Properties

Label 81.6.e.a.73.3
Level $81$
Weight $6$
Character 81.73
Analytic conductor $12.991$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,6,Mod(10,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.10"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9910894049\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(14\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 73.3
Character \(\chi\) \(=\) 81.73
Dual form 81.6.e.a.10.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40309 + 7.95730i) q^{2} +(-31.2798 - 11.3849i) q^{4} +(-15.2280 + 12.7778i) q^{5} +(-70.6933 + 25.7303i) q^{7} +(5.20070 - 9.00788i) q^{8} +(-80.3108 - 139.102i) q^{10} +(-144.573 - 121.311i) q^{11} +(-145.413 - 824.679i) q^{13} +(-105.555 - 598.630i) q^{14} +(-751.604 - 630.671i) q^{16} +(465.095 + 805.567i) q^{17} +(1078.70 - 1868.37i) q^{19} +(621.804 - 226.318i) q^{20} +(1168.16 - 980.203i) q^{22} +(-2223.04 - 809.122i) q^{23} +(-474.031 + 2688.36i) q^{25} +6766.25 q^{26} +2504.21 q^{28} +(17.6525 - 100.112i) q^{29} +(5477.24 + 1993.55i) q^{31} +(6327.98 - 5309.80i) q^{32} +(-7062.71 + 2570.62i) q^{34} +(747.743 - 1295.13i) q^{35} +(-5390.69 - 9336.95i) q^{37} +(13353.7 + 11205.0i) q^{38} +(35.9047 + 203.626i) q^{40} +(-2497.97 - 14166.7i) q^{41} +(512.502 + 430.040i) q^{43} +(3141.11 + 5440.55i) q^{44} +(9557.55 - 16554.2i) q^{46} +(-26728.7 + 9728.44i) q^{47} +(-8539.41 + 7165.41i) q^{49} +(-20727.0 - 7544.01i) q^{50} +(-4840.41 + 27451.3i) q^{52} -25335.8 q^{53} +3751.66 q^{55} +(-135.880 + 770.613i) q^{56} +(771.857 + 280.933i) q^{58} +(-11752.3 + 9861.37i) q^{59} +(-8422.09 + 3065.39i) q^{61} +(-23548.3 + 40786.9i) q^{62} +(17674.6 + 30613.3i) q^{64} +(12752.0 + 10700.2i) q^{65} +(-10635.1 - 60314.5i) q^{67} +(-5376.75 - 30493.1i) q^{68} +(9256.58 + 7767.19i) q^{70} +(2552.14 + 4420.44i) q^{71} +(-17695.8 + 30650.1i) q^{73} +(81860.5 - 29794.8i) q^{74} +(-55012.9 + 46161.3i) q^{76} +(13341.7 + 4856.00i) q^{77} +(-9551.12 + 54167.1i) q^{79} +19504.0 q^{80} +116233. q^{82} +(16596.8 - 94125.4i) q^{83} +(-17375.9 - 6324.30i) q^{85} +(-4141.04 + 3474.75i) q^{86} +(-1844.64 + 671.394i) q^{88} +(-50371.1 + 87245.3i) q^{89} +(31499.0 + 54557.8i) q^{91} +(60324.6 + 50618.4i) q^{92} +(-39909.5 - 226338. i) q^{94} +(7447.18 + 42235.0i) q^{95} +(71726.7 + 60185.8i) q^{97} +(-45035.8 - 78004.3i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 6 q^{2} - 6 q^{4} + 93 q^{5} - 6 q^{7} - 573 q^{8} - 3 q^{10} - 111 q^{11} - 6 q^{13} + 1641 q^{14} + 90 q^{16} - 3465 q^{17} - 3 q^{19} - 9987 q^{20} - 2850 q^{22} + 7716 q^{23} + 4953 q^{25} + 7806 q^{26}+ \cdots - 463410 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40309 + 7.95730i −0.248033 + 1.40667i 0.565309 + 0.824879i \(0.308757\pi\)
−0.813342 + 0.581786i \(0.802354\pi\)
\(3\) 0 0
\(4\) −31.2798 11.3849i −0.977495 0.355779i
\(5\) −15.2280 + 12.7778i −0.272407 + 0.228577i −0.768749 0.639550i \(-0.779121\pi\)
0.496342 + 0.868127i \(0.334676\pi\)
\(6\) 0 0
\(7\) −70.6933 + 25.7303i −0.545297 + 0.198472i −0.599956 0.800033i \(-0.704815\pi\)
0.0546585 + 0.998505i \(0.482593\pi\)
\(8\) 5.20070 9.00788i 0.0287301 0.0497620i
\(9\) 0 0
\(10\) −80.3108 139.102i −0.253965 0.439880i
\(11\) −144.573 121.311i −0.360252 0.302287i 0.444639 0.895710i \(-0.353332\pi\)
−0.804891 + 0.593423i \(0.797776\pi\)
\(12\) 0 0
\(13\) −145.413 824.679i −0.238641 1.35340i −0.834808 0.550541i \(-0.814422\pi\)
0.596167 0.802860i \(-0.296690\pi\)
\(14\) −105.555 598.630i −0.143932 0.816279i
\(15\) 0 0
\(16\) −751.604 630.671i −0.733988 0.615889i
\(17\) 465.095 + 805.567i 0.390318 + 0.676051i 0.992491 0.122314i \(-0.0390316\pi\)
−0.602173 + 0.798366i \(0.705698\pi\)
\(18\) 0 0
\(19\) 1078.70 1868.37i 0.685517 1.18735i −0.287758 0.957703i \(-0.592910\pi\)
