Defining parameters
| Level: | \( N \) | = | \( 729 = 3^{6} \) |
| Weight: | \( k \) | = | \( 6 \) |
| Nonzero newspaces: | \( 6 \) | ||
| Sturm bound: | \(236196\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(729))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 99063 | 78084 | 20979 |
| Cusp forms | 97767 | 77436 | 20331 |
| Eisenstein series | 1296 | 648 | 648 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(729))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 729.6.a | \(\chi_{729}(1, \cdot)\) | 729.6.a.a | 24 | 1 |
| 729.6.a.b | 24 | |||
| 729.6.a.c | 42 | |||
| 729.6.a.d | 42 | |||
| 729.6.a.e | 42 | |||
| 729.6.c | \(\chi_{729}(244, \cdot)\) | n/a | 348 | 2 |
| 729.6.e | \(\chi_{729}(82, \cdot)\) | n/a | 1062 | 6 |
| 729.6.g | \(\chi_{729}(28, \cdot)\) | n/a | 3168 | 18 |
| 729.6.i | \(\chi_{729}(10, \cdot)\) | n/a | 7236 | 54 |
| 729.6.k | \(\chi_{729}(4, \cdot)\) | n/a | 65448 | 162 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(729))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(729)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 7}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(243))\)\(^{\oplus 2}\)