
Root \(0.769222 + 0.769222i\) of defining polynomial
Character \(\chi\) \(=\) 2205.1324
Dual form 2205.2.d.o.1324.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51658i q^{2} -4.33317 q^{4} +(-1.11922 + 1.93581i) q^{5} -5.87162i q^{8} +(-4.87162 - 2.81659i) q^{10} -0.978135 q^{11} -5.14977i q^{13} +6.11005 q^{16} +4.14977i q^{17} -2.30001 q^{19} +(4.84975 - 8.38820i) q^{20} -2.46156i q^{22} -5.07288i q^{23} +(-2.49472 - 4.33317i) q^{25} +12.9598 q^{26} +5.92664 q^{29} -0.633188 q^{31} +3.63319i q^{32} -10.4432 q^{34} -9.05502i q^{37} -5.78817i q^{38} +(11.3663 + 6.57160i) q^{40} +2.65505 q^{41} +0.344947i q^{43} +4.23843 q^{44} +12.7663 q^{46} +4.23843i q^{47} +(10.9048 - 6.27815i) q^{50} +22.3148i q^{52} -7.63319i q^{53} +(1.09474 - 1.89348i) q^{55} +14.9149i q^{58} -1.81659 q^{59} -0.656256 q^{61} -1.59347i q^{62} +3.07689 q^{64} +(9.96897 + 5.76370i) q^{65} +9.25982i q^{67} -17.9817i q^{68} +5.49351 q^{71} -5.37811i q^{73} +22.7877 q^{74} +9.96636 q^{76} +10.8869 q^{79} +(-6.83846 + 11.8279i) q^{80} +6.68165i q^{82} +6.62663i q^{83} +(-8.03316 - 4.64448i) q^{85} -0.868086 q^{86} +5.74324i q^{88} -16.3108 q^{89} +21.9817i q^{92} -10.6663 q^{94} +(2.57421 - 4.45239i) q^{95} -1.53844i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 2 q^{5} - 4 q^{10} - 24 q^{19} - 4 q^{20} + 4 q^{25} + 12 q^{26} - 12 q^{29} + 16 q^{31} - 8 q^{34} + 32 q^{40} + 8 q^{41} + 20 q^{44} + 32 q^{46} + 20 q^{50} - 4 q^{55} - 4 q^{59} + 16 q^{61}+ \cdots - 22 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51658i 1.77949i 0.456457 + 0.889745i \(0.349118\pi\)
−0.456457 + 0.889745i \(0.650882\pi\)
\(3\) 0 0
\(4\) −4.33317 −2.16659
\(5\) −1.11922 + 1.93581i −0.500528 + 0.865720i
\(6\) 0 0
\(7\) 0 0
\(8\) 5.87162i 2.07593i
\(9\) 0 0
\(10\) −4.87162 2.81659i −1.54054 0.890685i
\(11\) −0.978135 −0.294919 −0.147459 0.989068i \(-0.547110\pi\)
−0.147459 + 0.989068i \(0.547110\pi\)
\(12\) 0 0
\(13\) 5.14977i 1.42829i −0.699998 0.714144i \(-0.746816\pi\)
0.699998 0.714144i \(-0.253184\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 6.11005 1.52751
\(17\) 4.14977i 1.00647i 0.864151 + 0.503233i \(0.167856\pi\)
−0.864151 + 0.503233i \(0.832144\pi\)
\(18\) 0 0
\(19\) −2.30001 −0.527659 −0.263830 0.964569i \(-0.584986\pi\)
−0.263830 + 0.964569i \(0.584986\pi\)
\(20\) 4.84975 8.38820i 1.08444 1.87566i
\(21\) 0 0
\(22\) 2.46156i 0.524805i
\(23\) 5.07288i 1.05777i −0.848694 0.528884i \(-0.822611\pi\)
0.848694 0.528884i \(-0.177389\pi\)
\(24\) 0 0
\(25\) −2.49472 4.33317i −0.498943 0.866635i
\(26\) 12.9598 2.54163
\(27\) 0 0
\(28\) 0 0
\(29\) 5.92664 1.10055 0.550275 0.834983i \(-0.314523\pi\)
0.550275 + 0.834983i \(0.314523\pi\)
\(30\) 0 0
\(31\) −0.633188 −0.113724 −0.0568620 0.998382i \(-0.518110\pi\)
−0.0568620 + 0.998382i \(0.518110\pi\)
\(32\) 3.63319i 0.642263i
\(33\) 0 0
\(34\) −10.4432 −1.79100
\(35\) 0 0
\(36\) 0 0
\(37\) 9.05502i 1.48864i −0.667825 0.744318i \(-0.732775\pi\)
0.667825 0.744318i \(-0.267225\pi\)
\(38\) 5.78817i 0.938965i
\(39\) 0 0
\(40\) 11.3663 + 6.57160i 1.79718 + 1.03906i
\(41\) 2.65505 0.414650 0.207325 0.978272i \(-0.433524\pi\)
0.207325 + 0.978272i \(0.433524\pi\)
\(42\) 0 0
\(43\) 0.344947i 0.0526039i 0.999654 + 0.0263020i \(0.00837314\pi\)
−0.999654 + 0.0263020i \(0.991627\pi\)
\(44\) 4.23843 0.638967
\(45\) 0 0
\(46\) 12.7663 1.88229
\(47\) 4.23843i 0.618239i 0.951023 + 0.309119i \(0.100034\pi\)
−0.951023 + 0.309119i \(0.899966\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 10.9048 6.27815i 1.54217 0.887864i
\(51\) 0 0
\(52\) 22.3148i 3.09451i
\(53\) 7.63319i 1.04850i −0.851565 0.524250i \(-0.824346\pi\)
0.851565 0.524250i \(-0.175654\pi\)
\(54\) 0 0
\(55\) 1.09474 1.89348i 0.147615 0.255317i
\(56\) 0 0
\(57\) 0 0
\(58\) 14.9149i 1.95842i
\(59\) −1.81659 −0.236500 −0.118250 0.992984i \(-0.537728\pi\)
−0.118250 + 0.992984i \(0.537728\pi\)
\(60\) 0 0
\(61\) −0.656256 −0.0840250 −0.0420125 0.999117i \(-0.513377\pi\)
−0.0420125 + 0.999117i \(0.513377\pi\)
\(62\) 1.59347i 0.202371i
\(63\) 0 0
\(64\) 3.07689 0.384611
\(65\) 9.96897 + 5.76370i 1.23650 + 0.714899i
\(66\) 0 0
\(67\) 9.25982i 1.13127i 0.824657 + 0.565633i \(0.191368\pi\)
−0.824657 + 0.565633i \(0.808632\pi\)
\(68\) 17.9817i 2.18060i
\(69\) 0 0
\(70\) 0 0
\(71\) 5.49351 0.651960 0.325980 0.945377i \(-0.394306\pi\)
0.325980 + 0.945377i \(0.394306\pi\)
\(72\) 0 0
\(73\) 5.37811i 0.629460i −0.949181 0.314730i \(-0.898086\pi\)
0.949181 0.314730i \(-0.101914\pi\)
\(74\) 22.7877 2.64902
\(75\) 0 0
\(76\) 9.96636 1.14322
\(77\) 0 0
\(78\) 0 0
\(79\) 10.8869 1.22487 0.612437 0.790519i \(-0.290189\pi\)
0.612437 + 0.790519i \(0.290189\pi\)
\(80\) −6.83846 + 11.8279i −0.764563 + 1.32240i
\(81\) 0 0
\(82\) 6.68165i 0.737865i
\(83\) 6.62663i 0.727367i 0.931523 + 0.363683i \(0.118481\pi\)
−0.931523 + 0.363683i \(0.881519\pi\)
\(84\) 0 0
\(85\) −8.03316 4.64448i −0.871318 0.503765i
\(86\) −0.868086 −0.0936082