0.973274 0.229646i \(-0.0737569\pi\)
\(20\) 621.804 226.318i 0.347599 0.126516i
\(21\) 0 0
\(22\) 1168.16 980.203i 0.514571 0.431777i
\(23\) −2223.04 809.122i −0.876251 0.318929i −0.135555 0.990770i \(-0.543282\pi\)
−0.740696 + 0.671841i \(0.765504\pi\)
\(24\) 0 0
\(25\) −474.031 + 2688.36i −0.151690 + 0.860276i
\(26\) 6766.25 1.96297
\(27\) 0 0
\(28\) 2504.21 0.603637
\(29\) 17.6525 100.112i 0.00389773 0.0221051i −0.982797 0.184690i \(-0.940872\pi\)
0.986695 + 0.162585i \(0.0519831\pi\)
\(30\) 0 0
\(31\) 5477.24 + 1993.55i 1.02366 + 0.372583i 0.798665 0.601776i \(-0.205540\pi\)
0.224999 + 0.974359i \(0.427762\pi\)
\(32\) 6327.98 5309.80i 1.09242 0.916650i
\(33\) 0 0
\(34\) −7062.71 + 2570.62i −1.04779 + 0.381364i
\(35\) 747.743 1295.13i 0.103177 0.178707i
\(36\) 0 0
\(37\) −5390.69 9336.95i −0.647351 1.12125i −0.983753 0.179527i \(-0.942543\pi\)
0.336402 0.941718i \(-0.390790\pi\)
\(38\) 13353.7 + 11205.0i 1.50017 + 1.25879i
\(39\) 0 0
\(40\) 35.9047 + 203.626i 0.00354815 + 0.0201225i
\(41\) −2497.97 14166.7i −0.232074 1.31616i −0.848689 0.528893i \(-0.822607\pi\)
0.616615 0.787265i \(-0.288504\pi\)
\(42\) 0 0
\(43\) 512.502 + 430.040i 0.0422692 + 0.0354681i 0.663678 0.748019i \(-0.268995\pi\)
−0.621408 + 0.783487i \(0.713439\pi\)
\(44\) 3141.11 + 5440.55i 0.244597 + 0.423654i
\(45\) 0 0
\(46\) 9557.55 16554.2i 0.665966 1.15349i
\(47\) −26728.7 + 9728.44i −1.76495 + 0.642390i −0.999999 0.00169735i \(-0.999460\pi\)
−0.764952 + 0.644087i \(0.777237\pi\)
\(48\) 0 0
\(49\) −8539.41 + 7165.41i −0.508086 + 0.426335i
\(50\) −20727.0 7544.01i −1.17250 0.426754i
\(51\) 0 0
\(52\) −4840.41 + 27451.3i −0.248241 + 1.40785i
\(53\) −25335.8 −1.23892 −0.619461 0.785027i \(-0.712649\pi\)
−0.619461 + 0.785027i \(0.712649\pi\)
\(54\) 0 0
\(55\) 3751.66 0.167231
\(56\) −135.880 + 770.613i −0.00579008 + 0.0328372i
\(57\) 0 0
\(58\) 771.857 + 280.933i 0.0301277 + 0.0109656i
\(59\) −11752.3 + 9861.37i −0.439535 + 0.368814i −0.835535 0.549437i \(-0.814842\pi\)
0.396000 + 0.918250i \(0.370398\pi\)
\(60\) 0 0
\(61\) −8422.09 + 3065.39i −0.289798 + 0.105478i −0.482829 0.875715i \(-0.660391\pi\)
0.193031 + 0.981193i \(0.438168\pi\)
\(62\) −23548.3 + 40786.9i −0.778002 + 1.34754i
\(63\) 0 0
\(64\) 17674.6 + 30613.3i 0.539386 + 0.934244i
\(65\) 12752.0 + 10700.2i 0.374364 + 0.314128i
\(66\) 0 0
\(67\) −10635.1 60314.5i −0.289437 1.64148i −0.688993 0.724768i \(-0.741947\pi\)
0.399556 0.916709i \(-0.369164\pi\)
\(68\) −5376.75 30493.1i −0.141009 0.799703i
\(69\) 0 0
\(70\) 9256.58 + 7767.19i 0.225790 + 0.189461i
\(71\) 2552.14 + 4420.44i 0.0600840 + 0.104068i 0.894503 0.447062i \(-0.147530\pi\)
−0.834419 + 0.551131i \(0.814196\pi\)
\(72\) 0 0
\(73\) −17695.8 + 30650.1i −0.388655 + 0.673170i −0.992269 0.124107i \(-0.960393\pi\)
0.603614 + 0.797277i \(0.293727\pi\)
\(74\) 81860.5 29794.8i 1.73778 0.632501i
\(75\) 0 0
\(76\) −55012.9 + 46161.3i −1.09252 + 0.916735i
\(77\) 13341.7 + 4856.00i 0.256440 + 0.0933365i
\(78\) 0 0
\(79\) −9551.12 + 54167.1i −0.172182 + 0.976490i 0.769165 + 0.639050i \(0.220672\pi\)
−0.941347 + 0.337440i \(0.890439\pi\)
\(80\) 19504.0 0.340722
\(81\) 0 0
\(82\) 116233. 1.90896
\(83\) 16596.8 94125.4i 0.264442 1.49972i −0.506178 0.862429i \(-0.668942\pi\)
0.770620 0.637295i \(-0.219947\pi\)
\(84\) 0 0
\(85\) −17375.9 6324.30i −0.260855 0.0949435i
\(86\) −4141.04 + 3474.75i −0.0603759 + 0.0506614i
\(87\) 0 0
\(88\) −1844.64 + 671.394i −0.0253925 + 0.00924211i
\(89\) −50371.1 + 87245.3i −0.674072 + 1.16753i 0.302667 + 0.953096i \(0.402123\pi\)
−0.976739 + 0.214431i \(0.931210\pi\)
\(90\) 0 0
\(91\) 31499.0 + 54557.8i 0.398743 + 0.690642i
\(92\) 60324.6 + 50618.4i 0.743062 + 0.623503i
\(93\) 0 0
\(94\) −39909.5 226338.i −0.465861 2.64203i
\(95\) 7447.18 + 42235.0i 0.0846609 + 0.480136i
