Properties

Label 729.6.a.e.1.8
Level $729$
Weight $6$
Character 729.1
Self dual yes
Analytic conductor $116.920$
Analytic rank $0$
Dimension $42$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,6,Mod(1,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [42,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(116.919804644\)
Analytic rank: \(0\)
Dimension: \(42\)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 729.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.08006 q^{2} +33.2873 q^{4} -19.8788 q^{5} +75.2303 q^{7} -10.4014 q^{8} +160.622 q^{10} -188.727 q^{11} -837.401 q^{13} -607.865 q^{14} -981.149 q^{16} -930.189 q^{17} -2157.41 q^{19} -661.710 q^{20} +1524.92 q^{22} +2365.71 q^{23} -2729.83 q^{25} +6766.25 q^{26} +2504.21 q^{28} +101.657 q^{29} -5828.75 q^{31} +8260.59 q^{32} +7515.98 q^{34} -1495.49 q^{35} +10781.4 q^{37} +17432.0 q^{38} +206.767 q^{40} -14385.2 q^{41} +669.024 q^{43} -6282.21 q^{44} -19115.1 q^{46} +28444.1 q^{47} -11147.4 q^{49} +22057.2 q^{50} -27874.8 q^{52} -25335.8 q^{53} +3751.66 q^{55} -782.501 q^{56} -821.393 q^{58} -15341.6 q^{59} +8962.60 q^{61} +47096.7 q^{62} -35349.2 q^{64} +16646.5 q^{65} -61245.0 q^{67} -30963.5 q^{68} +12083.6 q^{70} -5104.28 q^{71} +35391.7 q^{73} -87114.1 q^{74} -71814.2 q^{76} -14198.0 q^{77} -55002.7 q^{79} +19504.0 q^{80} +116233. q^{82} +95577.4 q^{83} +18491.0 q^{85} -5405.75 q^{86} +1963.03 q^{88} +100742. q^{89} -62997.9 q^{91} +78748.2 q^{92} -229830. q^{94} +42886.6 q^{95} +93632.6 q^{97} +90071.6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q + 12 q^{2} + 624 q^{4} + 150 q^{5} + 573 q^{8} + 3 q^{10} + 1452 q^{11} + 2256 q^{14} + 8448 q^{16} + 3465 q^{17} + 3 q^{19} + 4128 q^{20} + 96 q^{22} + 5019 q^{23} + 18750 q^{25} + 3903 q^{26} - 6 q^{28}+ \cdots + 463410 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.08006 −1.42837 −0.714183 0.699959i \(-0.753201\pi\)
−0.714183 + 0.699959i \(0.753201\pi\)
\(3\) 0 0
\(4\) 33.2873 1.04023
\(5\) −19.8788 −0.355602 −0.177801 0.984066i \(-0.556898\pi\)
−0.177801 + 0.984066i \(0.556898\pi\)
\(6\) 0 0
\(7\) 75.2303 0.580293 0.290147 0.956982i \(-0.406296\pi\)
0.290147 + 0.956982i \(0.406296\pi\)
\(8\) −10.4014 −0.0574602
\(9\) 0 0
\(10\) 160.622 0.507930
\(11\) −188.727 −0.470275 −0.235138 0.971962i \(-0.575554\pi\)
−0.235138 + 0.971962i \(0.575554\pi\)
\(12\) 0 0
\(13\) −837.401 −1.37428 −0.687140 0.726525i \(-0.741134\pi\)
−0.687140 + 0.726525i \(0.741134\pi\)
\(14\) −607.865 −0.828871
\(15\) 0 0
\(16\) −981.149 −0.958154
\(17\) −930.189 −0.780637 −0.390318 0.920680i \(-0.627635\pi\)
−0.390318 + 0.920680i \(0.627635\pi\)
\(18\) 0 0
\(19\) −2157.41 −1.37103 −0.685517 0.728057i \(-0.740424\pi\)
−0.685517 + 0.728057i \(0.740424\pi\)
\(20\) −661.710 −0.369907
\(21\) 0 0
\(22\) 1524.92 0.671725
\(23\) 2365.71 0.932487 0.466243 0.884656i \(-0.345607\pi\)
0.466243 + 0.884656i \(0.345607\pi\)
\(24\) 0 0
\(25\) −2729.83 −0.873547
\(26\) 6766.25 1.96297
\(27\) 0 0
\(28\) 2504.21 0.603637
\(29\) 101.657 0.0224461 0.0112231 0.999937i \(-0.496428\pi\)
0.0112231 + 0.999937i \(0.496428\pi\)
\(30\) 0 0
\(31\) −5828.75 −1.08936 −0.544680 0.838644i \(-0.683349\pi\)
−0.544680 + 0.838644i \(0.683349\pi\)
\(32\) 8260.59 1.42605
\(33\) 0 0
\(34\) 7515.98 1.11503
\(35\) −1495.49 −0.206354
\(36\) 0 0
\(37\) 10781.4 1.29470 0.647351 0.762192i \(-0.275877\pi\)
0.647351 + 0.762192i \(0.275877\pi\)
\(38\) 17432.0 1.95834
\(39\) 0 0
\(40\) 206.767 0.0204330
\(41\) −14385.2 −1.33646 −0.668231 0.743954i \(-0.732948\pi\)
−0.668231 + 0.743954i \(0.732948\pi\)
\(42\) 0 0
\(43\) 669.024 0.0551786 0.0275893 0.999619i \(-0.491217\pi\)
0.0275893 + 0.999619i \(0.491217\pi\)
\(44\) −6282.21 −0.489194
\(45\) 0 0
\(46\) −19115.1 −1.33193
\(47\) 28444.1 1.87822 0.939111 0.343615i \(-0.111651\pi\)
0.939111 + 0.343615i \(0.111651\pi\)
\(48\) 0 0
\(49\) −11147.4 −0.663260
\(50\) 22057.2 1.24774
\(51\) 0 0
\(52\) −27874.8 −1.42956
\(53\) −25335.8 −1.23892 −0.619461 0.785027i \(-0.712649\pi\)
−0.619461 + 0.785027i \(0.712649\pi\)
\(54\) 0 0
\(55\) 3751.66 0.167231
\(56\) −782.501 −0.0333438
\(57\) 0 0
\(58\) −821.393 −0.0320613
\(59\) −15341.6 −0.573772 −0.286886 0.957965i \(-0.592620\pi\)
−0.286886 + 0.957965i \(0.592620\pi\)
\(60\) 0 0
\(61\) 8962.60 0.308397 0.154198 0.988040i \(-0.450721\pi\)
0.154198 + 0.988040i \(0.450721\pi\)
\(62\) 47096.7 1.55600
\(63\) 0 0
\(64\) −35349.2 −1.07877
\(65\) 16646.5 0.488697
\(66\) 0 0
\(67\) −61245.0 −1.66680 −0.833400 0.552671i \(-0.813609\pi\)
−0.833400 + 0.552671i \(0.813609\pi\)
\(68\) −30963.5 −0.812040
\(69\) 0 0
\(70\) 12083.6 0.294748
