Defining parameters
| Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 729.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(486\) | ||
| Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(729))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 423 | 186 | 237 |
| Cusp forms | 387 | 174 | 213 |
| Eisenstein series | 36 | 12 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(207\) | \(90\) | \(117\) | \(189\) | \(84\) | \(105\) | \(18\) | \(6\) | \(12\) | |||
| \(-\) | \(216\) | \(96\) | \(120\) | \(198\) | \(90\) | \(108\) | \(18\) | \(6\) | \(12\) | |||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(729))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
| 729.6.a.a | $24$ | $116.920$ | None | \(-12\) | \(0\) | \(-33\) | \(294\) | $-$ | |||
| 729.6.a.b | $24$ | $116.920$ | None | \(12\) | \(0\) | \(33\) | \(294\) | $-$ | |||
| 729.6.a.c | $42$ | $116.920$ | None | \(-12\) | \(0\) | \(-150\) | \(0\) | $+$ | |||
| 729.6.a.d | $42$ | $116.920$ | None | \(0\) | \(0\) | \(0\) | \(-588\) | $+$ | |||
| 729.6.a.e | $42$ | $116.920$ | None | \(12\) | \(0\) | \(150\) | \(0\) | $-$ | |||
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(729))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(729)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(243))\)\(^{\oplus 2}\)