\(87\) 0 0
\(88\) 5.74324i 0.612231i
\(89\) −16.3108 −1.72894 −0.864472 0.502680i \(-0.832347\pi\)
−0.864472 + 0.502680i \(0.832347\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 21.9817i 2.29175i
\(93\) 0 0
\(94\) −10.6663 −1.10015
\(95\) 2.57421 4.45239i 0.264108 0.456805i
\(96\) 0 0
\(97\) 1.53844i 0.156205i −0.996945 0.0781027i \(-0.975114\pi\)
0.996945 0.0781027i \(-0.0248862\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 10.8100 + 18.7764i 1.08100 + 1.87764i
\(101\) −5.51610 −0.548873 −0.274436 0.961605i \(-0.588491\pi\)
−0.274436 + 0.961605i \(0.588491\pi\)
\(102\) 0 0
\(103\) 16.5213i 1.62789i −0.580939 0.813947i \(-0.697315\pi\)
0.580939 0.813947i \(-0.302685\pi\)
\(104\) −30.2375 −2.96503
\(105\) 0 0
\(106\) 19.2095 1.86579
\(107\) 2.38820i 0.230876i −0.993315 0.115438i \(-0.963173\pi\)
0.993315 0.115438i \(-0.0368271\pi\)
\(108\) 0 0
\(109\) 18.1096 1.73458 0.867291 0.497801i \(-0.165859\pi\)
0.867291 + 0.497801i \(0.165859\pi\)
\(110\) 4.76510 + 2.75501i 0.454335 + 0.262680i
\(111\) 0 0
\(112\) 0 0
\(113\) 4.04373i 0.380402i −0.981745 0.190201i \(-0.939086\pi\)
0.981745 0.190201i \(-0.0609140\pi\)
\(114\) 0 0
\(115\) 9.82013 + 5.67764i 0.915731 + 0.529443i
\(116\) −25.6812 −2.38444
\(117\) 0 0
\(118\) 4.57160i 0.420850i
\(119\) 0 0
\(120\) 0 0
\(121\) −10.0433 −0.913023
\(122\) 1.65152i 0.149522i
\(123\) 0 0
\(124\) 2.74372 0.246393
\(125\) 11.1803 + 0.0204612i 0.999998 + 0.00183011i
\(126\) 0 0
\(127\) 6.85023i 0.607860i −0.952694 0.303930i \(-0.901701\pi\)
0.952694 0.303930i \(-0.0982989\pi\)
\(128\) 15.0096i 1.32667i
\(129\) 0 0
\(130\) −14.5048 + 25.0877i −1.27216 + 2.20034i
\(131\) −4.02540 −0.351701 −0.175850 0.984417i \(-0.556267\pi\)
−0.175850 + 0.984417i \(0.556267\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −23.3031 −2.01308
\(135\) 0 0
\(136\) 24.3659 2.08935
\(137\) 11.2319i 0.959603i 0.877377 + 0.479802i \(0.159291\pi\)
−0.877377 + 0.479802i \(0.840709\pi\)
\(138\) 0 0
\(139\) −4.98991 −0.423238 −0.211619 0.977352i \(-0.567874\pi\)
−0.211619 + 0.977352i \(0.567874\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 13.8249i 1.16016i
\(143\) 5.03717i 0.421229i
\(144\) 0 0
\(145\) −6.63319 + 11.4729i −0.550856 + 0.952768i
\(146\) 13.5344 1.12012
\(147\) 0 0
\(148\) 39.2370i 3.22526i
\(149\) −14.4942 −1.18741 −0.593707 0.804681i \(-0.702336\pi\)
−0.593707 + 0.804681i \(0.702336\pi\)
\(150\) 0 0
\(151\) 7.88692 0.641829 0.320914 0.947108i \(-0.396010\pi\)
0.320914 + 0.947108i \(0.396010\pi\)
\(152\) 13.5048i 1.09538i
\(153\) 0 0
\(154\) 0 0
\(155\) 0.708674 1.22573i 0.0569221 0.0984531i
\(156\) 0 0
\(157\) 6.55630i 0.523250i 0.965170 + 0.261625i \(0.0842583\pi\)
−0.965170 + 0.261625i \(0.915742\pi\)
\(158\) 27.3978i 2.17965i
\(159\) 0 0
\(160\) −7.03316 4.06632i −0.556020 0.321471i
\(161\) 0 0
\(162\) 0 0
\(163\) 12.2558i 0.959949i −0.877282 0.479974i \(-0.840646\pi\)
0.877282 0.479974i \(-0.159354\pi\)
\(164\) −11.5048 −0.898374
\(165\) 0 0
\(166\) −16.6764 −1.29434
\(167\) 2.13239i 0.165009i 0.996591 + 0.0825047i \(0.0262920\pi\)
−0.996591 + 0.0825047i \(0.973708\pi\)
\(168\) 0 0
\(169\) −13.5201 −1.04001
\(170\) 11.6882 20.2161i 0.896445 1.55050i
\(171\) 0 0
\(172\) 1.49472i 0.113971i
\(173\) 11.5485i 0.878019i 0.898482 + 0.439009i \(0.144671\pi\)
−0.898482 + 0.439009i \(0.855329\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.97645 −0.450492
\(177\) 0 0
\(178\) 41.0475i 3.07664i
\(179\) 8.89956 0.665185 0.332592 0.943071i \(-0.392077\pi\)
0.332592 + 0.943071i \(0.392077\pi\)
\(180\) 0 0
\(181\) 3.17940 0.236323 0.118161 0.992994i \(-0.462300\pi\)
0.118161 + 0.992994i \(0.462300\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −29.7860 −2.19585
\(185\) 17.5288 + 10.1345i 1.28874 + 0.745105i
\(186\) 0 0
\(187\) 4.05903i 0.296826i
\(188\) 18.3659i 1.33947i
\(189\) 0 0
\(190\) 11.2048 + 6.47821i 0.812881 + 0.469979i
\(191\) 0.622618 0.0450511 0.0225255 0.999746i \(-0.492829\pi\)
0.0225255 + 0.999746i \(0.492829\pi\)
\(192\) 0 0
\(193\) 15.1877i 1.09323i −0.837383 0.546616i \(-0.815916\pi\)
0.837383 0.546616i \(-0.184084\pi\)
\(194\) 3.87162 0.277966
\(195\) 0 0
\(196\) 0 0
\(197\) 23.9410i 1.70573i −0.522136 0.852863i \(-0.674864\pi\)
0.522136 0.852863i \(-0.325136\pi\)
\(198\) 0 0
\(199\) 13.9532 0.989119 0.494560 0.869144i \(-0.335329\pi\)
0.494560 + 0.869144i \(0.335329\pi\)
\(200\) −25.4427 + 14.6480i −1.79907 + 1.03577i
\(201\) 0 0
\(202\) 13.8817i 0.976714i
\(203\) 0 0
\(204\) 0 0
\(205\) −2.97158 + 5.13968i −0.207544 + 0.358971i
\(206\) 41.5772 2.89682
\(207\) 0 0
\(208\) 31.4653i 2.18173i
\(209\) 2.24973 0.155617
\(210\) 0 0
\(211\) 4.82315 0.332040 0.166020 0.986122i \(-0.446908\pi\)
0.166020 + 0.986122i \(0.446908\pi\)
\(212\) 33.0759i 2.27166i
\(213\) 0 0
\(214\) 6.01009 0.410841
\(215\) −0.667751 0.386070i −0.0455403 0.0263297i
\(216\) 0 0
\(217\) 0 0
\(218\) 45.5742i 3.08667i