\(71\) −5104.28 −0.120168 −0.0600840 0.998193i \(-0.519137\pi\)
−0.0600840 + 0.998193i \(0.519137\pi\)
\(72\) 0 0
\(73\) 35391.7 0.777310 0.388655 0.921383i \(-0.372940\pi\)
0.388655 + 0.921383i \(0.372940\pi\)
\(74\) −87114.1 −1.84931
\(75\) 0 0
\(76\) −71814.2 −1.42619
\(77\) −14198.0 −0.272898
\(78\) 0 0
\(79\) −55002.7 −0.991554 −0.495777 0.868450i \(-0.665117\pi\)
−0.495777 + 0.868450i \(0.665117\pi\)
\(80\) 19504.0 0.340722
\(81\) 0 0
\(82\) 116233. 1.90896
\(83\) 95577.4 1.52286 0.761430 0.648247i \(-0.224498\pi\)
0.761430 + 0.648247i \(0.224498\pi\)
\(84\) 0 0
\(85\) 18491.0 0.277596
\(86\) −5405.75 −0.0788151
\(87\) 0 0
\(88\) 1963.03 0.0270221
\(89\) 100742. 1.34814 0.674072 0.738666i \(-0.264544\pi\)
0.674072 + 0.738666i \(0.264544\pi\)
\(90\) 0 0
\(91\) −62997.9 −0.797485
\(92\) 78748.2 0.969999
\(93\) 0 0
\(94\) −229830. −2.68279
\(95\) 42886.6 0.487542
\(96\) 0 0
\(97\) 93632.6 1.01041 0.505205 0.862999i \(-0.331417\pi\)
0.505205 + 0.862999i \(0.331417\pi\)
\(98\) 90071.6 0.947377
\(99\) 0 0
\(100\) −90868.8 −0.908688
\(101\) −86230.6 −0.841120 −0.420560 0.907265i \(-0.638166\pi\)
−0.420560 + 0.907265i \(0.638166\pi\)
\(102\) 0 0
\(103\) −119806. −1.11272 −0.556361 0.830941i \(-0.687803\pi\)
−0.556361 + 0.830941i \(0.687803\pi\)
\(104\) 8710.15 0.0789664
\(105\) 0 0
\(106\) 204714. 1.76963
\(107\) −127097. −1.07319 −0.536593 0.843841i \(-0.680289\pi\)
−0.536593 + 0.843841i \(0.680289\pi\)
\(108\) 0 0
\(109\) −112941. −0.910511 −0.455256 0.890361i \(-0.650452\pi\)
−0.455256 + 0.890361i \(0.650452\pi\)
\(110\) −30313.6 −0.238867
\(111\) 0 0
\(112\) −73812.2 −0.556010
\(113\) 93996.1 0.692490 0.346245 0.938144i \(-0.387457\pi\)
0.346245 + 0.938144i \(0.387457\pi\)
\(114\) 0 0
\(115\) −47027.5 −0.331594
\(116\) 3383.88 0.0233491
\(117\) 0 0
\(118\) 123961. 0.819557
\(119\) −69978.4 −0.452998
\(120\) 0 0
\(121\) −125433. −0.778841
\(122\) −72418.3 −0.440503
\(123\) 0 0
\(124\) −194023. −1.13318
\(125\) 116387. 0.666238
\(126\) 0 0
\(127\) 46746.9 0.257184 0.128592 0.991698i \(-0.458954\pi\)
0.128592 + 0.991698i \(0.458954\pi\)
\(128\) 21284.8 0.114827
\(129\) 0 0
\(130\) −134505. −0.698038
\(131\) −121299. −0.617559 −0.308779 0.951134i \(-0.599920\pi\)
−0.308779 + 0.951134i \(0.599920\pi\)
\(132\) 0 0
\(133\) −162302. −0.795601
\(134\) 494863. 2.38080
\(135\) 0 0
\(136\) 9675.27 0.0448555
\(137\) −242183. −1.10241 −0.551204 0.834370i \(-0.685831\pi\)
−0.551204 + 0.834370i \(0.685831\pi\)
\(138\) 0 0
\(139\) −338613. −1.48651 −0.743254 0.669010i \(-0.766718\pi\)
−0.743254 + 0.669010i \(0.766718\pi\)
\(140\) −49780.7 −0.214655
\(141\) 0 0
\(142\) 41242.9 0.171644
\(143\) 158040. 0.646290
\(144\) 0 0
\(145\) −2020.81 −0.00798189
\(146\) −285967. −1.11028
\(147\) 0 0
\(148\) 358883. 1.34679
\(149\) 76717.2 0.283092 0.141546 0.989932i \(-0.454793\pi\)
0.141546 + 0.989932i \(0.454793\pi\)
\(150\) 0 0
\(151\) 342014. 1.22068 0.610339 0.792140i \(-0.291033\pi\)
0.610339 + 0.792140i \(0.291033\pi\)
\(152\) 22440.1 0.0787798
\(153\) 0 0
\(154\) 114721. 0.389798
\(155\) 115868. 0.387379
\(156\) 0 0
\(157\) −44691.1 −0.144701 −0.0723506 0.997379i \(-0.523050\pi\)
−0.0723506 + 0.997379i \(0.523050\pi\)
\(158\) 444425. 1.41630
\(159\) 0 0
\(160\) −164210. −0.507108
\(161\) 177973. 0.541116
\(162\) 0 0
\(163\) −102723. −0.302831 −0.151415 0.988470i \(-0.548383\pi\)
−0.151415 + 0.988470i \(0.548383\pi\)
\(164\) −478845. −1.39022
\(165\) 0 0
\(166\) −772271. −2.17520
\(167\) 51785.2 0.143686 0.0718430 0.997416i \(-0.477112\pi\)
0.0718430 + 0.997416i \(0.477112\pi\)
\(168\) 0 0
\(169\) 329947. 0.888644
\(170\) −149408. −0.396509
\(171\) 0 0
\(172\) 22270.0 0.0573983
\(173\) −329392. −0.836754 −0.418377 0.908274i \(-0.637401\pi\)
−0.418377 + 0.908274i \(0.637401\pi\)
\(174\) 0 0
\(175\) −205366. −0.506914
\(176\) 185169. 0.450596
\(177\) 0 0
\(178\) −814002. −1.92564
\(179\) 325394. 0.759062 0.379531 0.925179i \(-0.376085\pi\)
0.379531 + 0.925179i \(0.376085\pi\)
\(180\) 0 0
\(181\) −226715. −0.514379 −0.257189 0.966361i \(-0.582796\pi\)
−0.257189 + 0.966361i \(0.582796\pi\)
\(182\) 509027. 1.13910
\(183\) 0 0
\(184\) −24606.8 −0.0535809
\(185\) −214321. −0.460399
\(186\) 0 0
\(187\) 175552. 0.367114
\(188\) 946825. 1.95378
\(189\) 0 0
\(190\) −346526. −0.696389
\(191\) 409534. 0.812281 0.406140 0.913811i \(-0.366874\pi\)
0.406140 + 0.913811i \(0.366874\pi\)
\(192\) 0 0
\(193\) 473119. 0.914275 0.457137 0.889396i \(-0.348875\pi\)
0.457137 + 0.889396i \(0.348875\pi\)
\(194\) −756556. −1.44323
\(195\) 0 0
\(196\) −371067. −0.689941
\(197\) 372082. 0.683083 0.341542 0.939867i \(-0.389051\pi\)
