Properties

Label 729.6
Level 729
Weight 6
Dimension 77436
Nonzero newspaces 6
Sturm bound 236196
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 729 = 3^{6} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(236196\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(729))\).

Total New Old
Modular forms 99063 78084 20979
Cusp forms 97767 77436 20331
Eisenstein series 1296 648 648

Trace form

\( 77436 q - 108 q^{2} - 162 q^{3} - 180 q^{4} - 108 q^{5} - 162 q^{6} - 180 q^{7} - 108 q^{8} - 162 q^{9} - 252 q^{10} - 108 q^{11} - 162 q^{12} - 180 q^{13} - 108 q^{14} - 162 q^{15} - 180 q^{16} - 108 q^{17}+ \cdots - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(729))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
729.6.a \(\chi_{729}(1, \cdot)\) 729.6.a.a 24 1
729.6.a.b 24
729.6.a.c 42
729.6.a.d 42
729.6.a.e 42
729.6.c \(\chi_{729}(244, \cdot)\) n/a 348 2
729.6.e \(\chi_{729}(82, \cdot)\) n/a 1062 6
729.6.g \(\chi_{729}(28, \cdot)\) n/a 3168 18
729.6.i \(\chi_{729}(10, \cdot)\) n/a 7236 54
729.6.k \(\chi_{729}(4, \cdot)\) n/a 65448 162

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(729))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(729)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 7}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(243))\)\(^{\oplus 2}\)