\(219\) 0 0
\(220\) −4.74372 + 8.20479i −0.319821 + 0.553167i
\(221\) 21.3703 1.43752
\(222\) 0 0
\(223\) 15.8227i 1.05956i 0.848134 + 0.529782i \(0.177726\pi\)
−0.848134 + 0.529782i \(0.822274\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10.1764 0.676922
\(227\) 21.6983i 1.44017i −0.693887 0.720084i \(-0.744103\pi\)
0.693887 0.720084i \(-0.255897\pi\)
\(228\) 0 0
\(229\) −2.07689 −0.137245 −0.0686223 0.997643i \(-0.521860\pi\)
−0.0686223 + 0.997643i \(0.521860\pi\)
\(230\) −14.2882 + 24.7131i −0.942139 + 1.62954i
\(231\) 0 0
\(232\) 34.7990i 2.28467i
\(233\) 6.75902i 0.442798i −0.975183 0.221399i \(-0.928938\pi\)
0.975183 0.221399i \(-0.0710623\pi\)
\(234\) 0 0
\(235\) −8.20479 4.74372i −0.535222 0.309446i
\(236\) 7.87162 0.512399
\(237\) 0 0
\(238\) 0 0
\(239\) −2.90478 −0.187894 −0.0939472 0.995577i \(-0.529949\pi\)
−0.0939472 + 0.995577i \(0.529949\pi\)
\(240\) 0 0
\(241\) 8.89749 0.573138 0.286569 0.958060i \(-0.407485\pi\)
0.286569 + 0.958060i \(0.407485\pi\)
\(242\) 25.2746i 1.62472i
\(243\) 0 0
\(244\) 2.84367 0.182047
\(245\) 0 0
\(246\) 0 0
\(247\) 11.8445i 0.753650i
\(248\) 3.71784i 0.236083i
\(249\) 0 0
\(250\) −0.0514923 + 28.1362i −0.00325666 + 1.77949i
\(251\) −21.1747 −1.33653 −0.668267 0.743921i \(-0.732964\pi\)
−0.668267 + 0.743921i \(0.732964\pi\)
\(252\) 0 0
\(253\) 4.96196i 0.311956i
\(254\) 17.2392 1.08168
\(255\) 0 0
\(256\) −31.6191 −1.97619
\(257\) 6.23442i 0.388892i 0.980913 + 0.194446i \(0.0622910\pi\)
−0.980913 + 0.194446i \(0.937709\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −43.1973 24.9751i −2.67898 1.54889i
\(261\) 0 0
\(262\) 10.1302i 0.625848i
\(263\) 28.0480i 1.72951i −0.502191 0.864756i \(-0.667473\pi\)
0.502191 0.864756i \(-0.332527\pi\)
\(264\) 0 0
\(265\) 14.7764 + 8.54318i 0.907707 + 0.524803i
\(266\) 0 0
\(267\) 0 0
\(268\) 40.1244i 2.45099i
\(269\) −7.41830 −0.452302 −0.226151 0.974092i \(-0.572614\pi\)
−0.226151 + 0.974092i \(0.572614\pi\)
\(270\) 0 0
\(271\) 31.2116 1.89597 0.947985 0.318316i \(-0.103117\pi\)
0.947985 + 0.318316i \(0.103117\pi\)
\(272\) 25.3553i 1.53739i
\(273\) 0 0
\(274\) −28.2659 −1.70761
\(275\) 2.44017 + 4.23843i 0.147148 + 0.255587i
\(276\) 0 0
\(277\) 12.4526i 0.748204i −0.927388 0.374102i \(-0.877951\pi\)
0.927388 0.374102i \(-0.122049\pi\)
\(278\) 12.5575i 0.753149i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.0409225 0.00244123 0.00122061 0.999999i \(-0.499611\pi\)
0.00122061 + 0.999999i \(0.499611\pi\)
\(282\) 0 0
\(283\) 10.8420i 0.644489i 0.946656 + 0.322245i \(0.104437\pi\)
−0.946656 + 0.322245i \(0.895563\pi\)
\(284\) −23.8043 −1.41253
\(285\) 0 0
\(286\) −12.6764 −0.749574
\(287\) 0 0
\(288\) 0 0
\(289\) −0.220576 −0.0129750
\(290\) −28.8723 16.6929i −1.69544 0.980244i
\(291\) 0 0
\(292\) 23.3043i 1.36378i
\(293\) 29.6455i 1.73191i −0.500125 0.865953i \(-0.666713\pi\)
0.500125 0.865953i \(-0.333287\pi\)
\(294\) 0 0
\(295\) 2.03316 3.51658i 0.118375 0.204743i
\(296\) −53.1676 −3.09031
\(297\) 0 0
\(298\) 36.4759i 2.11299i
\(299\) −26.1242 −1.51080
\(300\) 0 0
\(301\) 0 0
\(302\) 19.8481i 1.14213i
\(303\) 0 0
\(304\) −14.0532 −0.806006
\(305\) 0.734492 1.27039i 0.0420569 0.0727421i
\(306\) 0 0
\(307\) 31.6055i 1.80382i −0.431923 0.901910i \(-0.642165\pi\)
0.431923 0.901910i \(-0.357835\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3.08465 + 1.78343i 0.175196 + 0.101292i
\(311\) 22.1703 1.25716 0.628581 0.777744i \(-0.283636\pi\)
0.628581 + 0.777744i \(0.283636\pi\)
\(312\) 0 0
\(313\) 6.88572i 0.389204i 0.980882 + 0.194602i \(0.0623415\pi\)
−0.980882 + 0.194602i \(0.937658\pi\)
\(314\) −16.4995 −0.931118
\(315\) 0 0
\(316\) −47.1749 −2.65380
\(317\) 12.8387i 0.721094i −0.932741 0.360547i \(-0.882590\pi\)
0.932741 0.360547i \(-0.117410\pi\)
\(318\) 0 0
\(319\) −5.79706 −0.324573
\(320\) −3.44370 + 5.95627i −0.192509 + 0.332966i
\(321\) 0 0
\(322\) 0 0
\(323\) 9.54453i 0.531072i
\(324\) 0 0
\(325\) −22.3148 + 12.8472i −1.23780 + 0.712635i
\(326\) 30.8427 1.70822
\(327\) 0 0
\(328\) 15.5895i 0.860784i
\(329\) 0 0
\(330\) 0 0
\(331\) −8.53357 −0.469047 −0.234524 0.972110i \(-0.575353\pi\)
−0.234524 + 0.972110i \(0.575353\pi\)
\(332\) 28.7143i 1.57590i
\(333\) 0 0
\(334\) −5.36633 −0.293633
\(335\) −17.9252 10.3637i −0.979360 0.566231i
\(336\) 0 0
\(337\) 29.1131i 1.58589i −0.609292 0.792946i \(-0.708546\pi\)
0.609292 0.792946i \(-0.291454\pi\)
\(338\) 34.0244i 1.85069i
\(339\) 0 0
\(340\) 34.8091 + 20.1254i 1.88779 + 1.09145i
\(341\) 0.619344 0.0335393
\(342\) 0 0
\(343\) 0 0
\(344\) 2.02540 0.109202
\(345\) 0 0
\(346\) −29.0628 −1.56243
\(347\) 13.4427i 0.721644i 0.932635 + 0.360822i \(0.117504\pi\)
−0.932635 + 0.360822i \(0.882496\pi\)
\(348\) 0 0
\(349\) −24.7397 −1.32429 −0.662144 0.749377i \(-0.730353\pi\)
−0.662144 + 0.749377i \(0.730353\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.55375i 0.189415i
\(353\) 16.7550i 0.891779i −0.895088 0.445890i \(-0.852887\pi\)