0.341542 + 0.939867i \(0.389051\pi\)
\(198\) 0 0
\(199\) 612667. 1.09671 0.548355 0.836246i \(-0.315254\pi\)
0.548355 + 0.836246i \(0.315254\pi\)
\(200\) 28394.1 0.0501942
\(201\) 0 0
\(202\) 696748. 1.20143
\(203\) 7647.67 0.0130253
\(204\) 0 0
\(205\) 285960. 0.475249
\(206\) 968042. 1.58937
\(207\) 0 0
\(208\) 821615. 1.31677
\(209\) 407161. 0.644763
\(210\) 0 0
\(211\) 440687. 0.681435 0.340718 0.940166i \(-0.389330\pi\)
0.340718 + 0.940166i \(0.389330\pi\)
\(212\) −843359. −1.28876
\(213\) 0 0
\(214\) 1.02695e6 1.53290
\(215\) −13299.4 −0.0196216
\(216\) 0 0
\(217\) −438499. −0.632148
\(218\) 912569. 1.30054
\(219\) 0 0
\(220\) 124883. 0.173958
\(221\) 778941. 1.07281
\(222\) 0 0
\(223\) −978312. −1.31739 −0.658696 0.752409i \(-0.728892\pi\)
−0.658696 + 0.752409i \(0.728892\pi\)
\(224\) 621446. 0.827530
\(225\) 0 0
\(226\) −759494. −0.989129
\(227\) 1.10134e6 1.41859 0.709294 0.704913i \(-0.249014\pi\)
0.709294 + 0.704913i \(0.249014\pi\)
\(228\) 0 0
\(229\) −95039.8 −0.119761 −0.0598807 0.998206i \(-0.519072\pi\)
−0.0598807 + 0.998206i \(0.519072\pi\)
\(230\) 379985. 0.473638
\(231\) 0 0
\(232\) −1057.37 −0.00128976
\(233\) 1.07694e6 1.29958 0.649790 0.760114i \(-0.274857\pi\)
0.649790 + 0.760114i \(0.274857\pi\)
\(234\) 0 0
\(235\) −565433. −0.667900
\(236\) −510679. −0.596854
\(237\) 0 0
\(238\) 565429. 0.647047
\(239\) −1.25755e6 −1.42407 −0.712035 0.702144i \(-0.752226\pi\)
−0.712035 + 0.702144i \(0.752226\pi\)
\(240\) 0 0
\(241\) 646482. 0.716991 0.358495 0.933531i \(-0.383290\pi\)
0.358495 + 0.933531i \(0.383290\pi\)
\(242\) 1.01351e6 1.11247
\(243\) 0 0
\(244\) 298341. 0.320803
\(245\) 221597. 0.235857
\(246\) 0 0
\(247\) 1.80661e6 1.88418
\(248\) 60627.2 0.0625948
\(249\) 0 0
\(250\) −940413. −0.951631
\(251\) 46905.0 0.0469932 0.0234966 0.999724i \(-0.492520\pi\)
0.0234966 + 0.999724i \(0.492520\pi\)
\(252\) 0 0
\(253\) −446474. −0.438526
\(254\) −377718. −0.367353
\(255\) 0 0
\(256\) 959192. 0.914757
\(257\) 609152. 0.575298 0.287649 0.957736i \(-0.407126\pi\)
0.287649 + 0.957736i \(0.407126\pi\)
\(258\) 0 0
\(259\) 811086. 0.751307
\(260\) 554117. 0.508356
\(261\) 0 0
\(262\) 980101. 0.882100
\(263\) −817175. −0.728493 −0.364247 0.931303i \(-0.618673\pi\)
−0.364247 + 0.931303i \(0.618673\pi\)
\(264\) 0 0
\(265\) 503644. 0.440564
\(266\) 1.31141e6 1.13641
\(267\) 0 0
\(268\) −2.03868e6 −1.73385
\(269\) −1.06427e6 −0.896753 −0.448376 0.893845i \(-0.647998\pi\)
−0.448376 + 0.893845i \(0.647998\pi\)
\(270\) 0 0
\(271\) 1.32722e6 1.09779 0.548894 0.835892i \(-0.315049\pi\)
0.548894 + 0.835892i \(0.315049\pi\)
\(272\) 912654. 0.747970
\(273\) 0 0
\(274\) 1.95685e6 1.57464
\(275\) 515193. 0.410808
\(276\) 0 0
\(277\) 1.86419e6 1.45979 0.729895 0.683559i \(-0.239569\pi\)
0.729895 + 0.683559i \(0.239569\pi\)
\(278\) 2.73601e6 2.12328
\(279\) 0 0
\(280\) 15555.1 0.0118571
\(281\) 453541. 0.342650 0.171325 0.985215i \(-0.445195\pi\)
0.171325 + 0.985215i \(0.445195\pi\)
\(282\) 0 0
\(283\) 157416. 0.116838 0.0584188 0.998292i \(-0.481394\pi\)
0.0584188 + 0.998292i \(0.481394\pi\)
\(284\) −169908. −0.125002
\(285\) 0 0
\(286\) −1.27697e6 −0.923138
\(287\) −1.08220e6 −0.775540
\(288\) 0 0
\(289\) −554605. −0.390607
\(290\) 16328.3 0.0114011
\(291\) 0 0
\(292\) 1.17809e6 0.808579
\(293\) 2.82928e6 1.92534 0.962670 0.270679i \(-0.0872481\pi\)
0.962670 + 0.270679i \(0.0872481\pi\)
\(294\) 0 0
\(295\) 304971. 0.204035
\(296\) −112141. −0.0743938
\(297\) 0 0
\(298\) −619879. −0.404358
\(299\) −1.98105e6 −1.28150
\(300\) 0 0
\(301\) 50330.8 0.0320197
\(302\) −2.76349e6 −1.74358
\(303\) 0 0
\(304\) 2.11674e6 1.31366
\(305\) −178166. −0.109667
\(306\) 0 0
\(307\) −124495. −0.0753885 −0.0376943 0.999289i \(-0.512001\pi\)
−0.0376943 + 0.999289i \(0.512001\pi\)
\(308\) −472613. −0.283876
\(309\) 0 0
\(310\) −936224. −0.553319
\(311\) −2.01606e6 −1.18196 −0.590979 0.806687i \(-0.701259\pi\)
−0.590979 + 0.806687i \(0.701259\pi\)
\(312\) 0 0
\(313\) 2.35273e6 1.35741 0.678704 0.734412i \(-0.262542\pi\)
0.678704 + 0.734412i \(0.262542\pi\)
\(314\) 361106. 0.206686
\(315\) 0 0
\(316\) −1.83089e6 −1.03144
\(317\) 560966. 0.313537 0.156768 0.987635i \(-0.449892\pi\)
0.156768 + 0.987635i \(0.449892\pi\)
\(318\) 0 0
\(319\) −19185.4 −0.0105559
\(320\) 702699. 0.383614
\(321\) 0 0
\(322\) −1.43803e6 −0.772911
\(323\) 2.00680e6 1.07028
\(324\) 0 0
\(325\) 2.28597e6 1.20050
\(326\) 830010. 0.432553
\(327\) 0 0
\(328\) 149626. 0.0767933
\(329\) 2.13985e6 1.08992
\(330\) 0 0
\(331\) 1.88017e6 0.943250 0.471625 0.881799i \(-0.343668\pi\)
0.471625 + 0.881799i \(0.343668\pi\)
\(332\) 3.18151e6 1.58412
\(333\) 0 0
