Properties

Label 105.2.q.a.4.8
Level $105$
Weight $2$
Character 105.4
Analytic conductor $0.838$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [105,2,Mod(4,105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(105, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("105.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 4.8
Root \(-0.281555 + 1.05078i\) of defining polynomial
Character \(\chi\) \(=\) 105.4
Dual form 105.2.q.a.79.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.17942 - 1.25829i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(2.16659 - 3.75264i) q^{4} +(-1.11685 + 1.93717i) q^{5} -2.51658 q^{6} +(-1.31340 + 2.29673i) q^{7} -5.87162i q^{8} +(0.500000 + 0.866025i) q^{9} +(0.00343282 + 5.62724i) q^{10} +(-0.489068 + 0.847090i) q^{11} +(-3.75264 + 2.16659i) q^{12} -5.14977i q^{13} +(0.0275122 + 6.65819i) q^{14} +(1.93581 - 1.11922i) q^{15} +(-3.05502 - 5.29146i) q^{16} +(3.59380 + 2.07488i) q^{17} +(2.17942 + 1.25829i) q^{18} +(-1.15001 - 1.99187i) q^{19} +(4.84975 + 8.38820i) q^{20} +(2.28580 - 1.33233i) q^{21} +2.46156i q^{22} +(-4.39324 + 2.53644i) q^{23} +(-2.93581 + 5.08497i) q^{24} +(-2.50528 - 4.32707i) q^{25} +(-6.47990 - 11.2235i) q^{26} -1.00000i q^{27} +(5.77323 + 9.90478i) q^{28} -5.92664 q^{29} +(2.81065 - 4.87505i) q^{30} +(-0.316594 + 0.548357i) q^{31} +(-3.14643 - 1.81659i) q^{32} +(0.847090 - 0.489068i) q^{33} +10.4432 q^{34} +(-2.98230 - 5.10939i) q^{35} +4.33317 q^{36} +(7.84188 - 4.52751i) q^{37} +(-5.01270 - 2.89408i) q^{38} +(-2.57488 + 4.45983i) q^{39} +(11.3743 + 6.55773i) q^{40} +2.65505 q^{41} +(3.30527 - 5.77992i) q^{42} -0.344947i q^{43} +(2.11922 + 3.67059i) q^{44} +(-2.23607 + 0.00136408i) q^{45} +(-6.38315 + 11.0559i) q^{46} +(-3.67059 + 2.11922i) q^{47} +6.11005i q^{48} +(-3.54998 - 6.03305i) q^{49} +(-10.9048 - 6.27815i) q^{50} +(-2.07488 - 3.59380i) q^{51} +(-19.3252 - 11.1574i) q^{52} +(6.61053 + 3.81659i) q^{53} +(-1.25829 - 2.17942i) q^{54} +(-1.09474 - 1.89348i) q^{55} +(13.4855 + 7.71176i) q^{56} +2.30001i q^{57} +(-12.9167 + 7.45743i) q^{58} +(0.908297 - 1.57322i) q^{59} +(-0.00591081 - 9.68927i) q^{60} +(-0.328128 - 0.568335i) q^{61} +1.59347i q^{62} +(-2.64573 + 0.0109324i) q^{63} +3.07689 q^{64} +(9.97599 + 5.75153i) q^{65} +(1.23078 - 2.13177i) q^{66} +(8.01924 + 4.62991i) q^{67} +(15.5726 - 8.99083i) q^{68} +5.07288 q^{69} +(-12.9288 - 7.38292i) q^{70} -5.49351 q^{71} +(5.08497 - 2.93581i) q^{72} +(4.65758 + 2.68905i) q^{73} +(11.3938 - 19.7347i) q^{74} +(0.00610036 + 5.00000i) q^{75} -9.96636 q^{76} +(-1.30320 - 2.23582i) q^{77} +12.9598i q^{78} +(-5.44346 - 9.42835i) q^{79} +(13.6625 - 0.00833461i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(5.78648 - 3.34083i) q^{82} -6.62663i q^{83} +(-0.0473719 - 11.4644i) q^{84} +(-8.03316 + 4.64448i) q^{85} +(-0.434043 - 0.751785i) q^{86} +(5.13262 + 2.96332i) q^{87} +(4.97379 + 2.87162i) q^{88} +(8.15542 + 14.1256i) q^{89} +(-4.87162 + 2.81659i) q^{90} +(11.8277 + 6.76369i) q^{91} +21.9817i q^{92} +(0.548357 - 0.316594i) q^{93} +(-5.33317 + 9.23733i) q^{94} +(5.14299 - 0.00313741i) q^{95} +(1.81659 + 3.14643i) q^{96} -1.53844i q^{97} +(-15.3282 - 8.68165i) q^{98} -0.978135 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 2 q^{5} - 8 q^{6} + 8 q^{9} - 4 q^{10} - 24 q^{14} - 4 q^{15} - 24 q^{19} - 8 q^{20} - 4 q^{21} - 12 q^{24} - 4 q^{25} - 12 q^{26} + 24 q^{29} - 12 q^{30} + 16 q^{31} + 16 q^{34} - 10 q^{35}+ \cdots + 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17942 1.25829i 1.54108 0.889745i 0.542313 0.840176i \(-0.317549\pi\)
0.998771 0.0495691i \(-0.0157848\pi\)
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 2.16659 3.75264i 1.08329 1.87632i
\(5\) −1.11685 + 1.93717i −0.499472 + 0.866330i
\(6\) −2.51658 −1.02739
\(7\) −1.31340 + 2.29673i −0.496417 + 0.868084i
\(8\) 5.87162i 2.07593i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0.00343282 + 5.62724i 0.00108555 + 1.77949i
\(11\) −0.489068 + 0.847090i −0.147459 + 0.255407i −0.930288 0.366830i \(-0.880443\pi\)
0.782828 + 0.622238i \(0.213776\pi\)
\(12\) −3.75264 + 2.16659i −1.08329 + 0.625440i
\(13\) 5.14977i 1.42829i −0.699998 0.714144i \(-0.746816\pi\)
0.699998 0.714144i \(-0.253184\pi\)
\(14\) 0.0275122 + 6.65819i 0.00735294 + 1.77948i
\(15\) 1.93581 1.11922i 0.499824 0.288980i
\(16\) −3.05502 5.29146i −0.763756 1.32286i
\(17\) 3.59380 + 2.07488i 0.871626 + 0.503233i 0.867888 0.496760i \(-0.165477\pi\)
0.00373753 + 0.999993i \(0.498810\pi\)
\(18\) 2.17942 + 1.25829i 0.513695 + 0.296582i
\(19\) −1.15001 1.99187i −0.263830 0.456967i 0.703427 0.710768i \(-0.251652\pi\)
−0.967256 + 0.253801i \(0.918319\pi\)
\(20\) 4.84975 + 8.38820i 1.08444 + 1.87566i
\(21\) 2.28580 1.33233i 0.498803 0.290739i
\(22\) 2.46156i 0.524805i
\(23\) −4.39324 + 2.53644i −0.916054 + 0.528884i −0.882374 0.470548i \(-0.844056\pi\)
−0.0336802 + 0.999433i \(0.510723\pi\)
\(24\) −2.93581 + 5.08497i −0.599270 + 1.03797i
\(25\) −2.50528 4.32707i −0.501056 0.865415i
\(26\) −6.47990 11.2235i −1.27081 2.20111i
\(27\) 1.00000i 0.192450i
\(28\) 5.77323 + 9.90478i 1.09104 + 1.87183i
\(29\) −5.92664 −1.10055 −0.550275 0.834983i \(-0.685477\pi\)
−0.550275 + 0.834983i \(0.685477\pi\)
\(30\) 2.81065 4.87505i 0.513152 0.890059i
\(31\) −0.316594 + 0.548357i −0.0568620 + 0.0984879i −0.893055 0.449947i \(-0.851443\pi\)
0.836193 + 0.548435i \(0.184776\pi\)
\(32\) −3.14643 1.81659i −0.556216 0.321132i
\(33\) 0.847090 0.489068i 0.147459 0.0851357i
\(34\) 10.4432 1.79100
\(35\) −2.98230 5.10939i −0.504101 0.863645i
\(36\) 4.33317 0.722196
\(37\) 7.84188 4.52751i 1.28920 0.744318i 0.310686 0.950513i \(-0.399441\pi\)
0.978511 + 0.206194i \(0.0661078\pi\)
\(38\) −5.01270 2.89408i −0.813168 0.469483i
\(39\) −2.57488 + 4.45983i −0.412311 + 0.714144i
\(40\) 11.3743 + 6.55773i 1.79844 + 1.03687i
\(41\) 2.65505 0.414650 0.207325 0.978272i \(-0.433524\pi\)
0.207325 + 0.978272i \(0.433524\pi\)
\(42\) 3.30527 5.77992i 0.510014 0.891860i
\(43\) 0.344947i 0.0526039i −0.999654 0.0263020i \(-0.991627\pi\)
0.999654 0.0263020i \(-0.00837314\pi\)
\(44\) 2.11922 + 3.67059i 0.319484 + 0.553362i
\(45\) −2.23607 + 0.00136408i −0.333333 + 0.000203345i
\(46\) −6.38315 + 11.0559i −0.941144 + 1.63011i
\(47\) −3.67059 + 2.11922i −0.535410 + 0.309119i −0.743217 0.669051i \(-0.766701\pi\)
0.207806 + 0.978170i \(0.433368\pi\)
\(48\) 6.11005i 0.881910i
\(49\) −3.54998 6.03305i −0.507140 0.861864i
\(50\) −10.9048 6.27815i −1.54217 0.887864i
\(51\) −2.07488 3.59380i −0.290542 0.503233i
\(52\) −19.3252 11.1574i −2.67993 1.54726i
\(53\) 6.61053 + 3.81659i 0.908027 + 0.524250i 0.879796 0.475352i \(-0.157679\pi\)
0.0282311 + 0.999601i \(0.491013\pi\)
\(54\) −1.25829 2.17942i −0.171232 0.296582i
\(55\) −1.09474 1.89348i −0.147615 0.255317i
\(56\) 13.4855 + 7.71176i 1.80208 + 1.03053i
\(57\) 2.30001i 0.304644i
\(58\) −12.9167 + 7.45743i −1.69604 + 0.979209i
\(59\) 0.908297 1.57322i 0.118250 0.204815i −0.800824 0.598900i \(-0.795605\pi\)
0.919074 + 0.394084i \(0.128938\pi\)
\(60\) −0.00591081 9.68927i −0.000763082 1.25088i
\(61\) −0.328128 0.568335i −0.0420125 0.0727678i 0.844255 0.535942i \(-0.180044\pi\)
−0.886267 + 0.463175i \(0.846710\pi\)
\(62\) 1.59347i 0.202371i
\(63\) −2.64573 + 0.0109324i −0.333330 + 0.00137735i
\(64\) 3.07689 0.384611
\(65\) 9.97599 + 5.75153i 1.23737 + 0.713390i
\(66\) 1.23078 2.13177i 0.151498 0.262403i
\(67\) 8.01924 + 4.62991i 0.979706 + 0.565633i 0.902181 0.431357i \(-0.141965\pi\)
0.0775244 + 0.996990i \(0.475298\pi\)
\(68\) 15.5726 8.99083i 1.88845 1.09030i
\(69\) 5.07288 0.610703
\(70\) −12.9288 7.38292i −1.54529 0.882427i
\(71\) −5.49351 −0.651960 −0.325980 0.945377i \(-0.605694\pi\)