0.895088 0.445890i \(-0.147113\pi\)
\(354\) 0 0
\(355\) −6.14842 + 10.6344i −0.326324 + 0.564415i
\(356\) 70.6777 3.74591
\(357\) 0 0
\(358\) 22.3965i 1.18369i
\(359\) −32.4924 −1.71488 −0.857442 0.514581i \(-0.827948\pi\)
−0.857442 + 0.514581i \(0.827948\pi\)
\(360\) 0 0
\(361\) −13.7099 −0.721575
\(362\) 8.00120i 0.420534i
\(363\) 0 0
\(364\) 0 0
\(365\) 10.4110 + 6.01926i 0.544936 + 0.315062i
\(366\) 0 0
\(367\) 23.9619i 1.25080i −0.780304 0.625400i \(-0.784936\pi\)
0.780304 0.625400i \(-0.215064\pi\)
\(368\) 30.9955i 1.61575i
\(369\) 0 0
\(370\) −25.5043 + 44.1126i −1.32591 + 2.29331i
\(371\) 0 0
\(372\) 0 0
\(373\) 11.0754i 0.573464i 0.958011 + 0.286732i \(0.0925689\pi\)
−0.958011 + 0.286732i \(0.907431\pi\)
\(374\) 10.2149 0.528199
\(375\) 0 0
\(376\) 24.8864 1.28342
\(377\) 30.5208i 1.57190i
\(378\) 0 0
\(379\) 32.7423 1.68186 0.840929 0.541145i \(-0.182009\pi\)
0.840929 + 0.541145i \(0.182009\pi\)
\(380\) −11.1545 + 19.2930i −0.572214 + 0.989709i
\(381\) 0 0
\(382\) 1.56687i 0.0801680i
\(383\) 23.2523i 1.18814i −0.804414 0.594069i \(-0.797521\pi\)
0.804414 0.594069i \(-0.202479\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 38.2210 1.94540
\(387\) 0 0
\(388\) 6.66635i 0.338433i
\(389\) −37.6262 −1.90772 −0.953861 0.300249i \(-0.902930\pi\)
−0.953861 + 0.300249i \(0.902930\pi\)
\(390\) 0 0
\(391\) 21.0513 1.06461
\(392\) 0 0
\(393\) 0 0
\(394\) 60.2494 3.03532
\(395\) −12.1848 + 21.0750i −0.613084 + 1.06040i
\(396\) 0 0
\(397\) 0.0575740i 0.00288956i −0.999999 0.00144478i \(-0.999540\pi\)
0.999999 0.00144478i \(-0.000459887\pi\)
\(398\) 35.1144i 1.76013i
\(399\) 0 0
\(400\) −15.2428 26.4759i −0.762142 1.32380i
\(401\) 9.07593 0.453230 0.226615 0.973984i \(-0.427234\pi\)
0.226615 + 0.973984i \(0.427234\pi\)
\(402\) 0 0
\(403\) 3.26077i 0.162431i
\(404\) 23.9022 1.18918
\(405\) 0 0
\(406\) 0 0
\(407\) 8.85704i 0.439027i
\(408\) 0 0
\(409\) 16.6120 0.821413 0.410706 0.911768i \(-0.365282\pi\)
0.410706 + 0.911768i \(0.365282\pi\)
\(410\) −12.9344 7.47821i −0.638785 0.369322i
\(411\) 0 0
\(412\) 71.5897i 3.52697i
\(413\) 0 0
\(414\) 0 0
\(415\) −12.8279 7.41662i −0.629696 0.364068i
\(416\) 18.7101 0.917337
\(417\) 0 0
\(418\) 5.66161i 0.276919i
\(419\) 29.8759 1.45953 0.729766 0.683697i \(-0.239629\pi\)
0.729766 + 0.683697i \(0.239629\pi\)
\(420\) 0 0
\(421\) −19.3201 −0.941602 −0.470801 0.882239i \(-0.656035\pi\)
−0.470801 + 0.882239i \(0.656035\pi\)
\(422\) 12.1379i 0.590861i
\(423\) 0 0
\(424\) −44.8192 −2.17661
\(425\) 17.9817 10.3525i 0.872239 0.502169i
\(426\) 0 0
\(427\) 0 0
\(428\) 10.3485i 0.500213i
\(429\) 0 0
\(430\) 0.971576 1.68045i 0.0468535 0.0810385i
\(431\) 21.9962 1.05952 0.529761 0.848147i \(-0.322282\pi\)
0.529761 + 0.848147i \(0.322282\pi\)
\(432\) 0 0
\(433\) 2.72706i 0.131054i 0.997851 + 0.0655272i \(0.0208729\pi\)
−0.997851 + 0.0655272i \(0.979127\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −78.4719 −3.75812
\(437\) 11.6677i 0.558142i
\(438\) 0 0
\(439\) −7.54366 −0.360039 −0.180020 0.983663i \(-0.557616\pi\)
−0.180020 + 0.983663i \(0.557616\pi\)
\(440\) −11.1178 6.42792i −0.530021 0.306439i
\(441\) 0 0
\(442\) 53.7802i 2.55806i
\(443\) 10.4383i 0.495941i 0.968768 + 0.247970i \(0.0797636\pi\)
−0.968768 + 0.247970i \(0.920236\pi\)
\(444\) 0 0
\(445\) 18.2553 31.5747i 0.865386 1.49678i
\(446\) −39.8190 −1.88549
\(447\) 0 0
\(448\) 0 0
\(449\) −1.73107 −0.0816944 −0.0408472 0.999165i \(-0.513006\pi\)
−0.0408472 + 0.999165i \(0.513006\pi\)
\(450\) 0 0
\(451\) −2.59700 −0.122288
\(452\) 17.5222i 0.824174i
\(453\) 0 0
\(454\) 54.6055 2.56276
\(455\) 0 0
\(456\) 0 0
\(457\) 30.8614i 1.44364i −0.692082 0.721819i \(-0.743306\pi\)
0.692082 0.721819i \(-0.256694\pi\)
\(458\) 5.22666i 0.244226i
\(459\) 0 0
\(460\) −42.5523 24.6022i −1.98401 1.14708i
\(461\) 10.7294 0.499718 0.249859 0.968282i \(-0.419616\pi\)
0.249859 + 0.968282i \(0.419616\pi\)
\(462\) 0 0
\(463\) 11.1060i 0.516141i 0.966126 + 0.258071i \(0.0830867\pi\)
−0.966126 + 0.258071i \(0.916913\pi\)
\(464\) 36.2121 1.68110
\(465\) 0 0
\(466\) 17.0096 0.787955
\(467\) 27.5895i 1.27669i −0.769751 0.638344i \(-0.779620\pi\)
0.769751 0.638344i \(-0.220380\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 11.9379 20.6480i 0.550656 0.952422i
\(471\) 0 0
\(472\) 10.6663i 0.490958i
\(473\) 0.337405i 0.0155139i
\(474\) 0 0
\(475\) 5.73788 + 9.96636i 0.263272 + 0.457288i
\(476\) 0 0
\(477\) 0 0
\(478\) 7.31011i 0.334356i
\(479\) 10.0174 0.457706 0.228853 0.973461i \(-0.426503\pi\)
0.228853 + 0.973461i \(0.426503\pi\)
\(480\) 0 0
\(481\) −46.6313 −2.12620
\(482\) 22.3913i 1.01989i
\(483\) 0 0
\(484\) 43.5192 1.97814
\(485\) 2.97814 + 1.72185i 0.135230 + 0.0781852i
\(486\) 0 0
\(487\) 30.7341i 1.39270i 0.717704 + 0.696348i \(0.245193\pi\)
−0.717704 + 0.696348i \(0.754807\pi\)
\(488\) 3.85329i 0.174430i
\(489\) 0 0
\(490\) 0 0