\(334\) −418428. −0.205236
\(335\) 1.21747e6 0.592718
\(336\) 0 0
\(337\) 3.99555e6 1.91647 0.958234 0.285987i \(-0.0923214\pi\)
0.958234 + 0.285987i \(0.0923214\pi\)
\(338\) −2.66599e6 −1.26931
\(339\) 0 0
\(340\) 615516. 0.288763
\(341\) 1.10004e6 0.512299
\(342\) 0 0
\(343\) −2.10302e6 −0.965178
\(344\) −6958.79 −0.00317057
\(345\) 0 0
\(346\) 2.66151e6 1.19519
\(347\) −1.34610e6 −0.600142 −0.300071 0.953917i \(-0.597010\pi\)
−0.300071 + 0.953917i \(0.597010\pi\)
\(348\) 0 0
\(349\) −2.63720e6 −1.15899 −0.579495 0.814975i \(-0.696750\pi\)
−0.579495 + 0.814975i \(0.696750\pi\)
\(350\) 1.65937e6 0.724058
\(351\) 0 0
\(352\) −1.55900e6 −0.670638
\(353\) −4.49432e6 −1.91967 −0.959836 0.280560i \(-0.909480\pi\)
−0.959836 + 0.280560i \(0.909480\pi\)
\(354\) 0 0
\(355\) 101467. 0.0427320
\(356\) 3.35343e6 1.40238
\(357\) 0 0
\(358\) −2.62920e6 −1.08422
\(359\) −1.05112e6 −0.430444 −0.215222 0.976565i \(-0.569048\pi\)
−0.215222 + 0.976565i \(0.569048\pi\)
\(360\) 0 0
\(361\) 2.17830e6 0.879732
\(362\) 1.83187e6 0.734721
\(363\) 0 0
\(364\) −2.09703e6 −0.829566
\(365\) −703543. −0.276413
\(366\) 0 0
\(367\) −1.71297e6 −0.663871 −0.331935 0.943302i \(-0.607702\pi\)
−0.331935 + 0.943302i \(0.607702\pi\)
\(368\) −2.32112e6 −0.893466
\(369\) 0 0
\(370\) 1.73172e6 0.657618
\(371\) −1.90602e6 −0.718939
\(372\) 0 0
\(373\) −4.79985e6 −1.78631 −0.893153 0.449753i \(-0.851512\pi\)
−0.893153 + 0.449753i \(0.851512\pi\)
\(374\) −1.41847e6 −0.524373
\(375\) 0 0
\(376\) −295858. −0.107923
\(377\) −85127.5 −0.0308473
\(378\) 0 0
\(379\) 1.68242e6 0.601640 0.300820 0.953681i \(-0.402740\pi\)
0.300820 + 0.953681i \(0.402740\pi\)
\(380\) 1.42758e6 0.507155
\(381\) 0 0
\(382\) −3.30905e6 −1.16023
\(383\) −488528. −0.170174 −0.0850869 0.996374i \(-0.527117\pi\)
−0.0850869 + 0.996374i \(0.527117\pi\)
\(384\) 0 0
\(385\) 282238. 0.0970430
\(386\) −3.82282e6 −1.30592
\(387\) 0 0
\(388\) 3.11677e6 1.05106
\(389\) −2.21813e6 −0.743211 −0.371606 0.928391i \(-0.621193\pi\)
−0.371606 + 0.928391i \(0.621193\pi\)
\(390\) 0 0
\(391\) −2.20056e6 −0.727933
\(392\) 115949. 0.0381110
\(393\) 0 0
\(394\) −3.00645e6 −0.975692
\(395\) 1.09339e6 0.352599
\(396\) 0 0
\(397\) −1.14498e6 −0.364605 −0.182303 0.983242i \(-0.558355\pi\)
−0.182303 + 0.983242i \(0.558355\pi\)
\(398\) −4.95038e6 −1.56650
\(399\) 0 0
\(400\) 2.67838e6 0.836992
\(401\) 2.35583e6 0.731614 0.365807 0.930691i \(-0.380793\pi\)
0.365807 + 0.930691i \(0.380793\pi\)
\(402\) 0 0
\(403\) 4.88100e6 1.49709
\(404\) −2.87038e6 −0.874956
\(405\) 0 0
\(406\) −61793.6 −0.0186049
\(407\) −2.03474e6 −0.608867
\(408\) 0 0
\(409\) 4.22519e6 1.24893 0.624465 0.781053i \(-0.285317\pi\)
0.624465 + 0.781053i \(0.285317\pi\)
\(410\) −2.31057e6 −0.678829
\(411\) 0 0
\(412\) −3.98803e6 −1.15748
\(413\) −1.15415e6 −0.332956
\(414\) 0 0
\(415\) −1.89996e6 −0.541533
\(416\) −6.91742e6 −1.95980
\(417\) 0 0
\(418\) −3.28988e6 −0.920958
\(419\) 1.97909e6 0.550720 0.275360 0.961341i \(-0.411203\pi\)
0.275360 + 0.961341i \(0.411203\pi\)
\(420\) 0 0
\(421\) 2.09756e6 0.576780 0.288390 0.957513i \(-0.406880\pi\)
0.288390 + 0.957513i \(0.406880\pi\)
\(422\) −3.56078e6 −0.973338
\(423\) 0 0
\(424\) 263528. 0.0711887
\(425\) 2.53926e6 0.681923
\(426\) 0 0
\(427\) 674259. 0.178961
\(428\) −4.23071e6 −1.11636
\(429\) 0 0
\(430\) 107460. 0.0280268
\(431\) −4.31651e6 −1.11928 −0.559641 0.828735i \(-0.689061\pi\)
−0.559641 + 0.828735i \(0.689061\pi\)
\(432\) 0 0
\(433\) −4.01768e6 −1.02981 −0.514903 0.857249i \(-0.672172\pi\)
−0.514903 + 0.857249i \(0.672172\pi\)
\(434\) 3.54309e6 0.902939
\(435\) 0 0
\(436\) −3.75950e6 −0.947139
\(437\) −5.10381e6 −1.27847
\(438\) 0 0
\(439\) 5.11191e6 1.26597 0.632983 0.774166i \(-0.281830\pi\)
0.632983 + 0.774166i \(0.281830\pi\)
\(440\) −39022.5 −0.00960912
\(441\) 0 0
\(442\) −6.29389e6 −1.53237
\(443\) 2.47932e6 0.600237 0.300119 0.953902i \(-0.402974\pi\)
0.300119 + 0.953902i \(0.402974\pi\)
\(444\) 0 0
\(445\) −2.00263e6 −0.479403
\(446\) 7.90482e6 1.88172
\(447\) 0 0
\(448\) −2.65933e6 −0.626004
\(449\) 3.76384e6 0.881080 0.440540 0.897733i \(-0.354787\pi\)
0.440540 + 0.897733i \(0.354787\pi\)
\(450\) 0 0
\(451\) 2.71488e6 0.628505
\(452\) 3.12888e6 0.720348
\(453\) 0 0
\(454\) −8.89888e6 −2.02626
\(455\) 1.25232e6 0.283588
\(456\) 0 0
\(457\) 4.58365e6 1.02665 0.513323 0.858195i \(-0.328414\pi\)
0.513323 + 0.858195i \(0.328414\pi\)
\(458\) 767927. 0.171063
\(459\) 0 0
\(460\) −1.56542e6 −0.344934
\(461\) 7.02513e6 1.53958 0.769790 0.638298i \(-0.220361\pi\)
0.769790 + 0.638298i \(0.220361\pi\)
\(462\) 0 0
\(463\) −6.97639e6 −1.51244 −0.756220 0.654317i \(-0.772956\pi\)