\(96\) 0 0
\(97\) 71726.7 + 60185.8i 0.774019 + 0.649479i 0.941735 0.336357i \(-0.109195\pi\)
−0.167716 + 0.985835i \(0.553639\pi\)
\(98\) −45035.8 78004.3i −0.473689 0.820453i
\(99\) 0 0
\(100\) 45434.4 78694.7i 0.454344 0.786947i
\(101\) 81030.2 29492.6i 0.790394 0.287680i 0.0848941 0.996390i \(-0.472945\pi\)
0.705500 + 0.708710i \(0.250723\pi\)
\(102\) 0 0
\(103\) −91777.0 + 77010.0i −0.852395 + 0.715244i −0.960316 0.278916i \(-0.910025\pi\)
0.107921 + 0.994159i \(0.465581\pi\)
\(104\) −8184.86 2979.05i −0.0742041 0.0270081i
\(105\) 0 0
\(106\) 35548.3 201604.i 0.307294 1.74275i
\(107\) −127097. −1.07319 −0.536593 0.843841i \(-0.680289\pi\)
−0.536593 + 0.843841i \(0.680289\pi\)
\(108\) 0 0
\(109\) −112941. −0.910511 −0.455256 0.890361i \(-0.650452\pi\)
−0.455256 + 0.890361i \(0.650452\pi\)
\(110\) −5263.91 + 29853.1i −0.0414788 + 0.235238i
\(111\) 0 0
\(112\) 69360.7 + 25245.2i 0.522479 + 0.190167i
\(113\) 72005.2 60419.5i 0.530478 0.445124i −0.337788 0.941222i \(-0.609679\pi\)
0.868267 + 0.496098i \(0.165234\pi\)
\(114\) 0 0
\(115\) 44191.4 16084.3i 0.311597 0.113412i
\(116\) −1691.94 + 2930.53i −0.0116745 + 0.0202209i
\(117\) 0 0
\(118\) −61980.3 107353.i −0.409778 0.709757i
\(119\) −53606.6 44981.2i −0.347017 0.291182i
\(120\) 0 0
\(121\) −21781.2 123528.i −0.135244 0.767009i
\(122\) −12575.3 71318.1i −0.0764926 0.433811i
\(123\) 0 0
\(124\) −148631. 124716.i −0.868068 0.728396i
\(125\) −58193.5 100794.i −0.333119 0.576979i
\(126\) 0 0
\(127\) −23373.5 + 40484.0i −0.128592 + 0.222728i −0.923131 0.384485i \(-0.874379\pi\)
0.794539 + 0.607213i \(0.207712\pi\)
\(128\) −20001.2 + 7279.84i −0.107902 + 0.0392733i
\(129\) 0 0
\(130\) −103037. + 86457.9i −0.534728 + 0.448690i
\(131\) 113984. + 41486.6i 0.580315 + 0.211218i 0.615465 0.788165i \(-0.288968\pi\)
−0.0351492 + 0.999382i \(0.511191\pi\)
\(132\) 0 0
\(133\) −28183.5 + 159837.i −0.138155 + 0.783514i
\(134\) 494863. 2.38080
\(135\) 0 0
\(136\) 9675.27 0.0448555
\(137\) −42054.7 + 238504.i −0.191431 + 1.08566i 0.725979 + 0.687717i \(0.241387\pi\)
−0.917410 + 0.397943i \(0.869724\pi\)
\(138\) 0 0
\(139\) 318192. + 115813.i 1.39686 + 0.508416i 0.927245 0.374456i \(-0.122170\pi\)
0.469615 + 0.882871i \(0.344393\pi\)
\(140\) −38134.2 + 31998.4i −0.164435 + 0.137977i
\(141\) 0 0
\(142\) −38755.6 + 14105.9i −0.161292 + 0.0587056i
\(143\) −79020.1 + 136867.i −0.323145 + 0.559703i
\(144\) 0 0
\(145\) 1010.41 + 1750.07i 0.00399095 + 0.00691252i
\(146\) −219063. 183816.i −0.850526 0.713676i
\(147\) 0 0
\(148\) 62319.4 + 353431.i 0.233867 + 1.32632i
\(149\) 13321.8 + 75551.7i 0.0491583 + 0.278791i 0.999472 0.0325045i \(-0.0103483\pi\)
−0.950313 + 0.311295i \(0.899237\pi\)
\(150\) 0 0
\(151\) 261998. + 219842.i 0.935094 + 0.784637i 0.976725 0.214496i \(-0.0688109\pi\)
−0.0416308 + 0.999133i \(0.513255\pi\)
\(152\) −11220.0 19433.7i −0.0393899 0.0682253i
\(153\) 0 0
\(154\) −57360.3 + 99350.9i −0.194899 + 0.337575i
\(155\) −108881. + 39629.3i −0.364017 + 0.132491i
\(156\) 0 0
\(157\) −34235.4 + 28726.9i −0.110847 + 0.0930121i −0.696527 0.717531i \(-0.745272\pi\)
0.585679 + 0.810543i \(0.300828\pi\)
\(158\) −417623. 152002.i −1.33089 0.484404i
\(159\) 0 0
\(160\) −28514.8 + 161716.i −0.0880584 + 0.499404i
\(161\) 177973. 0.541116
\(162\) 0 0
\(163\) −102723. −0.302831 −0.151415 0.988470i \(-0.548383\pi\)
−0.151415 + 0.988470i \(0.548383\pi\)
\(164\) −83150.5 + 471570.i −0.241410 + 1.36910i
\(165\) 0 0
\(166\) 725697. + 264132.i 2.04402 + 0.743963i
\(167\) 39669.8 33286.9i 0.110070 0.0923596i −0.586092 0.810245i \(-0.699334\pi\)
0.696162 + 0.717885i \(0.254890\pi\)
\(168\) 0 0
\(169\) −310049. + 112849.i −0.835052 + 0.303934i
\(170\) 74704.2 129391.i 0.198254 0.343387i
\(171\) 0 0
\(172\) −11135.0 19286.4i −0.0286991 0.0497084i