\(491\) −4.14054 −0.186860 −0.0934301 0.995626i \(-0.529783\pi\)
−0.0934301 + 0.995626i \(0.529783\pi\)
\(492\) 0 0
\(493\) 24.5942i 1.10767i
\(494\) −29.8077 −1.34111
\(495\) 0 0
\(496\) −3.86881 −0.173715
\(497\) 0 0
\(498\) 0 0
\(499\) 1.54828 0.0693105 0.0346552 0.999399i \(-0.488967\pi\)
0.0346552 + 0.999399i \(0.488967\pi\)
\(500\) −48.4463 0.0886621i −2.16658 0.00396509i
\(501\) 0 0
\(502\) 53.2878i 2.37835i
\(503\) 15.1658i 0.676210i 0.941108 + 0.338105i \(0.109786\pi\)
−0.941108 + 0.338105i \(0.890214\pi\)
\(504\) 0 0
\(505\) 6.17370 10.6781i 0.274726 0.475170i
\(506\) −12.4872 −0.555123
\(507\) 0 0
\(508\) 29.6832i 1.31698i
\(509\) 20.4655 0.907116 0.453558 0.891227i \(-0.350154\pi\)
0.453558 + 0.891227i \(0.350154\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 49.5528i 2.18994i
\(513\) 0 0
\(514\) −15.6894 −0.692030
\(515\) 31.9821 + 18.4909i 1.40930 + 0.814807i
\(516\) 0 0
\(517\) 4.14576i 0.182330i
\(518\) 0 0
\(519\) 0 0
\(520\) 33.8422 58.5340i 1.48408 2.56688i
\(521\) 2.74674 0.120337 0.0601685 0.998188i \(-0.480836\pi\)
0.0601685 + 0.998188i \(0.480836\pi\)
\(522\) 0 0
\(523\) 39.8669i 1.74326i −0.490166 0.871629i \(-0.663064\pi\)
0.490166 0.871629i \(-0.336936\pi\)
\(524\) 17.4427 0.761990
\(525\) 0 0
\(526\) 70.5850 3.07765
\(527\) 2.62758i 0.114459i
\(528\) 0 0
\(529\) −2.73410 −0.118874
\(530\) −21.4996 + 37.1860i −0.933883 + 1.61526i
\(531\) 0 0
\(532\) 0 0
\(533\) 13.6729i 0.592239i
\(534\) 0 0
\(535\) 4.62310 + 2.67291i 0.199874 + 0.115560i
\(536\) 54.3701 2.34843
\(537\) 0 0
\(538\) 18.6688i 0.804867i
\(539\) 0 0
\(540\) 0 0
\(541\) 26.4986 1.13927 0.569633 0.821899i \(-0.307085\pi\)
0.569633 + 0.821899i \(0.307085\pi\)
\(542\) 78.5465i 3.37386i
\(543\) 0 0
\(544\) −15.0769 −0.646416
\(545\) −20.2685 + 35.0567i −0.868207 + 1.50166i
\(546\) 0 0
\(547\) 12.9090i 0.551950i −0.961165 0.275975i \(-0.910999\pi\)
0.961165 0.275975i \(-0.0890008\pi\)
\(548\) 48.6696i 2.07906i
\(549\) 0 0
\(550\) −10.6663 + 6.14088i −0.454815 + 0.261848i
\(551\) −13.6314 −0.580716
\(552\) 0 0
\(553\) 0 0
\(554\) 31.3379 1.33142
\(555\) 0 0
\(556\) 21.6221 0.916983
\(557\) 7.18509i 0.304442i 0.988346 + 0.152221i \(0.0486425\pi\)
−0.988346 + 0.152221i \(0.951357\pi\)
\(558\) 0 0
\(559\) 1.77640 0.0751336
\(560\) 0 0
\(561\) 0 0
\(562\) 0.102985i 0.00434415i
\(563\) 2.38700i 0.100600i 0.998734 + 0.0502999i \(0.0160177\pi\)
−0.998734 + 0.0502999i \(0.983982\pi\)
\(564\) 0 0
\(565\) 7.82789 + 4.52580i 0.329322 + 0.190402i
\(566\) −27.2847 −1.14686
\(567\) 0 0
\(568\) 32.2558i 1.35342i
\(569\) 29.8542 1.25155 0.625776 0.780003i \(-0.284783\pi\)
0.625776 + 0.780003i \(0.284783\pi\)
\(570\) 0 0
\(571\) −19.4634 −0.814518 −0.407259 0.913313i \(-0.633515\pi\)
−0.407259 + 0.913313i \(0.633515\pi\)
\(572\) 21.8269i 0.912630i
\(573\) 0 0
\(574\) 0 0
\(575\) −21.9817 + 12.6554i −0.916699 + 0.527766i
\(576\) 0 0
\(577\) 3.96187i 0.164935i 0.996594 + 0.0824675i \(0.0262801\pi\)
−0.996594 + 0.0824675i \(0.973720\pi\)
\(578\) 0.555096i 0.0230890i
\(579\) 0 0
\(580\) 28.7428 49.7139i 1.19348 2.06426i
\(581\) 0 0
\(582\) 0 0
\(583\) 7.46629i 0.309222i
\(584\) −31.5782 −1.30671
\(585\) 0 0
\(586\) 74.6052 3.08191
\(587\) 13.9419i 0.575446i 0.957714 + 0.287723i \(0.0928982\pi\)
−0.957714 + 0.287723i \(0.907102\pi\)
\(588\) 0 0
\(589\) 1.45634 0.0600075
\(590\) 8.84975 + 5.11661i 0.364339 + 0.210647i
\(591\) 0 0
\(592\) 55.3266i 2.27391i
\(593\) 38.4973i 1.58089i 0.612530 + 0.790447i \(0.290152\pi\)
−0.612530 + 0.790447i \(0.709848\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 62.8061 2.57264
\(597\) 0 0
\(598\) 65.7435i 2.68845i
\(599\) 17.4997 0.715019 0.357509 0.933910i \(-0.383626\pi\)
0.357509 + 0.933910i \(0.383626\pi\)
\(600\) 0 0
\(601\) −34.5192 −1.40807 −0.704033 0.710167i \(-0.748619\pi\)
−0.704033 + 0.710167i \(0.748619\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −34.1754 −1.39058
\(605\) 11.2406 19.4418i 0.456994 0.790422i
\(606\) 0 0
\(607\) 10.9156i 0.443050i −0.975155 0.221525i \(-0.928897\pi\)
0.975155 0.221525i \(-0.0711035\pi\)
\(608\) 8.35639i 0.338896i
\(609\) 0 0
\(610\) 3.19703 + 1.84841i 0.129444 + 0.0748398i
\(611\) 21.8269 0.883023
\(612\) 0 0
\(613\) 26.1173i 1.05487i 0.849596 + 0.527435i \(0.176846\pi\)
−0.849596 + 0.527435i \(0.823154\pi\)
\(614\) 79.5377 3.20988
\(615\) 0 0
\(616\) 0 0
\(617\) 11.6689i 0.469772i −0.972023 0.234886i \(-0.924528\pi\)
0.972023 0.234886i \(-0.0754717\pi\)
\(618\) 0 0
\(619\) −0.823632 −0.0331046 −0.0165523 0.999863i \(-0.505269\pi\)
−0.0165523 + 0.999863i \(0.505269\pi\)
\(620\) −3.07081 + 5.31131i −0.123327 + 0.213307i
\(621\) 0 0
\(622\) 55.7933i 2.23711i
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5528 + 21.6201i −0.502112 + 0.864803i
\(626\) −17.3285 −0.692585
\(627\) 0 0
\(628\) 28.4096i 1.13367i
\(629\) 37.5763 1.49826
\(630\) 0 0
\(631\) −20.5920 −0.819755 −0.409877 0.912141i \(-0.634429\pi\)
−0.409877 + 0.912141i \(0.634429\pi\)