−0.325980 + 0.945377i \(0.605694\pi\)
\(72\) 5.08497 2.93581i 0.599270 0.345988i
\(73\) 4.65758 + 2.68905i 0.545128 + 0.314730i 0.747155 0.664650i \(-0.231419\pi\)
−0.202027 + 0.979380i \(0.564753\pi\)
\(74\) 11.3938 19.7347i 1.32451 2.29411i
\(75\) 0.00610036 + 5.00000i 0.000704409 + 0.577350i
\(76\) −9.96636 −1.14322
\(77\) −1.30320 2.23582i −0.148514 0.254796i
\(78\) 12.9598i 1.46741i
\(79\) −5.44346 9.42835i −0.612437 1.06077i −0.990828 0.135127i \(-0.956856\pi\)
0.378391 0.925646i \(-0.376477\pi\)
\(80\) 13.6625 0.00833461i 1.52751 0.000931838i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 5.78648 3.34083i 0.639010 0.368933i
\(83\) 6.62663i 0.727367i −0.931523 0.363683i \(-0.881519\pi\)
0.931523 0.363683i \(-0.118481\pi\)
\(84\) −0.0473719 11.4644i −0.00516870 1.25087i
\(85\) −8.03316 + 4.64448i −0.871318 + 0.503765i
\(86\) −0.434043 0.751785i −0.0468041 0.0810671i
\(87\) 5.13262 + 2.96332i 0.550275 + 0.317701i
\(88\) 4.97379 + 2.87162i 0.530208 + 0.306116i
\(89\) 8.15542 + 14.1256i 0.864472 + 1.49731i 0.867570 + 0.497315i \(0.165681\pi\)
−0.00309785 + 0.999995i \(0.500986\pi\)
\(90\) −4.87162 + 2.81659i −0.513514 + 0.296895i
\(91\) 11.8277 + 6.76369i 1.23987 + 0.709027i
\(92\) 21.9817i 2.29175i
\(93\) 0.548357 0.316594i 0.0568620 0.0328293i
\(94\) −5.33317 + 9.23733i −0.550075 + 0.952758i
\(95\) 5.14299 0.00313741i 0.527659 0.000321892i
\(96\) 1.81659 + 3.14643i 0.185405 + 0.321132i
\(97\) 1.53844i 0.156205i −0.996945 0.0781027i \(-0.975114\pi\)
0.996945 0.0781027i \(-0.0248862\pi\)
\(98\) −15.3282 8.68165i −1.54838 0.876979i
\(99\) −0.978135 −0.0983063
\(100\) −21.6659 + 0.0264339i −2.16659 + 0.00264339i
\(101\) 2.75805 4.77708i 0.274436 0.475338i −0.695556 0.718471i \(-0.744842\pi\)
0.969993 + 0.243134i \(0.0781754\pi\)
\(102\) −9.04410 5.22161i −0.895499 0.517017i
\(103\) −14.3079 + 8.26066i −1.40980 + 0.813947i −0.995368 0.0961349i \(-0.969352\pi\)
−0.414429 + 0.910082i \(0.636019\pi\)
\(104\) −30.2375 −2.96503
\(105\) 0.0280545 + 5.91601i 0.00273784 + 0.577344i
\(106\) 19.2095 1.86579
\(107\) −2.06824 + 1.19410i −0.199944 + 0.115438i −0.596630 0.802517i \(-0.703494\pi\)
0.396685 + 0.917955i \(0.370160\pi\)
\(108\) −3.75264 2.16659i −0.361098 0.208480i
\(109\) −9.05479 + 15.6833i −0.867291 + 1.50219i −0.00253705 + 0.999997i \(0.500808\pi\)
−0.864754 + 0.502196i \(0.832526\pi\)
\(110\) −4.76846 2.74919i −0.454655 0.262125i
\(111\) −9.05502 −0.859465
\(112\) 16.1655 0.0667973i 1.52750 0.00631176i
\(113\) 4.04373i 0.380402i −0.981745 0.190201i \(-0.939086\pi\)
0.981745 0.190201i \(-0.0609140\pi\)
\(114\) 2.89408 + 5.01270i 0.271056 + 0.469483i
\(115\) −0.00691983 11.3433i −0.000645277 1.05777i
\(116\) −12.8406 + 22.2405i −1.19222 + 2.06498i
\(117\) 4.45983 2.57488i 0.412311 0.238048i
\(118\) 4.57160i 0.420850i
\(119\) −9.48555 + 5.52887i −0.869539 + 0.506831i
\(120\) −6.57160 11.3663i −0.599903 1.03760i
\(121\) 5.02163 + 8.69771i 0.456511 + 0.790701i
\(122\) −1.43026 0.825761i −0.129490 0.0747608i
\(123\) −2.29934 1.32753i −0.207325 0.119699i
\(124\) 1.37186 + 2.37613i 0.123196 + 0.213383i
\(125\) 11.1803 0.0204612i 0.999998 0.00183011i
\(126\) −5.75240 + 3.35292i −0.512465 + 0.298702i
\(127\) 6.85023i 0.607860i 0.952694 + 0.303930i \(0.0982989\pi\)
−0.952694 + 0.303930i \(0.901701\pi\)
\(128\) 12.9987 7.50481i 1.14893 0.663337i
\(129\) −0.172473 + 0.298733i −0.0151854 + 0.0263020i
\(130\) 28.9790 0.0176782i 2.54163 0.00155048i
\(131\) 2.01270 + 3.48610i 0.175850 + 0.304582i 0.940455 0.339918i \(-0.110399\pi\)
−0.764605 + 0.644499i \(0.777066\pi\)
\(132\) 4.23843i 0.368908i
\(133\) 6.08521 0.0251446i 0.527655 0.00218031i
\(134\) 23.3031 2.01308
\(135\) 1.93717 + 1.11685i 0.166725 + 0.0961234i
\(136\) 12.1829 21.1014i 1.04468 1.80943i
\(137\) −9.72709 5.61594i −0.831041 0.479802i 0.0231680 0.999732i \(-0.492625\pi\)
−0.854209 + 0.519930i \(0.825958\pi\)
\(138\) 11.0559 6.38315i 0.941144 0.543370i
\(139\) 4.98991 0.423238 0.211619 0.977352i \(-0.432126\pi\)
0.211619 + 0.977352i \(0.432126\pi\)
\(140\) −25.6351 + 0.121565i −2.16656 + 0.0102741i
\(141\) 4.23843 0.356940
\(142\) −11.9727 + 6.91243i −1.00473 + 0.580078i
\(143\) 4.36232 + 2.51858i 0.364795 + 0.210615i
\(144\) 3.05502 5.29146i 0.254585 0.440955i
\(145\) 6.61919 11.4809i 0.549693 0.953440i
\(146\) 13.5344 1.12012
\(147\) 0.0578482 + 6.99976i 0.00477124 + 0.577331i
\(148\) 39.2370i 3.22526i
\(149\) −7.24712 12.5524i −0.593707 1.02833i −0.993728 0.111825i \(-0.964330\pi\)
0.400021 0.916506i \(-0.369003\pi\)
\(150\) 6.30474 + 10.8894i 0.514780 + 0.889118i
\(151\) −3.94346 + 6.83028i −0.320914 + 0.555840i −0.980677 0.195634i \(-0.937324\pi\)
0.659763 + 0.751474i \(0.270657\pi\)
\(152\) −11.6955 + 6.75240i −0.948631 + 0.547692i
\(153\) 4.14977i 0.335489i
\(154\) −5.65354 3.23300i −0.455575 0.260522i
\(155\) −0.708674 1.22573i −0.0569221 0.0984531i
\(156\) 11.1574 + 19.3252i 0.893309 + 1.54726i
\(157\) −5.67792 3.27815i −0.453147 0.261625i 0.256011 0.966674i \(-0.417592\pi\)
−0.709159 + 0.705049i \(0.750925\pi\)
\(158\) −23.7272 13.6989i −1.88763 1.08983i
\(159\) −3.81659 6.61053i −0.302676 0.524250i
\(160\) 7.03316 4.06632i 0.556020 0.321471i
\(161\) −0.0554586 13.4215i −0.00437075 1.05776i
\(162\) 2.51658i 0.197721i
\(163\) 10.6138 6.12790i 0.831340 0.479974i −0.0229712 0.999736i \(-0.507313\pi\)
0.854311 + 0.519762i \(0.173979\pi\)
\(164\) 5.75240 9.96346i 0.449187 0.778015i
\(165\) 0.00133426 + 2.18718i 0.000103872 + 0.170271i
\(166\) −8.33822 14.4422i −0.647171 1.12093i
\(167\) 2.13239i 0.165009i −0.996591 0.0825047i \(-0.973708\pi\)
0.996591 0.0825047i \(-0.0262920\pi\)
\(168\) −7.82295 13.4214i −0.603553 1.03548i
\(169\) −13.5201 −1.04001
\(170\) −11.6635 + 20.2303i −0.894553 + 1.55160i
\(171\) 1.15001 1.99187i 0.0879432 0.152322i
\(172\) −1.29446 0.747358i −0.0987017 0.0569855i
\(173\) −10.0013 + 5.77427i −0.760387 + 0.439009i −0.829435 0.558604i \(-0.811337\pi\)
0.0690479 + 0.997613i \(0.478004\pi\)
\(174\) 14.9149 1.13069
\(175\) 13.2286 0.0708017i 0.999986 0.00535211i
\(176\) 5.97645 0.450492
\(177\) −1.57322 + 0.908297i −0.118250 + 0.0682718i
\(178\) 35.5482 + 20.5238i 2.66445 + 1.53832i
\(179\) 4.44978 7.70725i 0.332592 0.576067i −0.650427 0.759569i \(-0.725410\pi\)
0.983019 + 0.183502i \(0.0587434\pi\)
\(180\) −4.83952 + 8.39411i −0.360716 + 0.625660i
\(181\) −3.17940 −0.236323 −0.118161 0.992994i \(-0.537700\pi\)
−0.118161 + 0.992994i \(0.537700\pi\)
\(182\) 34.2881 0.141681i 2.54160 0.0105021i
\(183\) 0.656256i 0.0485119i
\(184\) 14.8930 + 25.7954i 1.09793 + 1.90167i
\(185\) 0.0123518 + 20.2476i 0.000908123 + 1.48864i
\(186\) 0.796734 1.37998i 0.0584194 0.101185i
\(187\) −3.51523 + 2.02952i −0.257059 + 0.148413i
\(188\) 18.3659i 1.33947i
\(189\) 2.29673 + 1.31340i 0.167063 + 0.0955355i
\(190\) 11.2048 6.47821i 0.812881 0.469979i
\(191\) 0.311309 + 0.539203i 0.0225255 + 0.0390154i 0.877068 0.480365i \(-0.159496\pi\)
−0.854543 + 0.519381i \(0.826163\pi\)
\(192\) −2.66466 1.53844i −0.192306 0.111028i
\(193\) −13.1529 7.59383i −0.946767 0.546616i −0.0546916 0.998503i \(-0.517418\pi\)
−0.892075 + 0.451887i \(0.850751\pi\)
\(194\) −1.93581 3.35292i −0.138983 0.240726i
\(195\) −5.76370 9.96897i −0.412747 0.713893i
\(196\) −30.3312 + 0.250666i −2.16651 + 0.0179047i
\(197\) 23.9410i 1.70573i −0.522136 0.852863i \(-0.674864\pi\)
0.522136 0.852863i \(-0.325136\pi\)
\(198\) −2.13177 + 1.23078i −0.151498 + 0.0874676i
\(199\) 6.97662 12.0839i 0.494560 0.856602i −0.505421 0.862873i \(-0.668663\pi\)
0.999980 + 0.00627071i \(0.00199604\pi\)
\(200\) −25.4069 + 14.7101i −1.79654 + 1.04016i
\(201\) −4.62991 8.01924i −0.326569 0.565633i