\(173\) −252329. 211729.i −0.640991 0.537855i 0.263332 0.964705i \(-0.415179\pi\)
−0.904322 + 0.426850i \(0.859623\pi\)
\(174\) 0 0
\(175\) −35661.5 202246.i −0.0880246 0.499212i
\(176\) 32154.3 + 182356.i 0.0782452 + 0.443751i
\(177\) 0 0
\(178\) −623562. 523231.i −1.47513 1.23778i
\(179\) −162697. 281800.i −0.379531 0.657367i 0.611463 0.791273i \(-0.290581\pi\)
−0.990994 + 0.133906i \(0.957248\pi\)
\(180\) 0 0
\(181\) 113357. 196341.i 0.257189 0.445465i −0.708299 0.705913i \(-0.750537\pi\)
0.965488 + 0.260448i \(0.0838703\pi\)
\(182\) −478329. + 174097.i −1.07040 + 0.389595i
\(183\) 0 0
\(184\) −18849.9 + 15816.9i −0.0410453 + 0.0344411i
\(185\) 201395. + 73301.9i 0.432634 + 0.157466i
\(186\) 0 0
\(187\) 30484.2 172885.i 0.0637487 0.361537i
\(188\) 946825. 1.95378
\(189\) 0 0
\(190\) −346526. −0.696389
\(191\) 71114.8 403312.i 0.141051 0.799940i −0.829402 0.558652i \(-0.811319\pi\)
0.970453 0.241289i \(-0.0775700\pi\)
\(192\) 0 0
\(193\) −444586. 161816.i −0.859137 0.312700i −0.125377 0.992109i \(-0.540014\pi\)
−0.733760 + 0.679409i \(0.762236\pi\)
\(194\) −579556. + 486305.i −1.10558 + 0.927693i
\(195\) 0 0
\(196\) 348689. 126912.i 0.648333 0.235974i
\(197\) −186041. + 322233.i −0.341542 + 0.591567i −0.984719 0.174150i \(-0.944282\pi\)
0.643178 + 0.765717i \(0.277616\pi\)
\(198\) 0 0
\(199\) −306334. 530585.i −0.548355 0.949779i −0.998387 0.0567666i \(-0.981921\pi\)
0.450032 0.893012i \(-0.351412\pi\)
\(200\) 21751.2 + 18251.4i 0.0384510 + 0.0322642i
\(201\) 0 0
\(202\) 120989. + 686163.i 0.208625 + 1.18317i
\(203\) 1328.00 + 7531.48i 0.00226183 + 0.0128275i
\(204\) 0 0
\(205\) 219058. + 183812.i 0.364062 + 0.305484i
\(206\) −484021. 838349.i −0.794687 1.37644i
\(207\) 0 0
\(208\) −410808. + 711540.i −0.658386 + 1.14036i
\(209\) −382606. + 139257.i −0.605879 + 0.220522i
\(210\) 0 0
\(211\) 337586. 283268.i 0.522010 0.438018i −0.343322 0.939218i \(-0.611552\pi\)
0.865332 + 0.501200i \(0.167108\pi\)
\(212\) 792498. + 288446.i 1.21104 + 0.440783i
\(213\) 0 0
\(214\) 178328. 1.01135e6i 0.266186 1.50961i
\(215\) −13299.4 −0.0196216
\(216\) 0 0
\(217\) −438499. −0.632148
\(218\) 158466. 898705.i 0.225837 1.28078i
\(219\) 0 0
\(220\) −117351. 42712.4i −0.163467 0.0594973i
\(221\) 596704. 500694.i 0.821822 0.689591i
\(222\) 0 0
\(223\) 919313. 334602.i 1.23794 0.450575i 0.361633 0.932320i \(-0.382219\pi\)
0.876311 + 0.481746i \(0.159997\pi\)
\(224\) −310723. + 538188.i −0.413765 + 0.716662i
\(225\) 0 0
\(226\) 379747. + 657741.i 0.494565 + 0.856611i
\(227\) 843674. + 707927.i 1.08670 + 0.911851i 0.996460 0.0840691i \(-0.0267916\pi\)
0.0902415 + 0.995920i \(0.471236\pi\)
\(228\) 0 0
\(229\) −16503.5 93596.0i −0.0207964 0.117942i 0.972642 0.232308i \(-0.0746276\pi\)
−0.993439 + 0.114366i \(0.963516\pi\)
\(230\) 65983.7 + 374212.i 0.0822464 + 0.466442i
\(231\) 0 0
\(232\) −809.995 679.667i −0.000988012 0.000829041i
\(233\) −538472. 932660.i −0.649790 1.12547i −0.983173 0.182678i \(-0.941523\pi\)
0.333383 0.942792i \(-0.391810\pi\)
\(234\) 0 0
\(235\) 282716. 489679.i 0.333950 0.578418i
\(236\) 479881. 174663.i 0.560859 0.204136i
\(237\) 0 0
\(238\) 433144. 363451.i 0.495667 0.415914i
\(239\) 1.18171e6 + 430108.i 1.33819 + 0.487061i 0.909241 0.416269i \(-0.136663\pi\)
0.428947 + 0.903330i \(0.358885\pi\)
\(240\) 0 0
\(241\) 112260. 636660.i 0.124504 0.706098i −0.857097 0.515155i \(-0.827734\pi\)
0.981601 0.190943i \(-0.0611546\pi\)
\(242\) 1.01351e6 1.11247
\(243\) 0 0
\(244\) 298341. 0.320803
\(245\) 38479.9 218230.i 0.0409561 0.232273i
\(246\) 0 0
\(247\) −1.69766e6 617898.i −1.77055 0.644428i
\(248\) 46443.1 38970.4i 0.0479504 0.0402352i
\(249\) 0 0
\(250\) 883699. 321640.i 0.894240 0.325477i
\(251\) −23452.5 + 40620.9i −0.0234966 + 0.0406973i −0.877535 0.479513i \(-0.840813\pi\)