\(632\) 63.9239i 2.54275i
\(633\) 0 0
\(634\) 32.3096 1.28318
\(635\) 13.2607 + 7.66688i 0.526237 + 0.304251i
\(636\) 0 0
\(637\) 0 0
\(638\) 14.5888i 0.577575i
\(639\) 0 0
\(640\) −29.0557 16.7990i −1.14853 0.664038i
\(641\) −29.6741 −1.17206 −0.586029 0.810290i \(-0.699310\pi\)
−0.586029 + 0.810290i \(0.699310\pi\)
\(642\) 0 0
\(643\) 11.1286i 0.438870i 0.975627 + 0.219435i \(0.0704214\pi\)
−0.975627 + 0.219435i \(0.929579\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 24.0196 0.945037
\(647\) 10.9234i 0.429442i −0.976675 0.214721i \(-0.931116\pi\)
0.976675 0.214721i \(-0.0688841\pi\)
\(648\) 0 0
\(649\) 1.77687 0.0697484
\(650\) −32.3310 56.1571i −1.26813 2.20266i
\(651\) 0 0
\(652\) 53.1065i 2.07981i
\(653\) 7.17076i 0.280614i −0.990108 0.140307i \(-0.955191\pi\)
0.990108 0.140307i \(-0.0448089\pi\)
\(654\) 0 0
\(655\) 4.50528 7.79240i 0.176036 0.304474i
\(656\) 16.2225 0.633382
\(657\) 0 0
\(658\) 0 0
\(659\) 14.1232 0.550161 0.275080 0.961421i \(-0.411296\pi\)
0.275080 + 0.961421i \(0.411296\pi\)
\(660\) 0 0
\(661\) −28.9217 −1.12492 −0.562461 0.826824i \(-0.690146\pi\)
−0.562461 + 0.826824i \(0.690146\pi\)
\(662\) 21.4754i 0.834665i
\(663\) 0 0
\(664\) 38.9090 1.50996
\(665\) 0 0
\(666\) 0 0
\(667\) 30.0651i 1.16413i
\(668\) 9.24002i 0.357507i
\(669\) 0 0
\(670\) 26.0811 45.1103i 1.00760 1.74276i
\(671\) 0.641907 0.0247806
\(672\) 0 0
\(673\) 14.4081i 0.555392i 0.960669 + 0.277696i \(0.0895709\pi\)
−0.960669 + 0.277696i \(0.910429\pi\)
\(674\) 73.2654 2.82208
\(675\) 0 0
\(676\) 58.5850 2.25327
\(677\) 30.1366i 1.15825i −0.815240 0.579123i \(-0.803395\pi\)
0.815240 0.579123i \(-0.196605\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −27.2706 + 47.1676i −1.04578 + 1.80880i
\(681\) 0 0
\(682\) 1.55863i 0.0596830i
\(683\) 15.5168i 0.593735i −0.954919 0.296868i \(-0.904058\pi\)
0.954919 0.296868i \(-0.0959420\pi\)
\(684\) 0 0
\(685\) −21.7428 12.5709i −0.830748 0.480309i
\(686\) 0 0
\(687\) 0 0
\(688\) 2.10764i 0.0803531i
\(689\) −39.3092 −1.49756
\(690\) 0 0
\(691\) −45.7835 −1.74168 −0.870842 0.491562i \(-0.836426\pi\)
−0.870842 + 0.491562i \(0.836426\pi\)
\(692\) 50.0418i 1.90230i
\(693\) 0 0
\(694\) −33.8297 −1.28416
\(695\) 5.58478 9.65951i 0.211843 0.366406i
\(696\) 0 0
\(697\) 11.0179i 0.417331i
\(698\) 62.2595i 2.35656i
\(699\) 0 0
\(700\) 0 0
\(701\) −24.0419 −0.908050 −0.454025 0.890989i \(-0.650012\pi\)
−0.454025 + 0.890989i \(0.650012\pi\)
\(702\) 0 0
\(703\) 20.8267i 0.785493i
\(704\) −3.00961 −0.113429
\(705\) 0 0
\(706\) 42.1653 1.58691
\(707\) 0 0
\(708\) 0 0
\(709\) −18.3971 −0.690917 −0.345459 0.938434i \(-0.612277\pi\)
−0.345459 + 0.938434i \(0.612277\pi\)
\(710\) −26.7623 15.4730i −1.00437 0.580691i
\(711\) 0 0
\(712\) 95.7710i 3.58917i
\(713\) 3.21209i 0.120294i
\(714\) 0 0
\(715\) −9.75100 5.63768i −0.364667 0.210837i
\(716\) −38.5634 −1.44118
\(717\) 0 0
\(718\) 81.7697i 3.05162i
\(719\) 16.2455 0.605855 0.302927 0.953014i \(-0.402036\pi\)
0.302927 + 0.953014i \(0.402036\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 34.5021i 1.28404i
\(723\) 0 0
\(724\) −13.7769 −0.512014
\(725\) −14.7853 25.6812i −0.549112 0.953775i
\(726\) 0 0
\(727\) 42.6977i 1.58357i −0.610800 0.791785i \(-0.709152\pi\)
0.610800 0.791785i \(-0.290848\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −15.1479 + 26.2001i −0.560651 + 0.969709i
\(731\) −1.43145 −0.0529441
\(732\) 0 0
\(733\) 46.7120i 1.72535i 0.505760 + 0.862674i \(0.331212\pi\)
−0.505760 + 0.862674i \(0.668788\pi\)
\(734\) 60.3020 2.22579
\(735\) 0 0
\(736\) 18.4307 0.679366
\(737\) 9.05735i 0.333632i
\(738\) 0 0
\(739\) −7.04821 −0.259272 −0.129636 0.991562i \(-0.541381\pi\)
−0.129636 + 0.991562i \(0.541381\pi\)
\(740\) −75.9553 43.9146i −2.79217 1.61433i
\(741\) 0 0
\(742\) 0 0
\(743\) 8.55510i 0.313856i 0.987610 + 0.156928i \(0.0501591\pi\)
−0.987610 + 0.156928i \(0.949841\pi\)
\(744\) 0 0
\(745\) 16.2222 28.0581i 0.594334 1.02797i
\(746\) −27.8722 −1.02047
\(747\) 0 0
\(748\) 17.5885i 0.643099i
\(749\) 0 0
\(750\) 0 0
\(751\) −2.97645 −0.108612 −0.0543062 0.998524i \(-0.517295\pi\)
−0.0543062 + 0.998524i \(0.517295\pi\)
\(752\) 25.8970i 0.944367i
\(753\) 0 0
\(754\) 76.8081 2.79719
\(755\) −8.82716 + 15.2676i −0.321253 + 0.555644i
\(756\) 0 0
\(757\) 43.6750i 1.58740i −0.608313 0.793698i \(-0.708153\pi\)
0.608313 0.793698i \(-0.291847\pi\)
\(758\) 82.3986i 2.99285i
\(759\) 0 0
\(760\) −26.1427 15.1148i −0.948296 0.548271i
\(761\) 26.7256 0.968803 0.484402 0.874846i \(-0.339037\pi\)
0.484402 + 0.874846i \(0.339037\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −2.69791 −0.0976071
\(765\) 0 0
\(766\) 58.5163 2.11428
\(767\) 9.35504i 0.337791i
\(768\) 0 0
\(769\) −4.04661 −0.145925 −0.0729623 0.997335i \(-0.523245\pi\)
−0.0729623 + 0.997335i \(0.523245\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 65.8108i 2.36858i