\(202\) 13.8817i 0.976714i
\(203\) 7.78403 13.6119i 0.546332 0.955370i
\(204\) −17.9817 −1.25897
\(205\) −2.96530 + 5.14330i −0.207106 + 0.359224i
\(206\) −20.7886 + 36.0069i −1.44841 + 2.50872i
\(207\) −4.39324 2.53644i −0.305351 0.176295i
\(208\) −27.2498 + 15.7327i −1.88943 + 1.09086i
\(209\) 2.24973 0.155617
\(210\) 7.50520 + 12.8582i 0.517908 + 0.887299i
\(211\) 4.82315 0.332040 0.166020 0.986122i \(-0.446908\pi\)
0.166020 + 0.986122i \(0.446908\pi\)
\(212\) 28.6446 16.5380i 1.96732 1.13583i
\(213\) 4.75752 + 2.74676i 0.325980 + 0.188205i
\(214\) −3.00505 + 5.20489i −0.205421 + 0.355799i
\(215\) 0.668222 + 0.385255i 0.0455724 + 0.0262742i
\(216\) −5.87162 −0.399513
\(217\) −0.843617 1.44734i −0.0572685 0.0982521i
\(218\) 45.5742i 3.08667i
\(219\) −2.68905 4.65758i −0.181709 0.314730i
\(220\) −9.47742 + 0.00578157i −0.638967 + 0.000389793i
\(221\) 10.6852 18.5073i 0.718762 1.24493i
\(222\) −19.7347 + 11.3938i −1.32451 + 0.764705i
\(223\) 15.8227i 1.05956i 0.848134 + 0.529782i \(0.177726\pi\)
−0.848134 + 0.529782i \(0.822274\pi\)
\(224\) 8.30475 4.84061i 0.554884 0.323427i
\(225\) 2.49472 4.33317i 0.166314 0.288878i
\(226\) −5.08818 8.81299i −0.338461 0.586232i
\(227\) −18.7913 10.8492i −1.24722 0.720084i −0.276667 0.960966i \(-0.589230\pi\)
−0.970554 + 0.240882i \(0.922563\pi\)
\(228\) 8.63112 + 4.98318i 0.571610 + 0.330019i
\(229\) −1.03844 1.79864i −0.0686223 0.118857i 0.829673 0.558250i \(-0.188527\pi\)
−0.898295 + 0.439393i \(0.855194\pi\)
\(230\) −14.2882 24.7131i −0.942139 1.62954i
\(231\) 0.0106933 + 2.58788i 0.000703570 + 0.170270i
\(232\) 34.7990i 2.28467i
\(233\) −5.85348 + 3.37951i −0.383474 + 0.221399i −0.679329 0.733834i \(-0.737729\pi\)
0.295854 + 0.955233i \(0.404396\pi\)
\(234\) 6.47990 11.2235i 0.423604 0.733704i
\(235\) −0.00578157 9.47742i −0.000377148 0.618238i
\(236\) −3.93581 6.81702i −0.256199 0.443750i
\(237\) 10.8869i 0.707182i
\(238\) −13.7161 + 23.9853i −0.889082 + 1.55474i
\(239\) 2.90478 0.187894 0.0939472 0.995577i \(-0.470051\pi\)
0.0939472 + 0.995577i \(0.470051\pi\)
\(240\) −11.8362 6.82402i −0.764025 0.440489i
\(241\) 4.44875 7.70546i 0.286569 0.496352i −0.686419 0.727206i \(-0.740819\pi\)
0.972988 + 0.230854i \(0.0741519\pi\)
\(242\) 21.8885 + 12.6373i 1.40705 + 0.812358i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) −2.84367 −0.182047
\(245\) 15.6519 0.138901i 0.999961 0.00887404i
\(246\) −6.68165 −0.426007
\(247\) −10.2577 + 5.92227i −0.652680 + 0.376825i
\(248\) 3.21974 + 1.85892i 0.204454 + 0.118042i
\(249\) −3.31331 + 5.73883i −0.209973 + 0.363683i
\(250\) 24.3409 14.1127i 1.53945 0.892564i
\(251\) −21.1747 −1.33653 −0.668267 0.743921i \(-0.732964\pi\)
−0.668267 + 0.743921i \(0.732964\pi\)
\(252\) −5.69118 + 9.95215i −0.358510 + 0.626927i
\(253\) 4.96196i 0.311956i
\(254\) 8.61958 + 14.9295i 0.540840 + 0.936763i
\(255\) 9.27916 0.00566063i 0.581084 0.000354482i
\(256\) 15.8096 27.3830i 0.988097 1.71143i
\(257\) −5.39917 + 3.11721i −0.336791 + 0.194446i −0.658852 0.752273i \(-0.728958\pi\)
0.322061 + 0.946719i \(0.395624\pi\)
\(258\) 0.868086i 0.0540447i
\(259\) 0.0989929 + 23.9571i 0.00615112 + 1.48862i
\(260\) 43.1973 24.9751i 2.67898 1.54889i
\(261\) −2.96332 5.13262i −0.183425 0.317701i
\(262\) 8.77304 + 5.06512i 0.542000 + 0.312924i
\(263\) 24.2903 + 14.0240i 1.49780 + 0.864756i 0.999997 0.00253231i \(-0.000806060\pi\)
0.497805 + 0.867289i \(0.334139\pi\)
\(264\) −2.87162 4.97379i −0.176736 0.306116i
\(265\) −14.7764 + 8.54318i −0.907707 + 0.524803i
\(266\) 13.2306 7.71176i 0.811221 0.472839i
\(267\) 16.3108i 0.998207i
\(268\) 34.7487 20.0622i 2.12262 1.22549i
\(269\) 3.70915 6.42444i 0.226151 0.391705i −0.730513 0.682899i \(-0.760719\pi\)
0.956664 + 0.291194i \(0.0940524\pi\)
\(270\) 5.62724 0.00343282i 0.342463 0.000208915i
\(271\) 15.6058 + 27.0300i 0.947985 + 1.64196i 0.749662 + 0.661821i \(0.230216\pi\)
0.198323 + 0.980137i \(0.436450\pi\)
\(272\) 25.3553i 1.53739i
\(273\) −6.86120 11.7714i −0.415259 0.712435i
\(274\) −28.2659 −1.70761
\(275\) 4.89067 0.00596698i 0.294919 0.000359822i
\(276\) 10.9908 19.0367i 0.661570 1.14587i
\(277\) −10.7843 6.22629i −0.647963 0.374102i 0.139712 0.990192i \(-0.455382\pi\)
−0.787675 + 0.616090i \(0.788716\pi\)
\(278\) 10.8751 6.27875i 0.652246 0.376574i
\(279\) −0.633188 −0.0379080
\(280\) −30.0004 + 17.5109i −1.79287 + 1.04648i
\(281\) −0.0409225 −0.00244123 −0.00122061 0.999999i \(-0.500389\pi\)
−0.00122061 + 0.999999i \(0.500389\pi\)
\(282\) 9.23733 5.33317i 0.550075 0.317586i
\(283\) −9.38944 5.42100i −0.558144 0.322245i 0.194256 0.980951i \(-0.437771\pi\)
−0.752400 + 0.658706i \(0.771104\pi\)
\(284\) −11.9022 + 20.6152i −0.706264 + 1.22329i
\(285\) −4.45553 2.56878i −0.263923 0.152161i
\(286\) 12.6764 0.749574
\(287\) −3.48714 + 6.09795i −0.205839 + 0.359951i
\(288\) 3.63319i 0.214088i
\(289\) 0.110288 + 0.191024i 0.00648752 + 0.0112367i
\(290\) −0.0203451 33.3507i −0.00119471 1.95842i
\(291\) −0.769222 + 1.33233i −0.0450926 + 0.0781027i
\(292\) 20.1821 11.6521i 1.18107 0.681890i
\(293\) 29.6455i 1.73191i 0.500125 + 0.865953i \(0.333287\pi\)
−0.500125 + 0.865953i \(0.666713\pi\)
\(294\) 8.93380 + 15.1826i 0.521030 + 0.885470i
\(295\) 2.03316 + 3.51658i 0.118375 + 0.204743i
\(296\) −26.5838 46.0445i −1.54515 2.67628i
\(297\) 0.847090 + 0.489068i 0.0491531 + 0.0283786i
\(298\) −31.5891 18.2380i −1.82991 1.05650i
\(299\) 13.0621 + 22.6242i 0.755399 + 1.30839i
\(300\) 18.7764 + 10.8100i 1.08406 + 0.624118i
\(301\) 0.792252 + 0.453052i 0.0456646 + 0.0261135i
\(302\) 19.8481i 1.14213i
\(303\) −4.77708 + 2.75805i −0.274436 + 0.158446i
\(304\) −7.02660 + 12.1704i −0.403003 + 0.698022i
\(305\) 1.46743 0.000895188i 0.0840250 5.12583e-5i
\(306\) 5.22161 + 9.04410i 0.298500 + 0.517017i
\(307\) 31.6055i 1.80382i −0.431923 0.901910i \(-0.642165\pi\)
0.431923 0.901910i \(-0.357835\pi\)
\(308\) −11.2137 + 0.0463361i −0.638962 + 0.00264024i
\(309\) 16.5213 0.939865
\(310\) −3.08683 1.77967i −0.175320 0.101078i
\(311\) −11.0851 + 19.2000i −0.628581 + 1.08873i 0.359256 + 0.933239i \(0.383031\pi\)
−0.987837 + 0.155495i \(0.950303\pi\)
\(312\) 26.1864 + 15.1187i 1.48251 + 0.855930i
\(313\) 5.96321 3.44286i 0.337060 0.194602i −0.321911 0.946770i \(-0.604325\pi\)
0.658971 + 0.752168i \(0.270992\pi\)
\(314\) −16.4995 −0.931118
\(315\) 2.93371 5.13745i 0.165296 0.289462i
\(316\) −47.1749 −2.65380
\(317\) −11.1186 + 6.41935i −0.624485 + 0.360547i −0.778613 0.627504i \(-0.784077\pi\)
0.154128 + 0.988051i \(0.450743\pi\)
\(318\) −16.6359 9.60476i −0.932897 0.538608i
\(319\) 2.89853 5.02040i 0.162286 0.281088i
\(320\) −3.43643 + 5.96047i −0.192102 + 0.333200i
\(321\) 2.38820 0.133296
\(322\) −17.0090 29.1812i −0.947872 1.62621i
\(323\) 9.54453i 0.531072i
\(324\) 2.16659 + 3.75264i 0.120366 + 0.208480i
\(325\) −22.2834 + 12.9016i −1.23606 + 0.715653i
\(326\) 15.4214 26.7106i 0.854110 1.47936i
\(327\) 15.6833 9.05479i 0.867291 0.500731i
\(328\) 15.5895i 0.860784i
\(329\) −0.0463361 11.2137i −0.00255459 0.618233i
\(330\) 2.75501 + 4.76510i 0.151658 + 0.262310i
\(331\) 4.26678 + 7.39028i 0.234524 + 0.406207i 0.959134 0.282952i \(-0.0913137\pi\)
−0.724611 + 0.689159i \(0.757980\pi\)
\(332\) −24.8673 14.3572i −1.36477 0.787952i
\(333\) 7.84188 + 4.52751i 0.429732 + 0.248106i
\(334\) −2.68317 4.64738i −0.146816 0.254293i
\(335\) −17.9252 + 10.3637i −0.979360 + 0.566231i
\(336\) −14.0332 8.02492i −0.765572 0.437795i
\(337\) 29.1131i 1.58589i 0.609292 + 0.792946i \(0.291454\pi\)
−0.609292 + 0.792946i \(0.708546\pi\)
\(338\) −29.4660 + 17.0122i −1.60274 + 0.925343i
\(339\) −2.02186 + 3.50197i −0.109813 + 0.190201i