0.854038 + 0.520211i \(0.174147\pi\)
\(252\) 0 0
\(253\) 223237. + 386658.i 0.219263 + 0.379774i
\(254\) −289349. 242792.i −0.281408 0.236130i
\(255\) 0 0
\(256\) 166562. + 944620.i 0.158846 + 0.900860i
\(257\) 105778. + 599898.i 0.0998995 + 0.566558i 0.993135 + 0.116970i \(0.0373181\pi\)
−0.893236 + 0.449588i \(0.851571\pi\)
\(258\) 0 0
\(259\) 621328. + 521356.i 0.575535 + 0.482931i
\(260\) −277058. 479879.i −0.254178 0.440249i
\(261\) 0 0
\(262\) −490050. + 848792.i −0.441050 + 0.763921i
\(263\) 767893. 279490.i 0.684560 0.249159i 0.0237556 0.999718i \(-0.492438\pi\)
0.660804 + 0.750558i \(0.270215\pi\)
\(264\) 0 0
\(265\) 385814. 323736.i 0.337491 0.283189i
\(266\) −1.23232e6 448529.i −1.06788 0.388675i
\(267\) 0 0
\(268\) −354013. + 2.00771e6i −0.301080 + 1.70751i
\(269\) −1.06427e6 −0.896753 −0.448376 0.893845i \(-0.647998\pi\)
−0.448376 + 0.893845i \(0.647998\pi\)
\(270\) 0 0
\(271\) 1.32722e6 1.09779 0.548894 0.835892i \(-0.315049\pi\)
0.548894 + 0.835892i \(0.315049\pi\)
\(272\) 158481. 898789.i 0.129884 0.736607i
\(273\) 0 0
\(274\) −1.83884e6 669283.i −1.47968 0.538559i
\(275\) 394661. 331160.i 0.314697 0.264062i
\(276\) 0 0
\(277\) −1.75176e6 + 637590.i −1.37175 + 0.499278i −0.919668 0.392697i \(-0.871542\pi\)
−0.452086 + 0.891974i \(0.649320\pi\)
\(278\) −1.36801e6 + 2.36946e6i −1.06164 + 1.83881i
\(279\) 0 0
\(280\) −7777.57 13471.2i −0.00592856 0.0102686i
\(281\) 347433. + 291531.i 0.262485 + 0.220251i 0.764526 0.644592i \(-0.222973\pi\)
−0.502041 + 0.864844i \(0.667417\pi\)
\(282\) 0 0
\(283\) 27335.0 + 155025.i 0.0202887 + 0.115063i 0.993270 0.115820i \(-0.0369497\pi\)
−0.972982 + 0.230883i \(0.925839\pi\)
\(284\) −29504.2 167326.i −0.0217064 0.123103i
\(285\) 0 0
\(286\) −978218. 820823.i −0.707165 0.593382i
\(287\) 541102. + 937216.i 0.387770 + 0.671637i
\(288\) 0 0
\(289\) 277303. 480302.i 0.195303 0.338275i
\(290\) −15343.6 + 5584.60i −0.0107135 + 0.00389939i
\(291\) 0 0
\(292\) 902472. 757264.i 0.619408 0.519745i
\(293\) −2.65866e6 967672.i −1.80923 0.658505i −0.997191 0.0748978i \(-0.976137\pi\)
−0.812036 0.583607i \(-0.801641\pi\)
\(294\) 0 0
\(295\) 52957.7 300338.i 0.0354303 0.200935i
\(296\) −112141. −0.0743938
\(297\) 0 0
\(298\) −619879. −0.404358
\(299\) −344006. + 1.95095e6i −0.222530 + 1.26203i
\(300\) 0 0
\(301\) −47295.5 17214.2i −0.0300887 0.0109514i
\(302\) −2.11696e6 + 1.77634e6i −1.33566 + 1.12075i
\(303\) 0 0
\(304\) −1.98908e6 + 723967.i −1.23444 + 0.449298i
\(305\) 89082.8 154296.i 0.0548333 0.0949740i
\(306\) 0 0
\(307\) 62247.4 + 107816.i 0.0376943 + 0.0652884i 0.884257 0.467000i \(-0.154665\pi\)
−0.846563 + 0.532289i \(0.821332\pi\)
\(308\) −362042. 303789.i −0.217462 0.182472i
\(309\) 0 0
\(310\) −162574. 922000.i −0.0960828 0.544913i
\(311\) −350085. 1.98543e6i −0.205245 1.16400i −0.897054 0.441921i \(-0.854297\pi\)
0.691809 0.722081i \(-0.256814\pi\)
\(312\) 0 0
\(313\) 1.80229e6 + 1.51230e6i 1.03983 + 0.872525i 0.991988 0.126330i \(-0.0403198\pi\)
0.0478464 + 0.998855i \(0.484764\pi\)
\(314\) −180553. 312727.i −0.103343 0.178995i
\(315\) 0 0
\(316\) 915446. 1.58560e6i 0.515721 0.893255i
\(317\) −527136. + 191862.i −0.294628 + 0.107236i −0.485105 0.874456i \(-0.661219\pi\)
0.190477 + 0.981692i \(0.438997\pi\)
\(318\) 0 0
\(319\) −14696.9 + 12332.1i −0.00808626 + 0.00678518i
\(320\) −660321. 240337.i −0.360479 0.131204i
\(321\) 0 0
\(322\) −249712. + 1.41619e6i −0.134215 + 0.761169i
\(323\) 2.00680e6 1.07028
\(324\) 0 0
\(325\) 2.28597e6 1.20050
\(326\) 144130. 817400.i 0.0751121 0.425982i
\(327\) 0 0
\(328\) −140603. 51175.2i −0.0721621 0.0262649i
\(329\) 1.63922e6 1.37547e6i 0.834927 0.700587i
\(330\) 0 0
\(331\) −1.76678e6 + 643055.i −0.886365 + 0.322610i −0.744775 0.667315i \(-0.767443\pi\)