\(773\) 6.31105i 0.226993i 0.993538 + 0.113496i \(0.0362050\pi\)
−0.993538 + 0.113496i \(0.963795\pi\)
\(774\) 0 0
\(775\) 1.57962 + 2.74372i 0.0567418 + 0.0985572i
\(776\) −9.03316 −0.324272
\(777\) 0 0
\(778\) 94.6892i 3.39477i
\(779\) −6.10666 −0.218794
\(780\) 0 0
\(781\) −5.37340 −0.192275
\(782\) 52.9772i 1.89446i
\(783\) 0 0
\(784\) 0 0
\(785\) −12.6917 7.33791i −0.452988 0.261901i
\(786\) 0 0
\(787\) 29.9755i 1.06851i 0.845323 + 0.534256i \(0.179408\pi\)
−0.845323 + 0.534256i \(0.820592\pi\)
\(788\) 103.740i 3.69560i
\(789\) 0 0
\(790\) −53.0369 30.6640i −1.88697 1.09098i
\(791\) 0 0
\(792\) 0 0
\(793\) 3.37957i 0.120012i
\(794\) 0.144890 0.00514194
\(795\) 0 0
\(796\) −60.4618 −2.14301
\(797\) 0.676527i 0.0239638i −0.999928 0.0119819i \(-0.996186\pi\)
0.999928 0.0119819i \(-0.00381405\pi\)
\(798\) 0 0
\(799\) −17.5885 −0.622236
\(800\) 15.7432 9.06377i 0.556607 0.320453i
\(801\) 0 0
\(802\) 22.8403i 0.806519i
\(803\) 5.26052i 0.185640i
\(804\) 0 0
\(805\) 0 0
\(806\) −8.20600 −0.289044
\(807\) 0 0
\(808\) 32.3884i 1.13942i
\(809\) −50.1223 −1.76221 −0.881104 0.472923i \(-0.843199\pi\)
−0.881104 + 0.472923i \(0.843199\pi\)
\(810\) 0 0
\(811\) 36.4884 1.28128 0.640641 0.767841i \(-0.278669\pi\)
0.640641 + 0.767841i \(0.278669\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −22.2894 −0.781245
\(815\) 23.7249 + 13.7169i 0.831047 + 0.480481i
\(816\) 0 0
\(817\) 0.793383i 0.0277570i
\(818\) 41.8055i 1.46170i
\(819\) 0 0
\(820\) 12.8764 22.2711i 0.449662 0.777741i
\(821\) −38.7308 −1.35172 −0.675858 0.737032i \(-0.736227\pi\)
−0.675858 + 0.737032i \(0.736227\pi\)
\(822\) 0 0
\(823\) 20.9812i 0.731358i 0.930741 + 0.365679i \(0.119163\pi\)
−0.930741 + 0.365679i \(0.880837\pi\)
\(824\) −97.0069 −3.37939
\(825\) 0 0
\(826\) 0 0
\(827\) 37.8114i 1.31483i 0.753528 + 0.657416i \(0.228350\pi\)
−0.753528 + 0.657416i \(0.771650\pi\)
\(828\) 0 0
\(829\) −53.3181 −1.85182 −0.925908 0.377750i \(-0.876698\pi\)
−0.925908 + 0.377750i \(0.876698\pi\)
\(830\) 18.6645 32.2824i 0.647855 1.12054i
\(831\) 0 0
\(832\) 15.8453i 0.549336i
\(833\) 0 0
\(834\) 0 0
\(835\) −4.12790 2.38660i −0.142852 0.0825919i
\(836\) −9.74845 −0.337157
\(837\) 0 0
\(838\) 75.1850i 2.59722i
\(839\) −52.6452 −1.81752 −0.908758 0.417324i \(-0.862968\pi\)
−0.908758 + 0.417324i \(0.862968\pi\)
\(840\) 0 0
\(841\) 6.12510 0.211210
\(842\) 48.6205i 1.67557i
\(843\) 0 0
\(844\) −20.8996 −0.719393
\(845\) 15.1319 26.1724i 0.520554 0.900356i
\(846\) 0 0
\(847\) 0 0
\(848\) 46.6392i 1.60160i
\(849\) 0 0
\(850\) 26.0529 + 45.2523i 0.893606 + 1.55214i
\(851\) −45.9350 −1.57463
\(852\) 0 0
\(853\) 5.01225i 0.171616i 0.996312 + 0.0858081i \(0.0273472\pi\)
−0.996312 + 0.0858081i \(0.972653\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −14.0226 −0.479282
\(857\) 38.4212i 1.31244i 0.754568 + 0.656222i \(0.227846\pi\)
−0.754568 + 0.656222i \(0.772154\pi\)
\(858\) 0 0
\(859\) 23.3418 0.796413 0.398207 0.917296i \(-0.369633\pi\)
0.398207 + 0.917296i \(0.369633\pi\)
\(860\) 2.89348 + 1.67291i 0.0986670 + 0.0570457i
\(861\) 0 0
\(862\) 55.3553i 1.88541i
\(863\) 54.3757i 1.85097i 0.378783 + 0.925486i \(0.376343\pi\)
−0.378783 + 0.925486i \(0.623657\pi\)
\(864\) 0 0
\(865\) −22.3558 12.9253i −0.760119 0.439473i
\(866\) −6.86287 −0.233210
\(867\) 0 0
\(868\) 0 0
\(869\) −10.6489 −0.361239
\(870\) 0 0
\(871\) 47.6859 1.61578
\(872\) 106.332i 3.60087i
\(873\) 0 0
\(874\) −29.3627 −0.993208
\(875\) 0 0
\(876\) 0 0
\(877\) 28.4557i 0.960881i −0.877027 0.480441i \(-0.840477\pi\)
0.877027 0.480441i \(-0.159523\pi\)
\(878\) 18.9842i 0.640686i
\(879\) 0 0
\(880\) 6.68894 11.5693i 0.225484 0.390000i
\(881\) −6.50466 −0.219148 −0.109574 0.993979i \(-0.534949\pi\)
−0.109574 + 0.993979i \(0.534949\pi\)
\(882\) 0 0
\(883\) 34.7640i 1.16990i −0.811069 0.584951i \(-0.801114\pi\)
0.811069 0.584951i \(-0.198886\pi\)
\(884\) −92.6014 −3.11452
\(885\) 0 0
\(886\) −26.2689 −0.882522
\(887\) 29.3541i 0.985614i 0.870139 + 0.492807i \(0.164029\pi\)
−0.870139 + 0.492807i \(0.835971\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 79.4601 + 45.9410i 2.66351 + 1.53995i
\(891\) 0 0
\(892\) 68.5624i 2.29564i
\(893\) 9.74845i 0.326219i
\(894\) 0 0
\(895\) −9.96053 + 17.2279i −0.332944 + 0.575864i
\(896\) 0 0
\(897\) 0 0
\(898\) 4.35639i 0.145374i
\(899\) −3.75268 −0.125159
\(900\) 0 0
\(901\) 31.6760 1.05528
\(902\) 6.53556i 0.217610i
\(903\) 0 0
\(904\) −23.7432 −0.789688
\(905\) −3.55843 + 6.15470i −0.118286 + 0.204589i
\(906\) 0 0
\(907\) 36.2871i 1.20489i 0.798159 + 0.602447i \(0.205808\pi\)
−0.798159 + 0.602447i \(0.794192\pi\)
\(908\) 94.0225i 3.12025i
\(909\) 0 0
\(910\) 0 0
\(911\) −51.6732 −1.71201 −0.856004 0.516968i \(-0.827060\pi\)
−0.856004 + 0.516968i \(0.827060\pi\)
\(912\) 0 0
\(913\) 6.48174i 0.214514i
\(914\) 77.6653 2.56894
\(915\) 0 0
\(916\) 8.99952 0.297353
\(917\) 0 0
\(918\) 0 0
\(919\) 41.0377 1.35371 0.676854 0.736117i \(-0.263343\pi\)