\(340\) 0.0245285 + 40.2082i 0.00133024 + 2.18060i
\(341\) −0.309672 0.536367i −0.0167697 0.0290459i
\(342\) 5.78817i 0.312988i
\(343\) 18.5188 0.229575i 0.999923 0.0123959i
\(344\) −2.02540 −0.109202
\(345\) −5.66566 + 9.82705i −0.305029 + 0.529070i
\(346\) −14.5314 + 25.1691i −0.781213 + 1.35310i
\(347\) −11.6418 6.72137i −0.624962 0.360822i 0.153836 0.988096i \(-0.450837\pi\)
−0.778798 + 0.627274i \(0.784171\pi\)
\(348\) 22.2405 12.8406i 1.19222 0.688328i
\(349\) 24.7397 1.32429 0.662144 0.749377i \(-0.269647\pi\)
0.662144 + 0.749377i \(0.269647\pi\)
\(350\) 28.7415 16.7997i 1.53630 0.897981i
\(351\) −5.14977 −0.274874
\(352\) 3.07764 1.77687i 0.164039 0.0947077i
\(353\) −14.5103 8.37751i −0.772303 0.445890i 0.0613923 0.998114i \(-0.480446\pi\)
−0.833696 + 0.552224i \(0.813779\pi\)
\(354\) −2.28580 + 3.95913i −0.121489 + 0.210425i
\(355\) 6.13544 10.6419i 0.325635 0.564813i
\(356\) 70.6777 3.74591
\(357\) 10.9792 0.0453668i 0.581079 0.00240107i
\(358\) 22.3965i 1.18369i
\(359\) −16.2462 28.1393i −0.857442 1.48513i −0.874361 0.485276i \(-0.838719\pi\)
0.0169190 0.999857i \(-0.494614\pi\)
\(360\) 0.00800937 + 13.1293i 0.000422131 + 0.691977i
\(361\) 6.85497 11.8732i 0.360788 0.624903i
\(362\) −6.92925 + 4.00060i −0.364193 + 0.210267i
\(363\) 10.0433i 0.527134i
\(364\) 51.0073 29.7308i 2.67351 1.55832i
\(365\) −10.4110 + 6.01926i −0.544936 + 0.315062i
\(366\) 0.825761 + 1.43026i 0.0431632 + 0.0747608i
\(367\) 20.7516 + 11.9809i 1.08322 + 0.625400i 0.931764 0.363064i \(-0.118269\pi\)
0.151460 + 0.988463i \(0.451603\pi\)
\(368\) 26.8429 + 15.4978i 1.39928 + 0.807877i
\(369\) 1.32753 + 2.29934i 0.0691083 + 0.119699i
\(370\) 25.5043 + 44.1126i 1.32591 + 2.29331i
\(371\) −17.4480 + 10.1699i −0.905853 + 0.527997i
\(372\) 2.74372i 0.142255i
\(373\) −9.59160 + 5.53771i −0.496634 + 0.286732i −0.727323 0.686296i \(-0.759236\pi\)
0.230688 + 0.973028i \(0.425902\pi\)
\(374\) −5.10744 + 8.84635i −0.264100 + 0.457434i
\(375\) −9.69267 5.57244i −0.500527 0.287760i
\(376\) 12.4432 + 21.5523i 0.641710 + 1.11147i
\(377\) 30.5208i 1.57190i
\(378\) 6.65819 0.0275122i 0.342460 0.00141507i
\(379\) 32.7423 1.68186 0.840929 0.541145i \(-0.182009\pi\)
0.840929 + 0.541145i \(0.182009\pi\)
\(380\) 11.1310 19.3066i 0.571006 0.990406i
\(381\) 3.42512 5.93247i 0.175474 0.303930i
\(382\) 1.35695 + 0.783435i 0.0694275 + 0.0400840i
\(383\) 20.1371 11.6262i 1.02896 0.594069i 0.112271 0.993678i \(-0.464187\pi\)
0.916686 + 0.399609i \(0.130854\pi\)
\(384\) −15.0096 −0.765956
\(385\) 5.78666 0.0274411i 0.294916 0.00139853i
\(386\) −38.2210 −1.94540
\(387\) 0.298733 0.172473i 0.0151854 0.00876732i
\(388\) −5.77323 3.33317i −0.293091 0.169216i
\(389\) −18.8131 + 32.5852i −0.953861 + 1.65214i −0.216907 + 0.976192i \(0.569597\pi\)
−0.736954 + 0.675943i \(0.763737\pi\)
\(390\) −25.1054 14.4742i −1.27126 0.732929i
\(391\) −21.0513 −1.06461
\(392\) −35.4237 + 20.8441i −1.78917 + 1.05279i
\(393\) 4.02540i 0.203054i
\(394\) −30.1247 52.1775i −1.51766 2.62867i
\(395\) 24.3439 0.0148507i 1.22487 0.000747218i
\(396\) −2.11922 + 3.67059i −0.106495 + 0.184454i
\(397\) −0.0498605 + 0.0287870i −0.00250243 + 0.00144478i −0.501251 0.865302i \(-0.667127\pi\)
0.498748 + 0.866747i \(0.333793\pi\)
\(398\) 35.1144i 1.76013i
\(399\) −5.28252 3.02083i −0.264457 0.151231i
\(400\) −15.2428 + 26.4759i −0.762142 + 1.32380i
\(401\) 4.53797 + 7.85999i 0.226615 + 0.392509i 0.956803 0.290738i \(-0.0939007\pi\)
−0.730188 + 0.683247i \(0.760567\pi\)
\(402\) −20.1810 11.6515i −1.00654 0.581126i
\(403\) 2.82391 + 1.63039i 0.140669 + 0.0812153i
\(404\) −11.9511 20.6999i −0.594590 1.02986i
\(405\) −1.11922 1.93581i −0.0556142 0.0961911i
\(406\) −0.163055 39.4607i −0.00809228 1.95840i
\(407\) 8.85704i 0.439027i
\(408\) −21.1014 + 12.1829i −1.04468 + 0.603145i
\(409\) 8.30602 14.3865i 0.410706 0.711364i −0.584261 0.811566i \(-0.698615\pi\)
0.994967 + 0.100202i \(0.0319488\pi\)
\(410\) 0.00911433 + 14.9406i 0.000450125 + 0.737865i
\(411\) 5.61594 + 9.72709i 0.277014 + 0.479802i
\(412\) 71.5897i 3.52697i
\(413\) 2.42031 + 4.15237i 0.119096 + 0.204325i
\(414\) −12.7663 −0.627430
\(415\) 12.8369 + 7.40097i 0.630140 + 0.363299i
\(416\) −9.35504 + 16.2034i −0.458669 + 0.794437i
\(417\) −4.32139 2.49495i −0.211619 0.122178i
\(418\) 4.90310 2.83081i 0.239818 0.138459i
\(419\) 29.8759 1.45953 0.729766 0.683697i \(-0.239629\pi\)
0.729766 + 0.683697i \(0.239629\pi\)
\(420\) 22.2614 + 12.7123i 1.08625 + 0.620296i
\(421\) −19.3201 −0.941602 −0.470801 0.882239i \(-0.656035\pi\)
−0.470801 + 0.882239i \(0.656035\pi\)
\(422\) 10.5117 6.06893i 0.511701 0.295431i
\(423\) −3.67059 2.11922i −0.178470 0.103040i
\(424\) 22.4096 38.8145i 1.08831 1.88500i
\(425\) −0.0253151 20.7488i −0.00122796 1.00647i
\(426\) 13.8249 0.669817
\(427\) 1.73628 0.00717444i 0.0840243 0.000347195i
\(428\) 10.3485i 0.500213i
\(429\) −2.51858 4.36232i −0.121598 0.210615i
\(430\) 1.94110 0.00118414i 0.0936082 5.71044e-5i
\(431\) 10.9981 19.0493i 0.529761 0.917572i −0.469637 0.882860i \(-0.655615\pi\)
0.999397 0.0347127i \(-0.0110516\pi\)
\(432\) −5.29146 + 3.05502i −0.254585 + 0.146985i
\(433\) 2.72706i 0.131054i 0.997851 + 0.0655272i \(0.0208729\pi\)
−0.997851 + 0.0655272i \(0.979127\pi\)
\(434\) −3.65978 2.09286i −0.175675 0.100460i
\(435\) −11.4729 + 6.63319i −0.550081 + 0.318037i
\(436\) 39.2360 + 67.9587i 1.87906 + 3.25463i
\(437\) 10.1045 + 5.83385i 0.483365 + 0.279071i
\(438\) −11.7212 6.76722i −0.560059 0.323350i
\(439\) −3.77183 6.53300i −0.180020 0.311803i 0.761867 0.647733i \(-0.224283\pi\)
−0.941887 + 0.335930i \(0.890949\pi\)
\(440\) −11.1178 + 6.42792i −0.530021 + 0.306439i
\(441\) 3.44978 6.09089i 0.164275 0.290043i
\(442\) 53.7802i 2.55806i
\(443\) 9.03987 5.21917i 0.429497 0.247970i −0.269635 0.962963i \(-0.586903\pi\)
0.699132 + 0.714992i \(0.253570\pi\)
\(444\) −19.6185 + 33.9802i −0.931053 + 1.61263i
\(445\) −36.4721 + 0.0222493i −1.72894 + 0.00105472i
\(446\) 19.9095 + 34.4843i 0.942743 + 1.63288i
\(447\) 14.4942i 0.685554i
\(448\) −4.04118 + 7.06680i −0.190928 + 0.333875i
\(449\) 1.73107 0.0816944 0.0408472 0.999165i \(-0.486994\pi\)
0.0408472 + 0.999165i \(0.486994\pi\)
\(450\) −0.0153521 12.5829i −0.000723703 0.593163i
\(451\) −1.29850 + 2.24907i −0.0611440 + 0.105905i
\(452\) −15.1747 8.76109i −0.713756 0.412087i
\(453\) 6.83028 3.94346i 0.320914 0.185280i
\(454\) −54.6055 −2.56276
\(455\) −26.3122 + 15.3582i −1.23353 + 0.720002i
\(456\) 13.5048 0.632421
\(457\) 26.7268 15.4307i 1.25023 0.721819i 0.279072 0.960270i \(-0.409973\pi\)
0.971154 + 0.238452i \(0.0766398\pi\)
\(458\) −4.52642 2.61333i −0.211506 0.122113i
\(459\) 2.07488 3.59380i 0.0968473 0.167744i
\(460\) −42.5823 24.5503i −1.98541 1.14466i
\(461\) 10.7294 0.499718 0.249859 0.968282i \(-0.419616\pi\)
0.249859 + 0.968282i \(0.419616\pi\)
\(462\) 3.27961 + 5.62663i 0.152581 + 0.261774i
\(463\) 11.1060i 0.516141i −0.966126 0.258071i \(-0.916913\pi\)
0.966126 0.258071i \(-0.0830867\pi\)
\(464\) 18.1060 + 31.3606i 0.840552 + 1.45588i
\(465\) 0.000863721 1.41585i 4.00541e−5 0.0656586i
\(466\) −8.50481 + 14.7308i −0.393978 + 0.682389i
\(467\) 23.8932 13.7947i 1.10564 0.638344i 0.167946 0.985796i \(-0.446286\pi\)
0.937698 + 0.347452i \(0.112953\pi\)
\(468\) 22.3148i 1.03150i
\(469\) −21.1661 + 12.3372i −0.977360 + 0.569677i
\(470\) −11.9379 20.6480i −0.550656 0.952422i
\(471\) 3.27815 + 5.67792i 0.151049 + 0.261625i
\(472\) −9.23733 5.33317i −0.425182 0.245479i
\(473\) 0.292201 + 0.168702i 0.0134354 + 0.00775694i
\(474\) 13.6989 + 23.7272i 0.629212 + 1.08983i
\(475\) −5.73788 + 9.96636i −0.263272 + 0.457288i
\(476\) 0.196582 + 47.5746i 0.00901034 + 2.18058i