−0.141589 + 0.989926i \(0.545221\pi\)
\(332\) −1.59076e6 + 2.75527e6i −0.792061 + 1.37189i
\(333\) 0 0
\(334\) 209214. + 362369.i 0.102618 + 0.177740i
\(335\) 932640. + 782578.i 0.454048 + 0.380992i
\(336\) 0 0
\(337\) 693819. + 3.93484e6i 0.332791 + 1.88735i 0.448038 + 0.894015i \(0.352123\pi\)
−0.115247 + 0.993337i \(0.536766\pi\)
\(338\) −462945. 2.62549e6i −0.220413 1.25002i
\(339\) 0 0
\(340\) 471512. + 395646.i 0.221205 + 0.185613i
\(341\) −550022. 952665.i −0.256150 0.443664i
\(342\) 0 0
\(343\) 1.05151e6 1.82127e6i 0.482589 0.835869i
\(344\) 6539.12 2380.04i 0.00297936 0.00108440i
\(345\) 0 0
\(346\) 2.03883e6 1.71078e6i 0.915569 0.768254i
\(347\) 1.26492e6 + 460394.i 0.563949 + 0.205261i 0.608233 0.793758i \(-0.291879\pi\)
−0.0442843 + 0.999019i \(0.514101\pi\)
\(348\) 0 0
\(349\) −457946. + 2.59714e6i −0.201257 + 1.14138i 0.701966 + 0.712211i \(0.252306\pi\)
−0.903222 + 0.429173i \(0.858805\pi\)
\(350\) 1.65937e6 0.724058
\(351\) 0 0
\(352\) −1.55900e6 −0.670638
\(353\) −780431. + 4.42604e6i −0.333348 + 1.89051i 0.109624 + 0.993973i \(0.465035\pi\)
−0.442972 + 0.896536i \(0.646076\pi\)
\(354\) 0 0
\(355\) −95347.6 34703.7i −0.0401549 0.0146152i
\(356\) 2.56888e6 2.15555e6i 1.07428 0.901431i
\(357\) 0 0
\(358\) 2.47064e6 899240.i 1.01883 0.370824i
\(359\) 525561. 910298.i 0.215222 0.372776i −0.738119 0.674670i \(-0.764286\pi\)
0.953341 + 0.301895i \(0.0976191\pi\)
\(360\) 0 0
\(361\) −1.08915e6 1.88647e6i −0.439866 0.761870i
\(362\) 1.40329e6 + 1.17750e6i 0.562829 + 0.472269i
\(363\) 0 0
\(364\) −364145. 2.06517e6i −0.144053 0.816963i
\(365\) −122169. 692855.i −0.0479986 0.272214i
\(366\) 0 0
\(367\) −1.31221e6 1.10107e6i −0.508555 0.426728i 0.352066 0.935975i \(-0.385479\pi\)
−0.860620 + 0.509247i \(0.829924\pi\)
\(368\) 1.16056e6 + 2.01015e6i 0.446733 + 0.773764i
\(369\) 0 0
\(370\) −865861. + 1.49971e6i −0.328809 + 0.569514i
\(371\) 1.79107e6 651896.i 0.675581 0.245892i
\(372\) 0 0
\(373\) −3.67690e6 + 3.08529e6i −1.36839 + 1.14822i −0.395100 + 0.918638i \(0.629290\pi\)
−0.973290 + 0.229577i \(0.926266\pi\)
\(374\) 1.33292e6 + 485145.i 0.492750 + 0.179346i
\(375\) 0 0
\(376\) −51375.2 + 291363.i −0.0187406 + 0.106283i
\(377\) −85127.5 −0.0308473
\(378\) 0 0
\(379\) 1.68242e6 0.601640 0.300820 0.953681i \(-0.402740\pi\)
0.300820 + 0.953681i \(0.402740\pi\)
\(380\) 247896. 1.40589e6i 0.0880666 0.499450i
\(381\) 0 0
\(382\) 3.10949e6 + 1.13176e6i 1.09026 + 0.396823i
\(383\) −374234. + 314020.i −0.130361 + 0.109386i −0.705637 0.708574i \(-0.749339\pi\)
0.575276 + 0.817959i \(0.304895\pi\)
\(384\) 0 0
\(385\) −265217. + 96531.2i −0.0911906 + 0.0331907i
\(386\) 1.91141e6 3.31066e6i 0.652959 1.13096i
\(387\) 0 0
\(388\) −1.55839e6 2.69921e6i −0.525528 0.910242i
\(389\) −1.69918e6 1.42578e6i −0.569333 0.477727i 0.312092 0.950052i \(-0.398970\pi\)
−0.881424 + 0.472325i \(0.843415\pi\)
\(390\) 0 0
\(391\) −382123. 2.16713e6i −0.126404 0.716874i
\(392\) 20134.3 + 114187.i 0.00661791 + 0.0375320i
\(393\) 0 0
\(394\) −2.30307e6 1.93251e6i −0.747424 0.627163i
\(395\) −546693. 946900.i −0.176299 0.305360i
\(396\) 0 0
\(397\) 572491. 991584.i 0.182303 0.315757i −0.760362 0.649500i \(-0.774978\pi\)
0.942664 + 0.333743i \(0.108312\pi\)
\(398\) 4.65184e6 1.69313e6i 1.47203 0.535775i
\(399\) 0 0
\(400\) 2.05175e6 1.72163e6i 0.641173 0.538008i
\(401\) −2.21375e6 805740.i −0.687493 0.250227i −0.0254313 0.999677i \(-0.508096\pi\)
−0.662061 + 0.749450i \(0.730318\pi\)
\(402\) 0 0
\(403\) 847577. 4.80685e6i 0.259966 1.47434i
\(404\) −2.87038e6 −0.874956
\(405\) 0 0
\(406\) −61793.6 −0.0186049
\(407\) −353328. + 2.00382e6i −0.105729 + 0.599617i
\(408\) 0 0
\(409\) −3.97038e6 1.44510e6i −1.17361 0.427159i −0.319670 0.947529i \(-0.603572\pi\)
−0.853941 + 0.520370i \(0.825794\pi\)