0.676854 + 0.736117i \(0.263343\pi\)
\(920\) 33.3370 57.6600i 1.09909 1.90100i
\(921\) 0 0
\(922\) 27.0014i 0.889243i
\(923\) 28.2903i 0.931187i
\(924\) 0 0
\(925\) −39.2370 + 22.5897i −1.29010 + 0.742745i
\(926\) −27.9492 −0.918469
\(927\) 0 0
\(928\) 21.5326i 0.706843i
\(929\) 2.98520 0.0979412 0.0489706 0.998800i \(-0.484406\pi\)
0.0489706 + 0.998800i \(0.484406\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 29.2880i 0.959361i
\(933\) 0 0
\(934\) 69.4311 2.27185
\(935\) 7.85752 + 4.54293i 0.256968 + 0.148570i
\(936\) 0 0
\(937\) 26.1169i 0.853201i −0.904440 0.426601i \(-0.859711\pi\)
0.904440 0.426601i \(-0.140289\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 35.5528 + 20.5553i 1.15960 + 0.670441i
\(941\) 10.2116 0.332889 0.166444 0.986051i \(-0.446771\pi\)
0.166444 + 0.986051i \(0.446771\pi\)
\(942\) 0 0
\(943\) 13.4688i 0.438603i
\(944\) −11.0995 −0.361257
\(945\) 0 0
\(946\) 0.849106 0.0276068
\(947\) 46.5444i 1.51249i −0.654289 0.756245i \(-0.727032\pi\)
0.654289 0.756245i \(-0.272968\pi\)
\(948\) 0 0
\(949\) −27.6960 −0.899050
\(950\) −25.0811 + 14.4398i −0.813740 + 0.468490i
\(951\) 0 0
\(952\) 0 0
\(953\) 30.6348i 0.992358i 0.868220 + 0.496179i \(0.165264\pi\)
−0.868220 + 0.496179i \(0.834736\pi\)
\(954\) 0 0
\(955\) −0.696844 + 1.20527i −0.0225493 + 0.0390016i
\(956\) 12.5869 0.407090
\(957\) 0 0
\(958\) 25.2095i 0.814483i
\(959\) 0 0
\(960\) 0 0
\(961\) −30.5991 −0.987067
\(962\) 117.351i 3.78356i
\(963\) 0 0
\(964\) −38.5544 −1.24175
\(965\) 29.4004 + 16.9983i 0.946433 + 0.547193i
\(966\) 0 0
\(967\) 57.4401i 1.84715i 0.383419 + 0.923575i \(0.374747\pi\)
−0.383419 + 0.923575i \(0.625253\pi\)
\(968\) 58.9701i 1.89537i
\(969\) 0 0
\(970\) −4.33317 + 7.49472i −0.139130 + 0.240641i
\(971\) 48.1816 1.54622 0.773110 0.634272i \(-0.218700\pi\)
0.773110 + 0.634272i \(0.218700\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −77.3449 −2.47829
\(975\) 0 0
\(976\) −4.00976 −0.128349
\(977\) 13.7523i 0.439977i 0.975503 + 0.219988i \(0.0706019\pi\)
−0.975503 + 0.219988i \(0.929398\pi\)
\(978\) 0 0
\(979\) 15.9542 0.509898
\(980\) 0 0
\(981\) 0 0
\(982\) 10.4200i 0.332516i
\(983\) 38.1944i 1.21821i 0.793089 + 0.609106i \(0.208472\pi\)
−0.793089 + 0.609106i \(0.791528\pi\)
\(984\) 0 0
\(985\) 46.3452 + 26.7951i 1.47668 + 0.853764i
\(986\) −61.8933 −1.97108
\(987\) 0 0
\(988\) 51.3245i 1.63285i
\(989\) 1.74987 0.0556428
\(990\) 0 0
\(991\) 39.5200 1.25539 0.627697 0.778458i \(-0.283998\pi\)
0.627697 + 0.778458i \(0.283998\pi\)
\(992\) 2.30049i 0.0730407i
\(993\) 0 0
\(994\) 0 0
\(995\) −15.6167 + 27.0108i −0.495082 + 0.856300i
\(996\) 0 0
\(997\) 11.5290i 0.365126i −0.983194 0.182563i \(-0.941561\pi\)
0.983194 0.182563i \(-0.0584393\pi\)
\(998\) 3.89637i 0.123337i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.d.o.1324.8 8
3.2 odd 2 735.2.d.e.589.1 8
5.4 even 2 inner 2205.2.d.o.1324.1 8
7.3 odd 6 315.2.bf.b.289.1 16
7.5 odd 6 315.2.bf.b.109.8 16
7.6 odd 2 2205.2.d.s.1324.8 8
15.2 even 4 3675.2.a.cb.1.4 4
15.8 even 4 3675.2.a.bn.1.1 4
15.14 odd 2 735.2.d.e.589.8 8
21.2 odd 6 735.2.q.g.214.1 16
21.5 even 6 105.2.q.a.4.1 16
21.11 odd 6 735.2.q.g.79.8 16
21.17 even 6 105.2.q.a.79.8 yes 16
21.20 even 2 735.2.d.d.589.1 8
35.19 odd 6 315.2.bf.b.109.1 16
35.24 odd 6 315.2.bf.b.289.8 16
35.34 odd 2 2205.2.d.s.1324.1 8
84.47 odd 6 1680.2.di.d.529.4 16
84.59 odd 6 1680.2.di.d.289.5 16
105.17 odd 12 525.2.i.h.226.1 8
105.38 odd 12 525.2.i.k.226.4 8
105.44 odd 6 735.2.q.g.214.8 16
105.47 odd 12 525.2.i.h.151.1 8
105.59 even 6 105.2.q.a.79.1 yes 16
105.62 odd 4 3675.2.a.bz.1.4 4
105.68 odd 12 525.2.i.k.151.4 8
105.74 odd 6 735.2.q.g.79.1 16
105.83 odd 4 3675.2.a.bp.1.1 4
105.89 even 6 105.2.q.a.4.8 yes 16
105.104 even 2 735.2.d.d.589.8 8
420.59 odd 6 1680.2.di.d.289.4 16
420.299 odd 6 1680.2.di.d.529.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.1 16 21.5 even 6
105.2.q.a.4.8 yes 16 105.89 even 6
105.2.q.a.79.1 yes 16 105.59 even 6
105.2.q.a.79.8 yes 16 21.17 even 6
315.2.bf.b.109.1 16 35.19 odd 6
315.2.bf.b.109.8 16 7.5 odd 6
315.2.bf.b.289.1 16 7.3 odd 6
315.2.bf.b.289.8 16 35.24 odd 6
525.2.i.h.151.1 8 105.47 odd 12
525.2.i.h.226.1 8 105.17 odd 12
525.2.i.k.151.4 8 105.68 odd 12
525.2.i.k.226.4 8 105.38 odd 12
735.2.d.d.589.1 8 21.20 even 2
735.2.d.d.589.8 8 105.104 even 2
735.2.d.e.589.1 8 3.2 odd 2
735.2.d.e.589.8 8 15.14 odd 2
735.2.q.g.79.1 16 105.74 odd 6
735.2.q.g.79.8 16 21.11 odd 6
735.2.q.g.214.1 16 21.2 odd 6
735.2.q.g.214.8 16 105.44 odd 6
1680.2.di.d.289.4 16 420.59 odd 6
1680.2.di.d.289.5 16 84.59 odd 6
1680.2.di.d.529.4 16 84.47 odd 6
1680.2.di.d.529.5 16 420.299 odd 6
2205.2.d.o.1324.1 8 5.4 even 2 inner
2205.2.d.o.1324.8 8 1.1 even 1 trivial
2205.2.d.s.1324.1 8 35.34 odd 2
2205.2.d.s.1324.8 8 7.6 odd 2
3675.2.a.bn.1.1 4 15.8 even 4
3675.2.a.bp.1.1 4 105.83 odd 4
3675.2.a.bz.1.4 4 105.62 odd 4
3675.2.a.cb.1.4 4 15.2 even 4