Properties

Label 729.6.a
Level $729$
Weight $6$
Character orbit 729.a
Rep. character $\chi_{729}(1,\cdot)$
Character field $\Q$
Dimension $174$
Newform subspaces $5$
Sturm bound $486$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(486\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(729))\).

Total New Old
Modular forms 423 186 237
Cusp forms 387 174 213
Eisenstein series 36 12 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(207\)\(90\)\(117\)\(189\)\(84\)\(105\)\(18\)\(6\)\(12\)
\(-\)\(216\)\(96\)\(120\)\(198\)\(90\)\(108\)\(18\)\(6\)\(12\)

Trace form

\( 174 q + 2688 q^{4} + 6 q^{10} + 39936 q^{16} + 6 q^{19} + 192 q^{22} + 93750 q^{25} - 12 q^{28} + 6 q^{37} + 192 q^{40} + 6 q^{46} + 331338 q^{49} + 6144 q^{52} - 12 q^{55} - 384 q^{58} + 63702 q^{61} + 540678 q^{64}+ \cdots + 276426 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(729))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
729.6.a.a 729.a 1.a $24$ $116.920$ None 729.6.a.a \(-12\) \(0\) \(-33\) \(294\) $-$ $\mathrm{SU}(2)$
729.6.a.b 729.a 1.a $24$ $116.920$ None 729.6.a.a \(12\) \(0\) \(33\) \(294\) $-$ $\mathrm{SU}(2)$
729.6.a.c 729.a 1.a $42$ $116.920$ None 27.6.e.a \(-12\) \(0\) \(-150\) \(0\) $+$ $\mathrm{SU}(2)$
729.6.a.d 729.a 1.a $42$ $116.920$ None 729.6.a.d \(0\) \(0\) \(0\) \(-588\) $+$ $\mathrm{SU}(2)$
729.6.a.e 729.a 1.a $42$ $116.920$ None 27.6.e.a \(12\) \(0\) \(150\) \(0\) $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(729))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(729)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(243))\)\(^{\oplus 2}\)