\(477\) 7.63319i 0.349500i
\(478\) 6.33074 3.65505i 0.289561 0.167178i
\(479\) −5.00869 + 8.67530i −0.228853 + 0.396385i −0.957468 0.288538i \(-0.906831\pi\)
0.728616 + 0.684923i \(0.240164\pi\)
\(480\) −8.12405 + 0.00495597i −0.370811 + 0.000226208i
\(481\) −23.3156 40.3839i −1.06310 1.84135i
\(482\) 22.3913i 1.01989i
\(483\) −6.66270 + 11.6511i −0.303163 + 0.530141i
\(484\) 43.5192 1.97814
\(485\) 2.98023 + 1.71822i 0.135325 + 0.0780202i
\(486\) 1.25829 2.17942i 0.0570772 0.0988606i
\(487\) 26.6165 + 15.3671i 1.20611 + 0.696348i 0.961907 0.273376i \(-0.0881403\pi\)
0.244203 + 0.969724i \(0.421474\pi\)
\(488\) −3.33704 + 1.92664i −0.151061 + 0.0872150i
\(489\) −12.2558 −0.554227
\(490\) 33.9372 19.9973i 1.53313 0.903386i
\(491\) 4.14054 0.186860 0.0934301 0.995626i \(-0.470217\pi\)
0.0934301 + 0.995626i \(0.470217\pi\)
\(492\) −9.96346 + 5.75240i −0.449187 + 0.259338i
\(493\) −21.2992 12.2971i −0.959268 0.553833i
\(494\) −14.9039 + 25.8143i −0.670557 + 1.16144i
\(495\) 1.09243 1.89482i 0.0491012 0.0851657i
\(496\) 3.86881 0.173715
\(497\) 7.21516 12.6171i 0.323644 0.565956i
\(498\) 16.6764i 0.747289i
\(499\) −0.774139 1.34085i −0.0346552 0.0600246i 0.848178 0.529712i \(-0.177700\pi\)
−0.882833 + 0.469687i \(0.844367\pi\)
\(500\) 24.1464 42.0000i 1.07986 1.87830i
\(501\) −1.06620 + 1.84671i −0.0476341 + 0.0825047i
\(502\) −46.1486 + 26.6439i −2.05971 + 1.18918i
\(503\) 15.1658i 0.676210i −0.941108 0.338105i \(-0.890214\pi\)
0.941108 0.338105i \(-0.109786\pi\)
\(504\) 0.0641907 + 15.5347i 0.00285928 + 0.691971i
\(505\) 6.17370 + 10.6781i 0.274726 + 0.475170i
\(506\) −6.24359 10.8142i −0.277561 0.480750i
\(507\) 11.7088 + 6.76006i 0.520004 + 0.300225i
\(508\) 25.7064 + 14.8416i 1.14054 + 0.658491i
\(509\) −10.2327 17.7236i −0.453558 0.785586i 0.545046 0.838406i \(-0.316512\pi\)
−0.998604 + 0.0528204i \(0.983179\pi\)
\(510\) 20.2161 11.6882i 0.895183 0.517563i
\(511\) −12.2933 + 7.16542i −0.543823 + 0.316980i
\(512\) 49.5528i 2.18994i
\(513\) −1.99187 + 1.15001i −0.0879432 + 0.0507741i
\(514\) −7.84471 + 13.5874i −0.346015 + 0.599316i
\(515\) −0.0225364 36.9428i −0.000993074 1.62789i
\(516\) 0.747358 + 1.29446i 0.0329006 + 0.0569855i
\(517\) 4.14576i 0.182330i
\(518\) 30.3608 + 52.0882i 1.33398 + 2.28862i
\(519\) 11.5485 0.506924
\(520\) 33.7708 58.5752i 1.48095 2.56869i
\(521\) −1.37337 + 2.37875i −0.0601685 + 0.104215i −0.894541 0.446987i \(-0.852497\pi\)
0.834372 + 0.551202i \(0.185830\pi\)
\(522\) −12.9167 7.45743i −0.565347 0.326403i
\(523\) −34.5258 + 19.9335i −1.50971 + 0.871629i −0.509770 + 0.860311i \(0.670269\pi\)
−0.999936 + 0.0113184i \(0.996397\pi\)
\(524\) 17.4427 0.761990
\(525\) −11.4917 6.55297i −0.501538 0.285995i
\(526\) 70.5850 3.07765
\(527\) −2.27556 + 1.31379i −0.0991247 + 0.0572297i
\(528\) −5.17576 2.98823i −0.225246 0.130046i
\(529\) 1.36705 2.36780i 0.0594370 0.102948i
\(530\) −21.4542 + 37.2122i −0.931911 + 1.61639i
\(531\) 1.81659 0.0788335
\(532\) 13.0898 22.8901i 0.567514 0.992411i
\(533\) 13.6729i 0.592239i
\(534\) −20.5238 35.5482i −0.888150 1.53832i
\(535\) −0.00325770 5.34017i −0.000140843 0.230876i
\(536\) 27.1851 47.0859i 1.17422 2.03380i
\(537\) −7.70725 + 4.44978i −0.332592 + 0.192022i
\(538\) 18.6688i 0.804867i
\(539\) 6.84671 0.0565834i 0.294909 0.00243722i
\(540\) 8.38820 4.84975i 0.360971 0.208700i
\(541\) −13.2493 22.9485i −0.569633 0.986633i −0.996602 0.0823667i \(-0.973752\pi\)
0.426969 0.904266i \(-0.359581\pi\)
\(542\) 68.0232 + 39.2732i 2.92185 + 1.68693i
\(543\) 2.75344 + 1.58970i 0.118161 + 0.0682205i
\(544\) −7.53844 13.0570i −0.323208 0.559813i
\(545\) −20.2685 35.0567i −0.868207 1.50166i
\(546\) −29.7652 17.0214i −1.27383 0.728447i
\(547\) 12.9090i 0.551950i 0.961165 + 0.275975i \(0.0890008\pi\)
−0.961165 + 0.275975i \(0.910999\pi\)
\(548\) −42.1492 + 24.3348i −1.80052 + 1.03953i
\(549\) 0.328128 0.568335i 0.0140042 0.0242559i
\(550\) 10.6513 6.16689i 0.454174 0.262957i
\(551\) 6.81568 + 11.8051i 0.290358 + 0.502914i
\(552\) 29.7860i 1.26778i
\(553\) 28.8038 0.119020i 1.22486 0.00506124i
\(554\) −31.3379 −1.33142
\(555\) 10.1131 17.5412i 0.429278 0.744580i
\(556\) 10.8111 18.7253i 0.458492 0.794131i
\(557\) −6.22247 3.59254i −0.263654 0.152221i 0.362346 0.932044i \(-0.381976\pi\)
−0.626000 + 0.779823i \(0.715309\pi\)
\(558\) −1.37998 + 0.796734i −0.0584194 + 0.0337285i
\(559\) −1.77640 −0.0751336
\(560\) −17.9251 + 31.3900i −0.757474 + 1.32647i
\(561\) 4.05903 0.171373
\(562\) −0.0891873 + 0.0514923i −0.00376214 + 0.00217207i
\(563\) 2.06720 + 1.19350i 0.0871220 + 0.0502999i 0.542928 0.839779i \(-0.317316\pi\)
−0.455806 + 0.890079i \(0.650649\pi\)
\(564\) 9.18293 15.9053i 0.386671 0.669734i
\(565\) 7.83341 + 4.51625i 0.329554 + 0.190000i
\(566\) −27.2847 −1.14686
\(567\) −1.33233 2.28580i −0.0559527 0.0959947i
\(568\) 32.2558i 1.35342i
\(569\) 14.9271 + 25.8545i 0.625776 + 1.08388i 0.988390 + 0.151936i \(0.0485508\pi\)
−0.362615 + 0.931939i \(0.618116\pi\)
\(570\) −12.9427 + 0.00789554i −0.542112 + 0.000330708i
\(571\) 9.73170 16.8558i 0.407259 0.705393i −0.587322 0.809353i \(-0.699818\pi\)
0.994582 + 0.103960i \(0.0331513\pi\)
\(572\) 18.9027 10.9135i 0.790361 0.456315i
\(573\) 0.622618i 0.0260103i
\(574\) 0.0730463 + 17.6778i 0.00304889 + 0.737859i
\(575\) 21.9817 + 12.6554i 0.916699 + 0.527766i
\(576\) 1.53844 + 2.66466i 0.0641019 + 0.111028i
\(577\) −3.43108 1.98094i −0.142838 0.0824675i 0.426878 0.904309i \(-0.359613\pi\)
−0.569716 + 0.821842i \(0.692947\pi\)
\(578\) 0.480727 + 0.277548i 0.0199956 + 0.0115445i
\(579\) 7.59383 + 13.1529i 0.315589 + 0.546616i
\(580\) −28.7428 49.7139i −1.19348 2.06426i
\(581\) 15.2196 + 8.70339i 0.631416 + 0.361078i
\(582\) 3.87162i 0.160484i
\(583\) −6.46600 + 3.73315i −0.267794 + 0.154611i
\(584\) 15.7891 27.3475i 0.653357 1.13165i
\(585\) 0.00702471 + 11.5152i 0.000290436 + 0.476096i
\(586\) 37.3026 + 64.6100i 1.54096 + 2.66901i
\(587\) 13.9419i 0.575446i −0.957714 0.287723i \(-0.907102\pi\)
0.957714 0.287723i \(-0.0928982\pi\)
\(588\) 26.3929 + 14.9485i 1.08843 + 0.616466i
\(589\) 1.45634 0.0600075
\(590\) 8.85599 + 5.10581i 0.364595 + 0.210203i
\(591\) −11.9705 + 20.7335i −0.492400 + 0.852863i
\(592\) −47.9143 27.6633i −1.96926 1.13696i
\(593\) −33.3396 + 19.2486i −1.36909 + 0.790447i −0.990812 0.135243i \(-0.956818\pi\)
−0.378282 + 0.925690i \(0.623485\pi\)
\(594\) 2.46156 0.100999
\(595\) −0.116420 24.5501i −0.00477274 1.00646i
\(596\) −62.8061 −2.57264
\(597\) −12.0839 + 6.97662i −0.494560 + 0.285534i
\(598\) 56.9356 + 32.8718i 2.32827 + 1.34423i
\(599\) 8.74985 15.1552i 0.357509 0.619224i −0.630035 0.776567i \(-0.716959\pi\)
0.987544 + 0.157343i \(0.0502927\pi\)
\(600\) 29.3581 0.0358190i 1.19854 0.00146230i
\(601\) 34.5192 1.40807 0.704033 0.710167i \(-0.251381\pi\)
0.704033 + 0.710167i \(0.251381\pi\)
\(602\) 2.29672 0.00949025i 0.0936074 0.000386794i
\(603\) 9.25982i 0.377089i
\(604\) 17.0877 + 29.5968i 0.695289 + 1.20428i
\(605\) −22.4574 + 0.0136998i −0.913023 + 0.000556977i
\(606\) −6.94086 + 12.0219i −0.281953 + 0.488357i
\(607\) −9.45318 + 5.45780i −0.383693 + 0.221525i −0.679424 0.733746i \(-0.737770\pi\)
0.295731 + 0.955271i \(0.404437\pi\)
\(608\) 8.35639i 0.338896i
\(609\) −13.5471 + 7.89626i −0.548958 + 0.319972i
\(610\) 3.19703 1.84841i 0.129444 0.0748398i
\(611\) 10.9135 + 18.9027i 0.441512 + 0.764721i
\(612\) 15.5726 + 8.99083i 0.629484 + 0.363433i
\(613\) 22.6183 + 13.0587i 0.913543 + 0.527435i 0.881570 0.472054i \(-0.156487\pi\)
0.0319739 + 0.999489i \(0.489821\pi\)
\(614\) −39.7689 68.8817i −1.60494 2.77984i
\(615\) 5.13968 2.97158i 0.207252 0.119825i
\(616\) −13.1279 + 7.65190i −0.528938 + 0.308304i