−0.756220 + 0.654317i \(0.772956\pi\)
\(464\) −99740.5 −0.0215068
\(465\) 0 0
\(466\) −8.70176e6 −1.85628
\(467\) 622520. 0.132087 0.0660437 0.997817i \(-0.478962\pi\)
0.0660437 + 0.997817i \(0.478962\pi\)
\(468\) 0 0
\(469\) −4.60748e6 −0.967233
\(470\) 4.56873e6 0.954005
\(471\) 0 0
\(472\) 159574. 0.0329691
\(473\) −126263. −0.0259491
\(474\) 0 0
\(475\) 5.88936e6 1.19766
\(476\) −2.32939e6 −0.471221
\(477\) 0 0
\(478\) 1.01611e7 2.03409
\(479\) 2.84674e6 0.566903 0.283452 0.958987i \(-0.408520\pi\)
0.283452 + 0.958987i \(0.408520\pi\)
\(480\) 0 0
\(481\) −9.02834e6 −1.77928
\(482\) −5.22361e6 −1.02412
\(483\) 0 0
\(484\) −4.17533e6 −0.810172
\(485\) −1.86130e6 −0.359304
\(486\) 0 0
\(487\) 3.37660e6 0.645146 0.322573 0.946545i \(-0.395452\pi\)
0.322573 + 0.946545i \(0.395452\pi\)
\(488\) −93223.7 −0.0177205
\(489\) 0 0
\(490\) −1.79051e6 −0.336889
\(491\) 6.92796e6 1.29689 0.648443 0.761263i \(-0.275421\pi\)
0.648443 + 0.761263i \(0.275421\pi\)
\(492\) 0 0
\(493\) −94560.0 −0.0175223
\(494\) −1.45975e7 −2.69130
\(495\) 0 0
\(496\) 5.71888e6 1.04377
\(497\) −383996. −0.0697326
\(498\) 0 0
\(499\) −2.56810e6 −0.461700 −0.230850 0.972989i \(-0.574151\pi\)
−0.230850 + 0.972989i \(0.574151\pi\)
\(500\) 3.87421e6 0.693039
\(501\) 0 0
\(502\) −378995. −0.0671234
\(503\) −2.64801e6 −0.466659 −0.233330 0.972398i \(-0.574962\pi\)
−0.233330 + 0.972398i \(0.574962\pi\)
\(504\) 0 0
\(505\) 1.71416e6 0.299104
\(506\) 3.60754e6 0.626375
\(507\) 0 0
\(508\) 1.55608e6 0.267530
\(509\) −1.32297e6 −0.226337 −0.113169 0.993576i \(-0.536100\pi\)
−0.113169 + 0.993576i \(0.536100\pi\)
\(510\) 0 0
\(511\) 2.66253e6 0.451068
\(512\) −8.43144e6 −1.42143
\(513\) 0 0
\(514\) −4.92198e6 −0.821736
\(515\) 2.38160e6 0.395686
\(516\) 0 0
\(517\) −5.36816e6 −0.883281
\(518\) −6.55362e6 −1.07314
\(519\) 0 0
\(520\) −173147. −0.0280806
\(521\) 3.30481e6 0.533399 0.266699 0.963780i \(-0.414067\pi\)
0.266699 + 0.963780i \(0.414067\pi\)
\(522\) 0 0
\(523\) 7.01628e6 1.12164 0.560819 0.827939i \(-0.310487\pi\)
0.560819 + 0.827939i \(0.310487\pi\)
\(524\) −4.03771e6 −0.642402
\(525\) 0 0
\(526\) 6.60282e6 1.04055
\(527\) 5.42184e6 0.850394
\(528\) 0 0
\(529\) −839739. −0.130468
\(530\) −4.06947e6 −0.629286
\(531\) 0 0
\(532\) −5.40260e6 −0.827607
\(533\) 1.20462e7 1.83667
\(534\) 0 0
\(535\) 2.52653e6 0.381628
\(536\) 637034. 0.0957746
\(537\) 0 0
\(538\) 8.59939e6 1.28089
\(539\) 2.10382e6 0.311915
\(540\) 0 0
\(541\) −5.60437e6 −0.823254 −0.411627 0.911352i \(-0.635039\pi\)
−0.411627 + 0.911352i \(0.635039\pi\)
\(542\) −1.07240e7 −1.56804
\(543\) 0 0
\(544\) −7.68391e6 −1.11323
\(545\) 2.24513e6 0.323780
\(546\) 0 0
\(547\) −1.37033e6 −0.195819 −0.0979096 0.995195i \(-0.531216\pi\)
−0.0979096 + 0.995195i \(0.531216\pi\)
\(548\) −8.06162e6 −1.14676
\(549\) 0 0
\(550\) −4.16279e6 −0.586784
\(551\) −219315. −0.0307744
\(552\) 0 0
\(553\) −4.13787e6 −0.575392
\(554\) −1.50627e7 −2.08511
\(555\) 0 0
\(556\) −1.12715e7 −1.54631
\(557\) −2.14503e6 −0.292951 −0.146476 0.989214i \(-0.546793\pi\)
−0.146476 + 0.989214i \(0.546793\pi\)
\(558\) 0 0
\(559\) −560241. −0.0758308
\(560\) 1.46729e6 0.197719
\(561\) 0 0
\(562\) −3.66464e6 −0.489430
\(563\) 1.29272e7 1.71883 0.859415 0.511279i \(-0.170828\pi\)
0.859415 + 0.511279i \(0.170828\pi\)
\(564\) 0 0
\(565\) −1.86853e6 −0.246251
\(566\) −1.27193e6 −0.166887
\(567\) 0 0
\(568\) 53091.7 0.00690487
\(569\) −1.89376e6 −0.245214 −0.122607 0.992455i \(-0.539125\pi\)
−0.122607 + 0.992455i \(0.539125\pi\)
\(570\) 0 0
\(571\) −5.54404e6 −0.711600 −0.355800 0.934562i \(-0.615792\pi\)
−0.355800 + 0.934562i \(0.615792\pi\)
\(572\) 5.26073e6 0.672289
\(573\) 0 0
\(574\) 8.74426e6 1.10775
\(575\) −6.45801e6 −0.814571
\(576\) 0 0
\(577\) 7.90126e6 0.988000 0.494000 0.869462i \(-0.335534\pi\)
0.494000 + 0.869462i \(0.335534\pi\)
\(578\) 4.48124e6 0.557929
\(579\) 0 0
\(580\) −67267.4 −0.00830299
\(581\) 7.19032e6 0.883706
\(582\) 0 0
\(583\) 4.78154e6 0.582635
\(584\) −368123. −0.0446644
\(585\) 0 0
\(586\) −2.28608e7 −2.75009
\(587\) −1.54646e7 −1.85243 −0.926216 0.376993i \(-0.876958\pi\)
−0.926216 + 0.376993i \(0.876958\pi\)
\(588\) 0 0
\(589\) 1.25750e7 1.49355
\(590\) −2.46419e6 −0.291436
\(591\) 0 0
\(592\) −1.05781e7 −1.24052
\(593\) 6.33686e6 0.740009 0.370005 0.929030i \(-0.379356\pi\)
0.370005 + 0.929030i \(0.379356\pi\)
\(594\) 0 0
\(595\) 1.39108e6 0.161087
\(596\) 2.55371e6 0.294480
\(597\) 0 0
\(598\) 1.60070e7 1.83045
\(599\) 7.43389e6 0.846543 0.423272 0.906003i \(-0.360882\pi\)
0.423272 + 0.906003i \(0.360882\pi\)
\(600\) 0 0
\(601\) 1.11862e7 1.26327 0.631636 0.775265i \(-0.282384\pi\)