\(410\) −1.77000e6 + 1.48521e6i −0.520013 + 0.436343i
\(411\) 0 0
\(412\) 3.74752e6 1.36399e6i 1.08768 0.395883i
\(413\) 577075. 999523.i 0.166478 0.288349i
\(414\) 0 0
\(415\) 949981. + 1.64541e6i 0.270766 + 0.468981i
\(416\) −5.29905e6 4.44643e6i −1.50129 1.25973i
\(417\) 0 0
\(418\) −571282. 3.23990e6i −0.159923 0.906966i
\(419\) 343665. + 1.94902e6i 0.0956314 + 0.542353i 0.994552 + 0.104241i \(0.0332414\pi\)
−0.898921 + 0.438112i \(0.855647\pi\)
\(420\) 0 0
\(421\) 1.60683e6 + 1.34829e6i 0.441839 + 0.370747i 0.836397 0.548124i \(-0.184658\pi\)
−0.394558 + 0.918871i \(0.629102\pi\)
\(422\) 1.78039e6 + 3.08372e6i 0.486669 + 0.842936i
\(423\) 0 0
\(424\) −131764. + 228222.i −0.0355944 + 0.0616513i
\(425\) −2.38613e6 + 868479.i −0.640798 + 0.233231i
\(426\) 0 0
\(427\) 516513. 433405.i 0.137092 0.115034i
\(428\) 3.97557e6 + 1.44699e6i 1.04903 + 0.381817i
\(429\) 0 0
\(430\) 18660.2 105827.i 0.00486681 0.0276010i
\(431\) −4.31651e6 −1.11928 −0.559641 0.828735i \(-0.689061\pi\)
−0.559641 + 0.828735i \(0.689061\pi\)
\(432\) 0 0
\(433\) −4.01768e6 −1.02981 −0.514903 0.857249i \(-0.672172\pi\)
−0.514903 + 0.857249i \(0.672172\pi\)
\(434\) 615252. 3.48927e6i 0.156794 0.889221i
\(435\) 0 0
\(436\) 3.53277e6 + 1.28582e6i 0.890020 + 0.323941i
\(437\) −3.90974e6 + 3.28066e6i −0.979365 + 0.821785i
\(438\) 0 0
\(439\) −4.80362e6 + 1.74838e6i −1.18962 + 0.432986i −0.859589 0.510985i \(-0.829281\pi\)
−0.330029 + 0.943971i \(0.607058\pi\)
\(440\) 19511.3 33794.5i 0.00480456 0.00832175i
\(441\) 0 0
\(442\) 3.14694e6 + 5.45067e6i 0.766184 + 1.32707i
\(443\) 1.89927e6 + 1.59367e6i 0.459808 + 0.385825i 0.843060 0.537819i \(-0.180752\pi\)
−0.383252 + 0.923644i \(0.625196\pi\)
\(444\) 0 0
\(445\) −347753. 1.97221e6i −0.0832475 0.472120i
\(446\) 1.37266e6 + 7.78472e6i 0.326757 + 1.85313i
\(447\) 0 0
\(448\) −2.03717e6 1.70939e6i −0.479547 0.402388i
\(449\) −1.88192e6 3.25958e6i −0.440540 0.763038i 0.557189 0.830385i \(-0.311880\pi\)
−0.997730 + 0.0673475i \(0.978546\pi\)
\(450\) 0 0
\(451\) −1.35744e6 + 2.35115e6i −0.314253 + 0.544301i
\(452\) −2.94018e6 + 1.07014e6i −0.676906 + 0.246373i
\(453\) 0 0
\(454\) −6.81694e6 + 5.72009e6i −1.55221 + 1.30246i
\(455\) −1.17680e6 428319.i −0.266485 0.0969927i
\(456\) 0 0
\(457\) 795942. 4.51401e6i 0.178275 1.01105i −0.756020 0.654549i \(-0.772859\pi\)
0.934295 0.356500i \(-0.116030\pi\)
\(458\) 767927. 0.171063
\(459\) 0 0
\(460\) −1.56542e6 −0.344934
\(461\) 1.21990e6 6.91840e6i 0.267345 1.51619i −0.494928 0.868934i \(-0.664806\pi\)
0.762273 0.647256i \(-0.224083\pi\)
\(462\) 0 0
\(463\) 6.55566e6 + 2.38607e6i 1.42123 + 0.517285i 0.934404 0.356214i \(-0.115933\pi\)
0.486825 + 0.873499i \(0.338155\pi\)
\(464\) −76405.7 + 64112.0i −0.0164752 + 0.0138243i
\(465\) 0 0
\(466\) 8.17698e6 2.97618e6i 1.74433 0.634884i
\(467\) −311260. + 539118.i −0.0660437 + 0.114391i −0.897156 0.441713i \(-0.854371\pi\)
0.831113 + 0.556104i \(0.187704\pi\)
\(468\) 0 0
\(469\) 2.30374e6 + 3.99019e6i 0.483616 + 0.837648i
\(470\) 3.49985e6 + 2.93672e6i 0.730810 + 0.613223i
\(471\) 0 0
\(472\) 27709.7 + 157150.i 0.00572502 + 0.0324682i
\(473\) −21925.3 124345.i −0.00450602 0.0255549i
\(474\) 0 0
\(475\) 4.51151e6 + 3.78561e6i 0.917462 + 0.769842i
\(476\) 1.16470e6 + 2.01731e6i 0.235611 + 0.408090i
\(477\) 0 0
\(478\) −5.08055e6 + 8.79976e6i −1.01705 + 1.76158i
\(479\) −2.67506e6 + 973643.i −0.532715 + 0.193892i −0.594350 0.804206i \(-0.702591\pi\)
0.0616352 + 0.998099i \(0.480368\pi\)
\(480\) 0 0
\(481\) −6.91611e6 + 5.80330e6i −1.36301 + 1.14370i
\(482\) 4.90859e6 + 1.78658e6i 0.962363 + 0.350271i
\(483\) 0 0
\(484\) −725038. + 4.11190e6i −0.140685 + 0.797864i
\(485\) −1.86130e6 −0.359304
\(486\) 0 0
\(487\) 3.37660e6 0.645146 0.322573 0.946545i \(-0.395452\pi\)