\(617\) 11.6689i 0.469772i −0.972023 0.234886i \(-0.924528\pi\)
0.972023 0.234886i \(-0.0754717\pi\)
\(618\) 36.0069 20.7886i 1.44841 0.836240i
\(619\) −0.411816 + 0.713286i −0.0165523 + 0.0286694i −0.874183 0.485597i \(-0.838602\pi\)
0.857631 + 0.514266i \(0.171936\pi\)
\(620\) −6.13513 + 0.00374265i −0.246393 + 0.000150309i
\(621\) 2.53644 + 4.39324i 0.101784 + 0.176295i
\(622\) 55.7933i 2.23711i
\(623\) −43.1540 + 0.178316i −1.72893 + 0.00714408i
\(624\) 31.4653 1.25962
\(625\) −12.4471 + 21.6811i −0.497885 + 0.867243i
\(626\) 8.66423 15.0069i 0.346292 0.599796i
\(627\) −1.94832 1.12486i −0.0778084 0.0449227i
\(628\) −24.6034 + 14.2048i −0.981783 + 0.566833i
\(629\) 37.5763 1.49826
\(630\) −0.0706014 14.8881i −0.00281283 0.593157i
\(631\) −20.5920 −0.819755 −0.409877 0.912141i \(-0.634429\pi\)
−0.409877 + 0.912141i \(0.634429\pi\)
\(632\) −55.3597 + 31.9619i −2.20209 + 1.27138i
\(633\) −4.17697 2.41158i −0.166020 0.0958516i
\(634\) −16.1548 + 27.9810i −0.641590 + 1.11127i
\(635\) −13.2701 7.65070i −0.526607 0.303609i
\(636\) −33.0759 −1.31155
\(637\) −31.0688 + 18.2816i −1.23099 + 0.724342i
\(638\) 14.5888i 0.577575i
\(639\) −2.74676 4.75752i −0.108660 0.188205i
\(640\) 0.0204744 + 33.5625i 0.000809320 + 1.32667i
\(641\) −14.8371 + 25.6986i −0.586029 + 1.01503i 0.408717 + 0.912661i \(0.365976\pi\)
−0.994746 + 0.102371i \(0.967357\pi\)
\(642\) 5.20489 3.00505i 0.205421 0.118600i
\(643\) 11.1286i 0.438870i 0.975627 + 0.219435i \(0.0704214\pi\)
−0.975627 + 0.219435i \(0.929579\pi\)
\(644\) −50.4861 28.8706i −1.98943 1.13766i
\(645\) −0.386070 0.667751i −0.0152015 0.0262927i
\(646\) −12.0098 20.8016i −0.472519 0.818426i
\(647\) −9.45991 5.46168i −0.371907 0.214721i 0.302384 0.953186i \(-0.402217\pi\)
−0.674291 + 0.738465i \(0.735551\pi\)
\(648\) 5.08497 + 2.93581i 0.199757 + 0.115329i
\(649\) 0.888437 + 1.53882i 0.0348742 + 0.0604039i
\(650\) −32.3310 + 56.1571i −1.26813 + 2.20266i
\(651\) 0.00692225 + 1.67524i 0.000271304 + 0.0656580i
\(652\) 53.1065i 2.07981i
\(653\) −6.21006 + 3.58538i −0.243019 + 0.140307i −0.616563 0.787305i \(-0.711476\pi\)
0.373545 + 0.927612i \(0.378142\pi\)
\(654\) 22.7871 39.4684i 0.891046 1.54334i
\(655\) −9.00106 + 0.00549097i −0.351700 + 0.000214550i
\(656\) −8.11125 14.0491i −0.316691 0.548525i
\(657\) 5.37811i 0.209820i
\(658\) −14.2111 24.3812i −0.554007 0.950477i
\(659\) −14.1232 −0.550161 −0.275080 0.961421i \(-0.588704\pi\)
−0.275080 + 0.961421i \(0.588704\pi\)
\(660\) 8.21057 + 4.73370i 0.319596 + 0.184259i
\(661\) −14.4608 + 25.0469i −0.562461 + 0.974212i 0.434819 + 0.900518i \(0.356812\pi\)
−0.997281 + 0.0736941i \(0.976521\pi\)
\(662\) 18.5982 + 10.7377i 0.722841 + 0.417333i
\(663\) −18.5073 + 10.6852i −0.718762 + 0.414978i
\(664\) −38.9090 −1.50996
\(665\) −6.74758 + 11.8162i −0.261660 + 0.458212i
\(666\) 22.7877 0.883005
\(667\) 26.0372 15.0326i 1.00816 0.582063i
\(668\) −8.00210 4.62001i −0.309610 0.178754i
\(669\) 7.91134 13.7028i 0.305870 0.529782i
\(670\) −26.0261 + 45.1421i −1.00548 + 1.74399i
\(671\) 0.641907 0.0247806
\(672\) −9.61243 + 0.0397194i −0.370808 + 0.00153221i
\(673\) 14.4081i 0.555392i −0.960669 0.277696i \(-0.910429\pi\)
0.960669 0.277696i \(-0.0895709\pi\)
\(674\) 36.6327 + 63.4497i 1.41104 + 2.44399i
\(675\) −4.32707 + 2.50528i −0.166549 + 0.0964283i
\(676\) −29.2925 + 50.7361i −1.12663 + 1.95139i
\(677\) 26.0991 15.0683i 1.00307 0.579123i 0.0939148 0.995580i \(-0.470062\pi\)
0.909155 + 0.416457i \(0.136729\pi\)
\(678\) 10.1764i 0.390821i
\(679\) 3.53340 + 2.02059i 0.135599 + 0.0775430i
\(680\) 27.2706 + 47.1676i 1.04578 + 1.80880i
\(681\) 10.8492 + 18.7913i 0.415740 + 0.720084i
\(682\) −1.34981 0.779314i −0.0516870 0.0298415i
\(683\) 13.4380 + 7.75842i 0.514190 + 0.296868i 0.734554 0.678550i \(-0.237391\pi\)
−0.220364 + 0.975418i \(0.570725\pi\)
\(684\) −4.98318 8.63112i −0.190537 0.330019i
\(685\) 21.7428 12.5709i 0.830748 0.480309i
\(686\) 40.0715 23.8024i 1.52994 0.908780i
\(687\) 2.07689i 0.0792383i
\(688\) −1.82527 + 1.05382i −0.0695878 + 0.0401766i
\(689\) 19.6546 34.0427i 0.748780 1.29692i
\(690\) 0.0174143 + 28.5463i 0.000662951 + 1.08674i
\(691\) −22.8917 39.6496i −0.870842 1.50834i −0.861127 0.508391i \(-0.830241\pi\)
−0.00971588 0.999953i \(-0.503093\pi\)
\(692\) 50.0418i 1.90230i
\(693\) 1.28468 2.24652i 0.0488009 0.0853381i
\(694\) −33.8297 −1.28416
\(695\) −5.57299 + 9.66632i −0.211396 + 0.366664i
\(696\) 17.3995 30.1368i 0.659526 1.14233i
\(697\) 9.54174 + 5.50893i 0.361419 + 0.208666i
\(698\) 53.9183 31.1298i 2.04084 1.17828i
\(699\) 6.75902 0.255650
\(700\) 28.3951 49.7954i 1.07324 1.88209i
\(701\) 24.0419 0.908050 0.454025 0.890989i \(-0.349988\pi\)
0.454025 + 0.890989i \(0.349988\pi\)
\(702\) −11.2235 + 6.47990i −0.423604 + 0.244568i
\(703\) −18.0364 10.4133i −0.680257 0.392747i
\(704\) −1.50481 + 2.60640i −0.0567145 + 0.0982325i
\(705\) −4.73370 + 8.21057i −0.178282 + 0.309228i
\(706\) −42.1653 −1.58691
\(707\) 7.34928 + 12.6087i 0.276398 + 0.474200i
\(708\) 7.87162i 0.295834i
\(709\) 9.19854 + 15.9323i 0.345459 + 0.598352i 0.985437 0.170041i \(-0.0543901\pi\)
−0.639978 + 0.768393i \(0.721057\pi\)
\(710\) −0.0188583 30.9133i −0.000707738 1.16016i
\(711\) 5.44346 9.42835i 0.204146 0.353591i
\(712\) 82.9401 47.8855i 3.10831 1.79458i
\(713\) 3.21209i 0.120294i
\(714\) 23.8711 13.9138i 0.893355 0.520712i
\(715\) −9.75100 + 5.63768i −0.364667 + 0.210837i
\(716\) −19.2817 33.3969i −0.720590 1.24810i
\(717\) −2.51561 1.45239i −0.0939472 0.0542405i
\(718\) −70.8147 40.8849i −2.64278 1.52581i
\(719\) −8.12275 14.0690i −0.302927 0.524686i 0.673870 0.738850i \(-0.264631\pi\)
−0.976798 + 0.214164i \(0.931297\pi\)
\(720\) 6.83846 + 11.8279i 0.254854 + 0.440799i
\(721\) −0.180617 43.7109i −0.00672654 1.62788i
\(722\) 34.5021i 1.28404i
\(723\) −7.70546 + 4.44875i −0.286569 + 0.165451i
\(724\) −6.88844 + 11.9311i −0.256007 + 0.443417i
\(725\) 14.8479 + 25.6450i 0.551437 + 0.952432i
\(726\) −12.6373 21.8885i −0.469015 0.812358i
\(727\) 42.6977i 1.58357i −0.610800 0.791785i \(-0.709152\pi\)
0.610800 0.791785i \(-0.290848\pi\)
\(728\) 39.7138 69.4474i 1.47189 2.57389i
\(729\) −1.00000 −0.0370370
\(730\) −15.1160 + 26.2185i −0.559467 + 0.970392i
\(731\) 0.715725 1.23967i 0.0264720 0.0458509i
\(732\) 2.46269 + 1.42184i 0.0910237 + 0.0525526i
\(733\) 40.4538 23.3560i 1.49420 0.862674i 0.494218 0.869338i \(-0.335455\pi\)
0.999978 + 0.00666408i \(0.00212126\pi\)
\(734\) 60.3020 2.22579
\(735\) −13.6244 7.70564i −0.502542 0.284227i
\(736\) 18.4307 0.679366
\(737\) −7.84390 + 4.52868i −0.288934 + 0.166816i
\(738\) 5.78648 + 3.34083i 0.213003 + 0.122978i
\(739\) 3.52410 6.10393i 0.129636 0.224537i −0.793899 0.608049i \(-0.791952\pi\)
0.923536 + 0.383513i \(0.125286\pi\)
\(740\) 76.0089 + 43.8219i 2.79414 + 1.61093i
\(741\) 11.8445 0.435120
\(742\) −25.2297 + 44.1192i −0.926212 + 1.61967i
\(743\) 8.55510i 0.313856i 0.987610 + 0.156928i \(0.0501591\pi\)
−0.987610 + 0.156928i \(0.949841\pi\)
\(744\) −1.85892 3.21974i −0.0681513 0.118042i
\(745\) 32.4101 0.0197713i 1.18741 0.000724366i
\(746\) −13.9361 + 24.1380i −0.510237 + 0.883756i
\(747\) 5.73883 3.31331i 0.209973 0.121228i
\(748\) 17.5885i 0.643099i
\(749\) −0.0261087 6.31853i −0.000953990 0.230874i
\(750\) −28.1362 + 0.0514923i −1.02739 + 0.00188023i
\(751\) 1.48823 + 2.57768i 0.0543062 + 0.0940611i 0.891901 0.452232i \(-0.149372\pi\)
−0.837594 + 0.546293i \(0.816039\pi\)
\(752\) 22.4275 + 12.9485i 0.817846 + 0.472183i
\(753\) 18.3378 + 10.5873i 0.668267 + 0.385824i
\(754\) 38.4041 + 66.5178i 1.39859 + 2.42243i
\(755\) −8.82716 15.2676i −0.321253 0.555644i
\(756\) 9.90478 5.77323i 0.360233 0.209970i