0.631636 + 0.775265i \(0.282384\pi\)
\(602\) −406676. −0.0457359
\(603\) 0 0
\(604\) 1.13847e7 1.26978
\(605\) 2.49346e6 0.276958
\(606\) 0 0
\(607\) −226968. −0.0250031 −0.0125015 0.999922i \(-0.503979\pi\)
−0.0125015 + 0.999922i \(0.503979\pi\)
\(608\) −1.78214e7 −1.95517
\(609\) 0 0
\(610\) 1.43959e6 0.156644
\(611\) −2.38191e7 −2.58120
\(612\) 0 0
\(613\) 9.81295e6 1.05475 0.527373 0.849634i \(-0.323177\pi\)
0.527373 + 0.849634i \(0.323177\pi\)
\(614\) 1.00593e6 0.107682
\(615\) 0 0
\(616\) 147679. 0.0156808
\(617\) −1.02365e7 −1.08253 −0.541263 0.840853i \(-0.682054\pi\)
−0.541263 + 0.840853i \(0.682054\pi\)
\(618\) 0 0
\(619\) 2.70809e6 0.284077 0.142038 0.989861i \(-0.454634\pi\)
0.142038 + 0.989861i \(0.454634\pi\)
\(620\) 3.85695e6 0.402962
\(621\) 0 0
\(622\) 1.62899e7 1.68827
\(623\) 7.57886e6 0.782319
\(624\) 0 0
\(625\) 6.21710e6 0.636631
\(626\) −1.90101e7 −1.93887
\(627\) 0 0
\(628\) −1.48765e6 −0.150522
\(629\) −1.00287e7 −1.01069
\(630\) 0 0
\(631\) −1.32666e7 −1.32644 −0.663219 0.748426i \(-0.730810\pi\)
−0.663219 + 0.748426i \(0.730810\pi\)
\(632\) 572106. 0.0569749
\(633\) 0 0
\(634\) −4.53264e6 −0.447845
\(635\) −929272. −0.0914552
\(636\) 0 0
\(637\) 9.33485e6 0.911504
\(638\) 155019. 0.0150776
\(639\) 0 0
\(640\) −423116. −0.0408329
\(641\) −1.64583e7 −1.58212 −0.791062 0.611736i \(-0.790472\pi\)
−0.791062 + 0.611736i \(0.790472\pi\)
\(642\) 0 0
\(643\) 8.89619e6 0.848549 0.424274 0.905534i \(-0.360529\pi\)
0.424274 + 0.905534i \(0.360529\pi\)
\(644\) 5.92425e6 0.562884
\(645\) 0 0
\(646\) −1.62150e7 −1.52875
\(647\) −8.09399e6 −0.760154 −0.380077 0.924955i \(-0.624103\pi\)
−0.380077 + 0.924955i \(0.624103\pi\)
\(648\) 0 0
\(649\) 2.89537e6 0.269831
\(650\) −1.84707e7 −1.71475
\(651\) 0 0
\(652\) −3.41938e6 −0.315013
\(653\) 9.10846e6 0.835914 0.417957 0.908467i \(-0.362746\pi\)
0.417957 + 0.908467i \(0.362746\pi\)
\(654\) 0 0
\(655\) 2.41127e6 0.219605
\(656\) 1.41140e7 1.28054
\(657\) 0 0
\(658\) −1.72901e7 −1.55680
\(659\) −9.01616e6 −0.808739 −0.404369 0.914596i \(-0.632509\pi\)
−0.404369 + 0.914596i \(0.632509\pi\)
\(660\) 0 0
\(661\) 1.02778e7 0.914944 0.457472 0.889224i \(-0.348755\pi\)
0.457472 + 0.889224i \(0.348755\pi\)
\(662\) −1.51919e7 −1.34731
\(663\) 0 0
\(664\) −994139. −0.0875038
\(665\) 3.22637e6 0.282918
\(666\) 0 0
\(667\) 240491. 0.0209307
\(668\) 1.72379e6 0.149466
\(669\) 0 0
\(670\) −9.83726e6 −0.846618
\(671\) −1.69149e6 −0.145031
\(672\) 0 0
\(673\) 3.36561e6 0.286435 0.143217 0.989691i \(-0.454255\pi\)
0.143217 + 0.989691i \(0.454255\pi\)
\(674\) −3.22842e7 −2.73742
\(675\) 0 0
\(676\) 1.09831e7 0.924392
\(677\) 7.88871e6 0.661507 0.330753 0.943717i \(-0.392697\pi\)
0.330753 + 0.943717i \(0.392697\pi\)
\(678\) 0 0
\(679\) 7.04400e6 0.586334
\(680\) −192333. −0.0159507
\(681\) 0 0
\(682\) −8.88841e6 −0.731751
\(683\) 1.11301e7 0.912952 0.456476 0.889736i \(-0.349111\pi\)
0.456476 + 0.889736i \(0.349111\pi\)
\(684\) 0 0
\(685\) 4.81430e6 0.392019
\(686\) 1.69925e7 1.37863
\(687\) 0 0
\(688\) −656412. −0.0528695
\(689\) 2.12162e7 1.70263
\(690\) 0 0
\(691\) −7.05092e6 −0.561760 −0.280880 0.959743i \(-0.590626\pi\)
−0.280880 + 0.959743i \(0.590626\pi\)
\(692\) −1.09646e7 −0.870415
\(693\) 0 0
\(694\) 1.08766e7 0.857222
\(695\) 6.73122e6 0.528605
\(696\) 0 0
\(697\) 1.33810e7 1.04329
\(698\) 2.13087e7 1.65546
\(699\) 0 0
\(700\) −6.83609e6 −0.527306
\(701\) −7.27260e6 −0.558978 −0.279489 0.960149i \(-0.590165\pi\)
−0.279489 + 0.960149i \(0.590165\pi\)
\(702\) 0 0
\(703\) −2.32598e7 −1.77508
\(704\) 6.67135e6 0.507320
\(705\) 0 0
\(706\) 3.63144e7 2.74199
\(707\) −6.48715e6 −0.488096
\(708\) 0 0
\(709\) −1.96896e7 −1.47103 −0.735516 0.677508i \(-0.763060\pi\)
−0.735516 + 0.677508i \(0.763060\pi\)
\(710\) −819857. −0.0610369
\(711\) 0 0
\(712\) −1.04786e6 −0.0774646
\(713\) −1.37892e7 −1.01581
\(714\) 0 0
\(715\) −3.14164e6 −0.229822
\(716\) 1.08315e7 0.789598
\(717\) 0 0
\(718\) 8.49312e6 0.614831
\(719\) 7.95574e6 0.573929 0.286965 0.957941i \(-0.407354\pi\)
0.286965 + 0.957941i \(0.407354\pi\)
\(720\) 0 0
\(721\) −9.01306e6 −0.645705
\(722\) −1.76008e7 −1.25658
\(723\) 0 0
\(724\) −7.54671e6 −0.535071
\(725\) −277506. −0.0196077
\(726\) 0 0
\(727\) 6.36487e6 0.446636 0.223318 0.974746i \(-0.428311\pi\)
0.223318 + 0.974746i \(0.428311\pi\)
\(728\) 655267. 0.0458236
\(729\) 0 0
\(730\) 5.68467e6 0.394819
\(731\) −622318. −0.0430744
\(732\) 0 0
\(733\) 2.56360e7 1.76234 0.881171 0.472797i \(-0.156756\pi\)
0.881171 + 0.472797i \(0.156756\pi\)
\(734\) 1.38409e7 0.948250
\(735\) 0 0
\(736\) 1.95422e7 1.32978
\(737\) 1.15586e7 0.783855
