Properties

Label 2-3e6-1.1-c5-0-15
Degree $2$
Conductor $729$
Sign $1$
Analytic cond. $116.919$
Root an. cond. $10.8129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.08·2-s + 33.2·4-s − 19.8·5-s + 75.2·7-s − 10.4·8-s + 160.·10-s − 188.·11-s − 837.·13-s − 607.·14-s − 981.·16-s − 930.·17-s − 2.15e3·19-s − 661.·20-s + 1.52e3·22-s + 2.36e3·23-s − 2.72e3·25-s + 6.76e3·26-s + 2.50e3·28-s + 101.·29-s − 5.82e3·31-s + 8.26e3·32-s + 7.51e3·34-s − 1.49e3·35-s + 1.07e4·37-s + 1.74e4·38-s + 206.·40-s − 1.43e4·41-s + ⋯
L(s)  = 1  − 1.42·2-s + 1.04·4-s − 0.355·5-s + 0.580·7-s − 0.0574·8-s + 0.507·10-s − 0.470·11-s − 1.37·13-s − 0.828·14-s − 0.958·16-s − 0.780·17-s − 1.37·19-s − 0.369·20-s + 0.671·22-s + 0.932·23-s − 0.873·25-s + 1.96·26-s + 0.603·28-s + 0.0224·29-s − 1.08·31-s + 1.42·32-s + 1.11·34-s − 0.206·35-s + 1.29·37-s + 1.95·38-s + 0.0204·40-s − 1.33·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(116.919\)
Root analytic conductor: \(10.8129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3026136596\)
\(L(\frac12)\) \(\approx\) \(0.3026136596\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 8.08T + 32T^{2} \)
5 \( 1 + 19.8T + 3.12e3T^{2} \)
7 \( 1 - 75.2T + 1.68e4T^{2} \)
11 \( 1 + 188.T + 1.61e5T^{2} \)
13 \( 1 + 837.T + 3.71e5T^{2} \)
17 \( 1 + 930.T + 1.41e6T^{2} \)
19 \( 1 + 2.15e3T + 2.47e6T^{2} \)
23 \( 1 - 2.36e3T + 6.43e6T^{2} \)
29 \( 1 - 101.T + 2.05e7T^{2} \)
31 \( 1 + 5.82e3T + 2.86e7T^{2} \)
37 \( 1 - 1.07e4T + 6.93e7T^{2} \)
41 \( 1 + 1.43e4T + 1.15e8T^{2} \)
43 \( 1 - 669.T + 1.47e8T^{2} \)
47 \( 1 - 2.84e4T + 2.29e8T^{2} \)
53 \( 1 + 2.53e4T + 4.18e8T^{2} \)
59 \( 1 + 1.53e4T + 7.14e8T^{2} \)
61 \( 1 - 8.96e3T + 8.44e8T^{2} \)
67 \( 1 + 6.12e4T + 1.35e9T^{2} \)
71 \( 1 + 5.10e3T + 1.80e9T^{2} \)
73 \( 1 - 3.53e4T + 2.07e9T^{2} \)
79 \( 1 + 5.50e4T + 3.07e9T^{2} \)
83 \( 1 - 9.55e4T + 3.93e9T^{2} \)
89 \( 1 - 1.00e5T + 5.58e9T^{2} \)
97 \( 1 - 9.36e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.464487449240828901760344446216, −8.843381948233619068357989771424, −7.919970176687126842556039343785, −7.45442017055568498280559029671, −6.49567079651670554034675279192, −5.05261548596759214353551680821, −4.25408781380575844786903132534, −2.55626364816610199163392305984, −1.73322194179309740187532922813, −0.31024839192029521408980662928, 0.31024839192029521408980662928, 1.73322194179309740187532922813, 2.55626364816610199163392305984, 4.25408781380575844786903132534, 5.05261548596759214353551680821, 6.49567079651670554034675279192, 7.45442017055568498280559029671, 7.919970176687126842556039343785, 8.843381948233619068357989771424, 9.464487449240828901760344446216

Graph of the $Z$-function along the critical line