\(757\) 43.6750i 1.58740i 0.608313 + 0.793698i \(0.291847\pi\)
−0.608313 + 0.793698i \(0.708153\pi\)
\(758\) 71.3592 41.1993i 2.59188 1.49643i
\(759\) −2.48098 + 4.29718i −0.0900539 + 0.155978i
\(760\) −0.0184217 30.1977i −0.000668224 1.09538i
\(761\) −13.3628 23.1451i −0.484402 0.839008i 0.515438 0.856927i \(-0.327629\pi\)
−0.999839 + 0.0179187i \(0.994296\pi\)
\(762\) 17.2392i 0.624509i
\(763\) −24.1280 41.3949i −0.873491 1.49860i
\(764\) 2.69791 0.0976071
\(765\) −8.03882 4.63468i −0.290644 0.167567i
\(766\) 29.2581 50.6766i 1.05714 1.83102i
\(767\) −8.10170 4.67752i −0.292535 0.168895i
\(768\) −27.3830 + 15.8096i −0.988097 + 0.570478i
\(769\) 4.04661 0.145925 0.0729623 0.997335i \(-0.476755\pi\)
0.0729623 + 0.997335i \(0.476755\pi\)
\(770\) 12.5770 7.34110i 0.453245 0.264555i
\(771\) 6.23442 0.224527
\(772\) −56.9938 + 32.9054i −2.05125 + 1.18429i
\(773\) 5.46553 + 3.15553i 0.196581 + 0.113496i 0.595060 0.803681i \(-0.297128\pi\)
−0.398478 + 0.917178i \(0.630462\pi\)
\(774\) 0.434043 0.751785i 0.0156014 0.0270224i
\(775\) 3.16594 0.00386268i 0.113724 0.000138752i
\(776\) −9.03316 −0.324272
\(777\) 11.8928 20.7970i 0.426653 0.746088i
\(778\) 94.6892i 3.39477i
\(779\) −3.05333 5.28852i −0.109397 0.189481i
\(780\) −49.8975 + 0.0304393i −1.78662 + 0.00108990i
\(781\) 2.68670 4.65350i 0.0961376 0.166515i
\(782\) −45.8796 + 26.4886i −1.64065 + 0.947230i
\(783\) 5.92664i 0.211801i
\(784\) −21.0783 + 37.2157i −0.752798 + 1.32913i
\(785\) 12.6917 7.33791i 0.452988 0.261901i
\(786\) −5.06512 8.77304i −0.180667 0.312924i
\(787\) −25.9595 14.9877i −0.925358 0.534256i −0.0400174 0.999199i \(-0.512741\pi\)
−0.885340 + 0.464943i \(0.846075\pi\)
\(788\) −89.8419 51.8702i −3.20048 1.84780i
\(789\) −14.0240 24.2903i −0.499267 0.864756i
\(790\) 53.0369 30.6640i 1.88697 1.09098i
\(791\) 9.28737 + 5.31102i 0.330221 + 0.188838i
\(792\) 5.74324i 0.204077i
\(793\) −2.92679 + 1.68978i −0.103933 + 0.0600060i
\(794\) −0.0724448 + 0.125478i −0.00257097 + 0.00445305i
\(795\) 17.0683 0.0104123i 0.605351 0.000369286i
\(796\) −30.2309 52.3615i −1.07151 1.85590i
\(797\) 0.676527i 0.0239638i 0.999928 + 0.0119819i \(0.00381405\pi\)
−0.999928 + 0.0119819i \(0.996186\pi\)
\(798\) −15.3139 + 0.0632784i −0.542107 + 0.00224003i
\(799\) −17.5885 −0.622236
\(800\) 0.0221638 + 18.1659i 0.000783608 + 0.642263i
\(801\) −8.15542 + 14.1256i −0.288157 + 0.499103i
\(802\) 19.7803 + 11.4202i 0.698466 + 0.403260i
\(803\) −4.55574 + 2.63026i −0.160769 + 0.0928198i
\(804\) −40.1244 −1.41508
\(805\) 26.0616 + 14.8824i 0.918552 + 0.524534i
\(806\) 8.20600 0.289044
\(807\) −6.42444 + 3.70915i −0.226151 + 0.130568i
\(808\) −28.0492 16.1942i −0.986768 0.569711i
\(809\) −25.0612 + 43.4072i −0.881104 + 1.52612i −0.0309881 + 0.999520i \(0.509865\pi\)
−0.850115 + 0.526596i \(0.823468\pi\)
\(810\) −4.87505 2.81065i −0.171292 0.0987561i
\(811\) −36.4884 −1.28128 −0.640641 0.767841i \(-0.721331\pi\)
−0.640641 + 0.767841i \(0.721331\pi\)
\(812\) −34.2159 58.7021i −1.20074 2.06004i
\(813\) 31.2116i 1.09464i
\(814\) 11.1447 + 19.3032i 0.390622 + 0.676578i
\(815\) 0.0167179 + 27.4048i 0.000585604 + 0.959949i
\(816\) −12.6776 + 21.9583i −0.443806 + 0.768695i
\(817\) −0.687090 + 0.396691i −0.0240382 + 0.0138785i
\(818\) 41.8055i 1.46170i
\(819\) 0.0562992 + 13.6249i 0.00196725 + 0.476092i
\(820\) 12.8764 + 22.2711i 0.449662 + 0.777741i
\(821\) −19.3654 33.5419i −0.675858 1.17062i −0.976217 0.216794i \(-0.930440\pi\)
0.300359 0.953826i \(-0.402893\pi\)
\(822\) 24.4790 + 14.1329i 0.853803 + 0.492943i
\(823\) 18.1702 + 10.4906i 0.633375 + 0.365679i 0.782058 0.623206i \(-0.214170\pi\)
−0.148683 + 0.988885i \(0.547503\pi\)
\(824\) 48.5034 + 84.0104i 1.68970 + 2.92664i
\(825\) −4.23843 2.44017i −0.147563 0.0849558i
\(826\) 10.4998 + 6.00433i 0.365333 + 0.208917i
\(827\) 37.8114i 1.31483i 0.753528 + 0.657416i \(0.228350\pi\)
−0.753528 + 0.657416i \(0.771650\pi\)
\(828\) −19.0367 + 10.9908i −0.661570 + 0.381958i
\(829\) −26.6591 + 46.1749i −0.925908 + 1.60372i −0.135813 + 0.990734i \(0.543365\pi\)
−0.790095 + 0.612985i \(0.789969\pi\)
\(830\) 37.2896 0.0227480i 1.29434 0.000789596i
\(831\) 6.22629 + 10.7843i 0.215988 + 0.374102i
\(832\) 15.8453i 0.549336i
\(833\) −0.240057 29.0474i −0.00831747 1.00643i
\(834\) −12.5575 −0.434831
\(835\) 4.13081 + 2.38157i 0.142953 + 0.0824175i
\(836\) 4.87423 8.44241i 0.168579 0.291987i
\(837\) 0.548357 + 0.316594i 0.0189540 + 0.0109431i
\(838\) 65.1121 37.5925i 2.24926 1.29861i
\(839\) −52.6452 −1.81752 −0.908758 0.417324i \(-0.862968\pi\)
−0.908758 + 0.417324i \(0.862968\pi\)
\(840\) 34.7366 0.164725i 1.19853 0.00568357i
\(841\) 6.12510 0.211210
\(842\) −42.1066 + 24.3102i −1.45109 + 0.837786i
\(843\) 0.0354399 + 0.0204612i 0.00122061 + 0.000704722i
\(844\) 10.4498 18.0996i 0.359696 0.623012i
\(845\) 15.1000 26.1908i 0.519455 0.900991i
\(846\) −10.6663 −0.366717
\(847\) −26.5717 + 0.109797i −0.913015 + 0.00377266i
\(848\) 46.6392i 1.60160i
\(849\) 5.42100 + 9.38944i 0.186048 + 0.322245i
\(850\) −26.1632 45.1886i −0.897391 1.54996i
\(851\) −22.9675 + 39.7809i −0.787316 + 1.36367i
\(852\) 20.6152 11.9022i 0.706264 0.407762i
\(853\) 5.01225i 0.171616i 0.996312 + 0.0858081i \(0.0273472\pi\)
−0.996312 + 0.0858081i \(0.972653\pi\)
\(854\) 3.77505 2.20037i 0.129180 0.0752953i
\(855\) 2.57421 + 4.45239i 0.0880362 + 0.152268i
\(856\) 7.01129 + 12.1439i 0.239641 + 0.415071i
\(857\) 33.2737 + 19.2106i 1.13661 + 0.656222i 0.945589 0.325364i \(-0.105487\pi\)
0.191021 + 0.981586i \(0.438820\pi\)
\(858\) −10.9781 6.33822i −0.374787 0.216383i
\(859\) 11.6709 + 20.2146i 0.398207 + 0.689714i 0.993505 0.113791i \(-0.0362994\pi\)
−0.595298 + 0.803505i \(0.702966\pi\)
\(860\) 2.89348 1.67291i 0.0986670 0.0570457i
\(861\) 6.06893 3.53741i 0.206828 0.120555i
\(862\) 55.3553i 1.88541i
\(863\) 47.0908 27.1879i 1.60299 0.925486i 0.612103 0.790778i \(-0.290324\pi\)
0.990885 0.134707i \(-0.0430094\pi\)
\(864\) −1.81659 + 3.14643i −0.0618018 + 0.107044i
\(865\) −0.0157532 25.8233i −0.000535624 0.878019i
\(866\) 3.43144 + 5.94342i 0.116605 + 0.201966i
\(867\) 0.220576i 0.00749114i
\(868\) −7.25913 + 0.0299953i −0.246391 + 0.00101811i
\(869\) 10.6489 0.361239
\(870\) −16.6577 + 28.8927i −0.564749 + 0.979554i
\(871\) 23.8430 41.2972i 0.807888 1.39930i
\(872\) 92.0866 + 53.1662i 3.11845 + 1.80044i
\(873\) 1.33233 0.769222i 0.0450926 0.0260342i
\(874\) 29.3627 0.993208
\(875\) −14.6372 + 25.7051i −0.494828 + 0.868991i
\(876\) −23.3043 −0.787378
\(877\) 24.6434 14.2279i 0.832148 0.480441i −0.0224397 0.999748i \(-0.507143\pi\)
0.854587 + 0.519307i \(0.173810\pi\)
\(878\) −16.4408 9.49211i −0.554851 0.320343i
\(879\) 14.8227 25.6737i 0.499958 0.865953i
\(880\) −6.67482 + 11.5774i −0.225008 + 0.390275i
\(881\) −6.50466 −0.219148 −0.109574 0.993979i \(-0.534949\pi\)
−0.109574 + 0.993979i \(0.534949\pi\)
\(882\) −0.145580 17.6155i −0.00490192 0.593143i
\(883\) 34.7640i 1.16990i 0.811069 + 0.584951i \(0.198886\pi\)
−0.811069 + 0.584951i \(0.801114\pi\)
\(884\) −46.3007 80.1952i −1.55726 2.69726i
\(885\) −0.00247799 4.06203i −8.32966e−5 0.136544i
\(886\) 13.1345 22.7496i 0.441261 0.764286i
\(887\) −25.4214 + 14.6770i −0.853566 + 0.492807i −0.861853 0.507159i \(-0.830696\pi\)
0.00828615 + 0.999966i \(0.497362\pi\)
\(888\) 53.1676i 1.78419i
\(889\) −15.7332 8.99707i −0.527673 0.301752i
\(890\) −79.4601 + 45.9410i −2.66351 + 1.53995i
\(891\) −0.489068 0.847090i −0.0163844 0.0283786i
\(892\) 59.3768 + 34.2812i 1.98808 + 1.14782i
\(893\) 8.44241 + 4.87423i 0.282514 + 0.163110i
\(894\) 18.2380 + 31.5891i 0.609968 + 1.05650i
\(895\) 9.96053 + 17.2279i 0.332944 + 0.575864i