\(738\) 0 0
\(739\) −6.62218e6 −0.446057 −0.223028 0.974812i \(-0.571594\pi\)
−0.223028 + 0.974812i \(0.571594\pi\)
\(740\) −7.13415e6 −0.478920
\(741\) 0 0
\(742\) 1.54007e7 1.02691
\(743\) 359954. 0.0239207 0.0119604 0.999928i \(-0.496193\pi\)
0.0119604 + 0.999928i \(0.496193\pi\)
\(744\) 0 0
\(745\) −1.52504e6 −0.100668
\(746\) 3.87831e7 2.55150
\(747\) 0 0
\(748\) 5.84364e6 0.381882
\(749\) −9.56153e6 −0.622763
\(750\) 0 0
\(751\) 5.19498e6 0.336112 0.168056 0.985777i \(-0.446251\pi\)
0.168056 + 0.985777i \(0.446251\pi\)
\(752\) −2.79079e7 −1.79963
\(753\) 0 0
\(754\) 687835. 0.0440612
\(755\) −6.79881e6 −0.434076
\(756\) 0 0
\(757\) 6.85707e6 0.434909 0.217455 0.976070i \(-0.430225\pi\)
0.217455 + 0.976070i \(0.430225\pi\)
\(758\) −1.35941e7 −0.859362
\(759\) 0 0
\(760\) −446081. −0.0280143
\(761\) −1.13668e7 −0.711502 −0.355751 0.934581i \(-0.615775\pi\)
−0.355751 + 0.934581i \(0.615775\pi\)
\(762\) 0 0
\(763\) −8.49658e6 −0.528364
\(764\) 1.36323e7 0.844957
\(765\) 0 0
\(766\) 3.94734e6 0.243070
\(767\) 1.28470e7 0.788524
\(768\) 0 0
\(769\) 4.13692e6 0.252268 0.126134 0.992013i \(-0.459743\pi\)
0.126134 + 0.992013i \(0.459743\pi\)
\(770\) −2.28050e6 −0.138613
\(771\) 0 0
\(772\) 1.57488e7 0.951054
\(773\) 1.54856e6 0.0932136 0.0466068 0.998913i \(-0.485159\pi\)
0.0466068 + 0.998913i \(0.485159\pi\)
\(774\) 0 0
\(775\) 1.59115e7 0.951607
\(776\) −973910. −0.0580583
\(777\) 0 0
\(778\) 1.79226e7 1.06158
\(779\) 3.10347e7 1.83233
\(780\) 0 0
\(781\) 963315. 0.0565120
\(782\) 1.77807e7 1.03975
\(783\) 0 0
\(784\) 1.09373e7 0.635505
\(785\) 888404. 0.0514560
\(786\) 0 0
\(787\) −2.35939e7 −1.35788 −0.678941 0.734192i \(-0.737561\pi\)
−0.678941 + 0.734192i \(0.737561\pi\)
\(788\) 1.23856e7 0.710562
\(789\) 0 0
\(790\) −8.83462e6 −0.503640
\(791\) 7.07135e6 0.401848
\(792\) 0 0
\(793\) −7.50529e6 −0.423823
\(794\) 9.25153e6 0.520789
\(795\) 0 0
\(796\) 2.03940e7 1.14083
\(797\) −1.02305e7 −0.570494 −0.285247 0.958454i \(-0.592076\pi\)
−0.285247 + 0.958454i \(0.592076\pi\)
\(798\) 0 0
\(799\) −2.64583e7 −1.46621
\(800\) −2.25500e7 −1.24573
\(801\) 0 0
\(802\) −1.90352e7 −1.04501
\(803\) −6.67937e6 −0.365550
\(804\) 0 0
\(805\) −3.53789e6 −0.192422
\(806\) −3.94388e7 −2.13838
\(807\) 0 0
\(808\) 896919. 0.0483309
\(809\) 2.67937e7 1.43933 0.719667 0.694319i \(-0.244294\pi\)
0.719667 + 0.694319i \(0.244294\pi\)
\(810\) 0 0
\(811\) −3.77636e6 −0.201614 −0.100807 0.994906i \(-0.532142\pi\)
−0.100807 + 0.994906i \(0.532142\pi\)
\(812\) 254570. 0.0135493
\(813\) 0 0
\(814\) 1.64408e7 0.869684
\(815\) 2.04201e6 0.107687
\(816\) 0 0
\(817\) −1.44336e6 −0.0756516
\(818\) −3.41398e7 −1.78393
\(819\) 0 0
\(820\) 9.51884e6 0.494367
\(821\) −2.57812e7 −1.33489 −0.667444 0.744660i \(-0.732612\pi\)
−0.667444 + 0.744660i \(0.732612\pi\)
\(822\) 0 0
\(823\) −1.23986e7 −0.638077 −0.319038 0.947742i \(-0.603360\pi\)
−0.319038 + 0.947742i \(0.603360\pi\)
\(824\) 1.24615e6 0.0639372
\(825\) 0 0
\(826\) 9.32560e6 0.475583
\(827\) 1.27739e6 0.0649469 0.0324734 0.999473i \(-0.489662\pi\)
0.0324734 + 0.999473i \(0.489662\pi\)
\(828\) 0 0
\(829\) −1.57808e7 −0.797520 −0.398760 0.917055i \(-0.630559\pi\)
−0.398760 + 0.917055i \(0.630559\pi\)
\(830\) 1.53518e7 0.773506
\(831\) 0 0
\(832\) 2.96015e7 1.48253
\(833\) 1.03692e7 0.517765
\(834\) 0 0
\(835\) −1.02943e6 −0.0510951
\(836\) 1.35533e7 0.670701
\(837\) 0 0
\(838\) −1.59912e7 −0.786629
\(839\) 3.66378e7 1.79690 0.898452 0.439073i \(-0.144693\pi\)
0.898452 + 0.439073i \(0.144693\pi\)
\(840\) 0 0
\(841\) −2.05008e7 −0.999496
\(842\) −1.69484e7 −0.823853
\(843\) 0 0
\(844\) 1.46693e7 0.708848
\(845\) −6.55895e6 −0.316004
\(846\) 0 0
\(847\) −9.43637e6 −0.451956
\(848\) 2.48582e7 1.18708
\(849\) 0 0
\(850\) −2.05174e7 −0.974035
\(851\) 2.55057e7 1.20729
\(852\) 0 0
\(853\) 6.09754e6 0.286934 0.143467 0.989655i \(-0.454175\pi\)
0.143467 + 0.989655i \(0.454175\pi\)
\(854\) −5.44805e6 −0.255621
\(855\) 0 0
\(856\) 1.32199e6 0.0616655
\(857\) 3.38239e7 1.57315 0.786577 0.617493i \(-0.211851\pi\)
0.786577 + 0.617493i \(0.211851\pi\)
\(858\) 0 0
\(859\) 4.59291e6 0.212376 0.106188 0.994346i \(-0.466135\pi\)
0.106188 + 0.994346i \(0.466135\pi\)
\(860\) −442700. −0.0204110
\(861\) 0 0
\(862\) 3.48777e7 1.59874
\(863\) 4.00578e7 1.83088 0.915441 0.402451i \(-0.131842\pi\)
0.915441 + 0.402451i \(0.131842\pi\)
\(864\) 0 0
\(865\) 6.54791e6 0.297552
\(866\) 3.24630e7 1.47094
\(867\) 0 0
\(868\) −1.45964e7 −0.657578
\(869\) 1.03805e7 0.466304
\(870\) 0 0
\(871\) 5.12866e7 2.29065
\(872\) 1.17474e6 0.0523181
\(873\) 0 0
\(874\) 4.12390e7 1.82612
\(875\) 8.75582e6 0.386613
\(876\) 0 0
\(877\) 2.80438e7 1.23123 0.615613 0.788048i \(-0.288908\pi\)
0.615613 + 0.788048i \(0.288908\pi\)
\(878\) −4.13045e7 −1.80826
\(879\) 0 0
\(880\) −3.68094e6 −0.160233
\(881\) 9.07614e6 0.393969 0.196984 0.980407i \(-0.436885\pi\)
0.196984 + 0.980407i \(0.436885\pi\)
\(882\) 0 0
\(883\) 2.73153e7 1.17897 0.589486 0.807779i \(-0.299330\pi\)
0.589486 + 0.807779i \(0.299330\pi\)
\(884\) 2.59288e7 1.11597
\(885\) 0 0
\(886\) −2.00330e7 −0.857358
\(887\) 3.68421e7 1.57230 0.786151 0.618035i \(-0.212071\pi\)
0.786151 + 0.618035i \(0.212071\pi\)
\(888\) 0 0
\(889\) 3.51679e6 0.149242
\(890\) 1.61814e7 0.684763
\(891\) 0 0
\(892\) −3.25654e7 −1.37039
\(893\) −6.13654e7 −2.57510
\(894\) 0 0
\(895\) −6.46844e6 −0.269924
\(896\) 1.60126e6 0.0666336
\(897\) 0 0
\(898\) −3.04121e7 −1.25850
\(899\) −592532. −0.0244519
\(900\) 0 0
\(901\) 2.35670e7 0.967149
\(902\) −2.19364e7 −0.897735
\(903\) 0 0
\(904\) −977692. −0.0397906
\(905\) 4.50681e6 0.182914
\(906\) 0 0
\(907\) −3.88618e7 −1.56857 −0.784287 0.620398i \(-0.786971\pi\)
−0.784287 + 0.620398i \(0.786971\pi\)
\(908\) 3.66606e7 1.47565
\(909\) 0 0
\(910\) −1.01188e7 −0.405067
\(911\) 3.05722e7 1.22048 0.610240 0.792217i \(-0.291073\pi\)
0.610240 + 0.792217i \(0.291073\pi\)
\(912\) 0 0
\(913\) −1.80380e7 −0.716164
\(914\) −3.70361e7 −1.46643
\(915\) 0 0
\(916\) −3.16362e6 −0.124579
\(917\) −9.12534e6 −0.358365
\(918\) 0 0
\(919\) −4.08434e6 −0.159527 −0.0797633 0.996814i \(-0.525416\pi\)
−0.0797633 + 0.996814i \(0.525416\pi\)
\(920\) 489152. 0.0190535
\(921\) 0 0
\(922\) −5.67634e7 −2.19908
\(923\) 4.27433e6 0.165144
\(924\) 0 0
\(925\) −2.94314e7 −1.13098
\(926\) 5.63696e7 2.16032
\(927\) 0 0
\(928\) 839745. 0.0320094
\(929\) 2.37671e7 0.903517 0.451758 0.892140i \(-0.350797\pi\)
0.451758 + 0.892140i \(0.350797\pi\)
\(930\) 0 0
\(931\) 2.40495e7 0.909351
\(932\) 3.58485e7 1.35186
\(933\) 0 0
\(934\) −5.03000e6 −0.188669
\(935\) −3.48975e6 −0.130547
\(936\) 0 0
\(937\) −1.24958e7 −0.464958 −0.232479 0.972601i \(-0.574684\pi\)
−0.232479 + 0.972601i \(0.574684\pi\)
\(938\) 3.72287e7 1.38156
\(939\) 0 0
\(940\) −1.88217e7 −0.694768
\(941\) −6.64744e6 −0.244726 −0.122363 0.992485i \(-0.539047\pi\)
−0.122363 + 0.992485i \(0.539047\pi\)
\(942\) 0 0
\(943\) −3.40313e7 −1.24623
\(944\) 1.50524e7 0.549762
\(945\) 0 0
\(946\) 1.02021e6 0.0370648
\(947\) −4.32942e6 −0.156875 −0.0784377 0.996919i \(-0.524993\pi\)
−0.0784377 + 0.996919i \(0.524993\pi\)
\(948\) 0 0
\(949\) −2.96370e7 −1.06824
\(950\) −4.75864e7 −1.71070
\(951\) 0 0
\(952\) 727873. 0.0260294
\(953\) −4.06536e7 −1.44999 −0.724997 0.688752i \(-0.758159\pi\)
−0.724997 + 0.688752i \(0.758159\pi\)
\(954\) 0 0
\(955\) −8.14102e6 −0.288849
\(956\) −4.18605e7 −1.48136
\(957\) 0 0
\(958\) −2.30018e7 −0.809745
\(959\) −1.82195e7 −0.639720
\(960\) 0 0
\(961\) 5.34522e6 0.186705
\(962\) 7.29495e7 2.54147
\(963\) 0 0
\(964\) 2.15196e7 0.745834
\(965\) −9.40502e6 −0.325118
\(966\) 0 0
\(967\) −2.92765e7 −1.00682 −0.503411 0.864047i \(-0.667922\pi\)
−0.503411 + 0.864047i \(0.667922\pi\)
\(968\) 1.30468e6 0.0447523
\(969\) 0 0
\(970\) 1.50394e7 0.513217
\(971\) −2.51690e6 −0.0856677 −0.0428338 0.999082i \(-0.513639\pi\)
−0.0428338 + 0.999082i \(0.513639\pi\)
\(972\) 0 0
\(973\) −2.54740e7 −0.862610
\(974\) −2.72831e7 −0.921504
\(975\) 0 0
\(976\) −8.79365e6 −0.295491
\(977\) 2.91375e7 0.976599 0.488300 0.872676i \(-0.337617\pi\)
0.488300 + 0.872676i \(0.337617\pi\)
\(978\) 0 0
\(979\) −1.90128e7 −0.633999
\(980\) 7.37635e6 0.245345
\(981\) 0 0
\(982\) −5.59783e7 −1.85243
\(983\) 4.98825e6 0.164651 0.0823254 0.996605i \(-0.473765\pi\)
0.0823254 + 0.996605i \(0.473765\pi\)
\(984\) 0 0
\(985\) −7.39654e6 −0.242906
\(986\) 764050. 0.0250282
\(987\) 0 0
\(988\) 6.01373e7 1.95998
\(989\) 1.58272e6 0.0514533
\(990\) 0 0
\(991\) 1.19267e7 0.385778 0.192889 0.981221i \(-0.438214\pi\)
0.192889 + 0.981221i \(0.438214\pi\)
\(992\) −4.81489e7 −1.55349
\(993\) 0 0
\(994\) 3.10271e6 0.0996037
\(995\) −1.21791e7 −0.389993
\(996\) 0 0
\(997\) −2.01817e6 −0.0643014 −0.0321507 0.999483i \(-0.510236\pi\)
−0.0321507 + 0.999483i \(0.510236\pi\)
\(998\) 2.07504e7 0.659477
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.6.a.e.1.8 42
3.2 odd 2 729.6.a.c.1.35 42
27.5 odd 18 27.6.e.a.25.12 yes 84
27.11 odd 18 27.6.e.a.13.12 84
27.16 even 9 81.6.e.a.10.3 84
27.22 even 9 81.6.e.a.73.3 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.6.e.a.13.12 84 27.11 odd 18
27.6.e.a.25.12 yes 84 27.5 odd 18
81.6.e.a.10.3 84 27.16 even 9
81.6.e.a.73.3 84 27.22 even 9
729.6.a.c.1.35 42 3.2 odd 2
729.6.a.e.1.8 42 1.1 even 1 trivial