\(896\) 0.164091 + 39.7114i 0.00548189 + 1.32666i
\(897\) 26.1242i 0.872260i
\(898\) 3.77274 2.17819i 0.125898 0.0726872i
\(899\) 1.87634 3.24992i 0.0625795 0.108391i
\(900\) −10.8558 18.7500i −0.361861 0.624999i
\(901\) 15.8380 + 27.4322i 0.527640 + 0.913899i
\(902\) 6.53556i 0.217610i
\(903\) −0.459584 0.788480i −0.0152940 0.0262390i
\(904\) −23.7432 −0.789688
\(905\) 3.55092 6.15904i 0.118036 0.204733i
\(906\) 9.92404 17.1889i 0.329704 0.571064i
\(907\) 31.4256 + 18.1436i 1.04347 + 0.602447i 0.920814 0.390002i \(-0.127526\pi\)
0.122655 + 0.992449i \(0.460859\pi\)
\(908\) −81.4259 + 47.0113i −2.70221 + 1.56012i
\(909\) 5.51610 0.182958
\(910\) −38.0203 + 66.5803i −1.26036 + 2.20711i
\(911\) 51.6732 1.71201 0.856004 0.516968i \(-0.172940\pi\)
0.856004 + 0.516968i \(0.172940\pi\)
\(912\) 12.1704 7.02660i 0.403003 0.232674i
\(913\) 5.61335 + 3.24087i 0.185775 + 0.107257i
\(914\) 38.8326 67.2601i 1.28447 2.22477i
\(915\) −1.27128 0.732941i −0.0420273 0.0242303i
\(916\) −8.99952 −0.297353
\(917\) −10.6501 + 0.0440071i −0.351698 + 0.00145324i
\(918\) 10.4432i 0.344678i
\(919\) −20.5188 35.5397i −0.676854 1.17235i −0.975923 0.218114i \(-0.930010\pi\)
0.299069 0.954231i \(-0.403324\pi\)
\(920\) −66.6035 + 0.0406306i −2.19585 + 0.00133955i
\(921\) −15.8027 + 27.3712i −0.520718 + 0.901910i
\(922\) 23.3839 13.5007i 0.770107 0.444621i
\(923\) 28.2903i 0.931187i
\(924\) 9.73455 + 5.56674i 0.320243 + 0.183132i
\(925\) −39.2370 22.5897i −1.29010 0.742745i
\(926\) −13.9746 24.2047i −0.459234 0.795417i
\(927\) −14.3079 8.26066i −0.469932 0.271316i
\(928\) 18.6478 + 10.7663i 0.612144 + 0.353421i
\(929\) −1.49260 2.58526i −0.0489706 0.0848196i 0.840501 0.541810i \(-0.182261\pi\)
−0.889472 + 0.456990i \(0.848927\pi\)
\(930\) 1.78343 + 3.08465i 0.0584811 + 0.101150i
\(931\) −7.93455 + 14.0091i −0.260044 + 0.459131i
\(932\) 29.2880i 0.959361i
\(933\) 19.2000 11.0851i 0.628581 0.362911i
\(934\) 34.7155 60.1291i 1.13593 1.96748i
\(935\) −0.00553686 9.07628i −0.000181075 0.296826i
\(936\) −15.1187 26.1864i −0.494171 0.855930i
\(937\) 26.1169i 0.853201i −0.904440 0.426601i \(-0.859711\pi\)
0.904440 0.426601i \(-0.140289\pi\)
\(938\) −30.6062 + 53.5210i −0.999327 + 1.74752i
\(939\) −6.88572 −0.224707
\(940\) −35.5778 20.5120i −1.16042 0.669026i
\(941\) −5.10580 + 8.84351i −0.166444 + 0.288290i −0.937167 0.348880i \(-0.886562\pi\)
0.770723 + 0.637171i \(0.219895\pi\)
\(942\) 14.2889 + 8.24973i 0.465559 + 0.268791i
\(943\) −11.6643 + 6.73438i −0.379842 + 0.219302i
\(944\) −11.0995 −0.361257
\(945\) −5.10939 + 2.98230i −0.166208 + 0.0970143i
\(946\) 0.849106 0.0276068
\(947\) −40.3086 + 23.2722i −1.30985 + 0.756245i −0.982072 0.188509i \(-0.939635\pi\)
−0.327783 + 0.944753i \(0.606301\pi\)
\(948\) 40.8547 + 23.5875i 1.32690 + 0.766085i
\(949\) 13.8480 23.9854i 0.449525 0.778600i
\(950\) 0.0353099 + 28.9408i 0.00114561 + 0.938964i
\(951\) 12.8387 0.416324
\(952\) 32.4634 + 55.6955i 1.05215 + 1.80510i
\(953\) 30.6348i 0.992358i 0.868220 + 0.496179i \(0.165264\pi\)
−0.868220 + 0.496179i \(0.834736\pi\)
\(954\) 9.60476 + 16.6359i 0.310966 + 0.538608i
\(955\) −1.39222 0.000849303i −0.0450511 2.74828e-5i
\(956\) 6.29345 10.9006i 0.203545 0.352550i
\(957\) −5.02040 + 2.89853i −0.162286 + 0.0936961i
\(958\) 25.2095i 0.814483i
\(959\) 25.6738 14.9646i 0.829051 0.483232i
\(960\) 5.95627 3.44370i 0.192238 0.111145i
\(961\) 15.2995 + 26.4996i 0.493533 + 0.854825i
\(962\) −101.629 58.6757i −3.27666 1.89178i
\(963\) −2.06824 1.19410i −0.0666481 0.0384793i
\(964\) −19.2772 33.3891i −0.620877 1.07539i
\(965\) 29.4004 16.9983i 0.946433 0.547193i
\(966\) 0.139566 + 33.7762i 0.00449046 + 1.08673i
\(967\) 57.4401i 1.84715i −0.383419 0.923575i \(-0.625253\pi\)
0.383419 0.923575i \(-0.374747\pi\)
\(968\) 51.0696 29.4851i 1.64144 0.947686i
\(969\) −4.77226 + 8.26580i −0.153307 + 0.265536i
\(970\) 8.65720 0.00528121i 0.277966 0.000169569i
\(971\) −24.0908 41.7265i −0.773110 1.33907i −0.935850 0.352397i \(-0.885367\pi\)
0.162740 0.986669i \(-0.447967\pi\)
\(972\) 4.33317i 0.138987i
\(973\) −6.55373 + 11.4605i −0.210103 + 0.367407i
\(974\) 77.3449 2.47829
\(975\) 25.7488 0.0314155i 0.824622 0.00100610i
\(976\) −2.00488 + 3.47255i −0.0641746 + 0.111154i
\(977\) −11.9099 6.87617i −0.381031 0.219988i 0.297236 0.954804i \(-0.403935\pi\)
−0.678267 + 0.734816i \(0.737269\pi\)
\(978\) −26.7106 + 15.4214i −0.854110 + 0.493121i
\(979\) −15.9542 −0.509898
\(980\) 33.3899 59.0367i 1.06660 1.88586i
\(981\) −18.1096 −0.578194
\(982\) 9.02399 5.21001i 0.287967 0.166258i
\(983\) 33.0773 + 19.0972i 1.05500 + 0.609106i 0.924046 0.382282i \(-0.124862\pi\)
0.130957 + 0.991388i \(0.458195\pi\)
\(984\) −7.79473 + 13.5009i −0.248487 + 0.430392i
\(985\) 46.3779 + 26.7386i 1.47772 + 0.851961i
\(986\) −61.8933 −1.97108
\(987\) −5.56674 + 9.73455i −0.177191 + 0.309854i
\(988\) 51.3245i 1.63285i
\(989\) 0.874937 + 1.51544i 0.0278214 + 0.0481880i
\(990\) −0.00335777 5.50420i −0.000106717 0.174935i
\(991\) −19.7600 + 34.2253i −0.627697 + 1.08720i 0.360316 + 0.932830i \(0.382669\pi\)
−0.988013 + 0.154372i \(0.950665\pi\)
\(992\) 1.99228 1.15025i 0.0632551 0.0365204i
\(993\) 8.53357i 0.270805i
\(994\) −0.151139 36.5768i −0.00479382 1.16015i
\(995\) 15.6167 + 27.0108i 0.495082 + 0.856300i
\(996\) 14.3572 + 24.8673i 0.454924 + 0.787952i
\(997\) 9.98438 + 5.76448i 0.316208 + 0.182563i 0.649701 0.760190i \(-0.274894\pi\)
−0.333493 + 0.942753i \(0.608227\pi\)
\(998\) −3.37435 1.94818i −0.106813 0.0616687i
\(999\) −4.52751 7.84188i −0.143244 0.248106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.2.q.a.4.8 yes 16
3.2 odd 2 315.2.bf.b.109.1 16
4.3 odd 2 1680.2.di.d.529.5 16
5.2 odd 4 525.2.i.k.151.4 8
5.3 odd 4 525.2.i.h.151.1 8
5.4 even 2 inner 105.2.q.a.4.1 16
7.2 even 3 inner 105.2.q.a.79.1 yes 16
7.3 odd 6 735.2.d.e.589.8 8
7.4 even 3 735.2.d.d.589.8 8
7.5 odd 6 735.2.q.g.79.1 16
7.6 odd 2 735.2.q.g.214.8 16
15.14 odd 2 315.2.bf.b.109.8 16
20.19 odd 2 1680.2.di.d.529.4 16
21.2 odd 6 315.2.bf.b.289.8 16
21.11 odd 6 2205.2.d.s.1324.1 8
21.17 even 6 2205.2.d.o.1324.1 8
28.23 odd 6 1680.2.di.d.289.4 16
35.2 odd 12 525.2.i.k.226.4 8
35.3 even 12 3675.2.a.cb.1.4 4
35.4 even 6 735.2.d.d.589.1 8
35.9 even 6 inner 105.2.q.a.79.8 yes 16
35.17 even 12 3675.2.a.bn.1.1 4
35.18 odd 12 3675.2.a.bz.1.4 4
35.19 odd 6 735.2.q.g.79.8 16
35.23 odd 12 525.2.i.h.226.1 8
35.24 odd 6 735.2.d.e.589.1 8
35.32 odd 12 3675.2.a.bp.1.1 4
35.34 odd 2 735.2.q.g.214.1 16
105.44 odd 6 315.2.bf.b.289.1 16
105.59 even 6 2205.2.d.o.1324.8 8
105.74 odd 6 2205.2.d.s.1324.8 8
140.79 odd 6 1680.2.di.d.289.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.1 16 5.4 even 2 inner
105.2.q.a.4.8 yes 16 1.1 even 1 trivial
105.2.q.a.79.1 yes 16 7.2 even 3 inner
105.2.q.a.79.8 yes 16 35.9 even 6 inner
315.2.bf.b.109.1 16 3.2 odd 2
315.2.bf.b.109.8 16 15.14 odd 2
315.2.bf.b.289.1 16 105.44 odd 6
315.2.bf.b.289.8 16 21.2 odd 6
525.2.i.h.151.1 8 5.3 odd 4
525.2.i.h.226.1 8 35.23 odd 12
525.2.i.k.151.4 8 5.2 odd 4
525.2.i.k.226.4 8 35.2 odd 12
735.2.d.d.589.1 8 35.4 even 6
735.2.d.d.589.8 8 7.4 even 3
735.2.d.e.589.1 8 35.24 odd 6
735.2.d.e.589.8 8 7.3 odd 6
735.2.q.g.79.1 16 7.5 odd 6
735.2.q.g.79.8 16 35.19 odd 6
735.2.q.g.214.1 16 35.34 odd 2
735.2.q.g.214.8 16 7.6 odd 2
1680.2.di.d.289.4 16 28.23 odd 6
1680.2.di.d.289.5 16 140.79 odd 6
1680.2.di.d.529.4 16 20.19 odd 2
1680.2.di.d.529.5 16 4.3 odd 2
2205.2.d.o.1324.1 8 21.17 even 6
2205.2.d.o.1324.8 8 105.59 even 6
2205.2.d.s.1324.1 8 21.11 odd 6
2205.2.d.s.1324.8 8 105.74 odd 6
3675.2.a.bn.1.1 4 35.17 even 12
3675.2.a.bp.1.1 4 35.32 odd 12
3675.2.a.bz.1.4 4 35.18 odd 12
3675.2.a.cb.1.4 4 35.3 even 12