0.322573 + 0.946545i \(0.395452\pi\)
\(488\) −16188.1 + 91807.4i −0.00307714 + 0.0174513i
\(489\) 0 0
\(490\) 1.68253e6 + 612392.i 0.316573 + 0.115223i
\(491\) 5.30712e6 4.45321e6i 0.993472 0.833622i 0.00740519 0.999973i \(-0.497643\pi\)
0.986067 + 0.166351i \(0.0531984\pi\)
\(492\) 0 0
\(493\) 88857.4 32341.4i 0.0164655 0.00599297i
\(494\) 7.29877e6 1.26418e7i 1.34565 2.33074i
\(495\) 0 0
\(496\) −2.85944e6 4.95269e6i −0.521887 0.903935i
\(497\) −294158. 246828.i −0.0534183 0.0448233i
\(498\) 0 0
\(499\) −445945. 2.52908e6i −0.0801734 0.454686i −0.998294 0.0583852i \(-0.981405\pi\)
0.918121 0.396301i \(-0.129706\pi\)
\(500\) 672749. + 3.81535e6i 0.120345 + 0.682510i
\(501\) 0 0
\(502\) −290327. 243613.i −0.0514195 0.0431461i
\(503\) 1.32401e6 + 2.29325e6i 0.233330 + 0.404139i 0.958786 0.284129i \(-0.0917045\pi\)
−0.725456 + 0.688268i \(0.758371\pi\)
\(504\) 0 0
\(505\) −857079. + 1.48450e6i −0.149552 + 0.259032i
\(506\) −3.38997e6 + 1.23385e6i −0.588600 + 0.214233i
\(507\) 0 0
\(508\) 1.19203e6 1.00023e6i 0.204940 0.171965i
\(509\) 1.24319e6 + 452483.i 0.212687 + 0.0774119i 0.446167 0.894950i \(-0.352789\pi\)
−0.233479 + 0.972362i \(0.575011\pi\)
\(510\) 0 0
\(511\) 462343. 2.62208e6i 0.0783271 0.444215i
\(512\) −8.43144e6 −1.42143
\(513\) 0 0
\(514\) −4.92198e6 −0.821736
\(515\) 413561. 2.34542e6i 0.0687102 0.389675i
\(516\) 0 0
\(517\) 5.04442e6 + 1.83602e6i 0.830013 + 0.302100i
\(518\) −5.02036e6 + 4.21259e6i −0.822074 + 0.689802i
\(519\) 0 0
\(520\) 162705. 59219.8i 0.0263871 0.00960414i
\(521\) −1.65240e6 + 2.86205e6i −0.266699 + 0.461937i −0.968007 0.250921i \(-0.919266\pi\)
0.701308 + 0.712858i \(0.252600\pi\)
\(522\) 0 0
\(523\) −3.50814e6 6.07627e6i −0.560819 0.971366i −0.997425 0.0717138i \(-0.977153\pi\)
0.436607 0.899653i \(-0.356180\pi\)
\(524\) −3.09306e6 2.59539e6i −0.492108 0.412928i
\(525\) 0 0
\(526\) 1.14657e6 + 6.50250e6i 0.180690 + 1.02475i
\(527\) 941493. + 5.33947e6i 0.147669 + 0.837475i
\(528\) 0 0
\(529\) −643277. 539774.i −0.0999445 0.0838634i
\(530\) 2.03473e6 + 3.52426e6i 0.314643 + 0.544978i
\(531\) 0 0
\(532\) 2.70130e6 4.67879e6i 0.413803 0.716728i
\(533\) −1.13197e7 + 4.12004e6i −1.72591 + 0.628179i
\(534\) 0 0
\(535\) 1.93543e6 1.62402e6i 0.292344 0.245305i
\(536\) −598616. 217878.i −0.0899987 0.0327568i
\(537\) 0 0
\(538\) 1.49327e6 8.46875e6i 0.222424 1.26143i
\(539\) 2.10382e6 0.311915
\(540\) 0 0
\(541\) −5.60437e6 −0.823254 −0.411627 0.911352i \(-0.635039\pi\)
−0.411627 + 0.911352i \(0.635039\pi\)
\(542\) −1.86220e6 + 1.05611e7i −0.272288 + 1.54422i
\(543\) 0 0
\(544\) 7.22051e6 + 2.62805e6i 1.04609 + 0.380747i
\(545\) 1.71987e6 1.44314e6i 0.248030 0.208122i
\(546\) 0 0
\(547\) 1.28768e6 468679.i 0.184010 0.0669741i −0.248372 0.968665i \(-0.579896\pi\)
0.432382 + 0.901691i \(0.357673\pi\)
\(548\) 4.03081e6 6.98157e6i 0.573378 0.993120i
\(549\) 0 0
\(550\) 2.08140e6 + 3.60508e6i 0.293392 + 0.508169i
\(551\) −168005. 140973.i −0.0235745 0.0197814i
\(552\) 0 0
\(553\) −718534. 4.07501e6i −0.0999158 0.566651i
\(554\) −2.61562e6 1.48339e7i −0.362076 2.05344i
\(555\) 0 0
\(556\) −8.63449e6 7.24520e6i −1.18454 0.993947i
\(557\) 1.07251e6 + 1.85765e6i 0.146476 + 0.253703i 0.929922 0.367756i \(-0.119874\pi\)
−0.783447 + 0.621459i \(0.786540\pi\)
\(558\) 0 0
\(559\) 280120. 485183.i 0.0379154 0.0656714i
\(560\) −1.37881e6 + 501844.i −0.185795 + 0.0676237i
\(561\) 0 0
\(562\) −2.80728e6 + 2.35558e6i −0.374925 + 0.314599i
\(563\) −1.21476e7 4.42136e6i −1.61517 0.587874i −0.632718 0.774382i \(-0.718061\pi\)
−0.982454 + 0.186508i \(0.940283\pi\)
\(564\) 0 0
\(565\) −324466. + 1.84014e6i −0.0427611 + 0.242510i
\(566\) −1.27193e6 −0.166887
\(567\) 0 0
\(568\) 53091.7 0.00690487
\(569\) −328849. + 1.86499e6i −0.0425809 + 0.241489i −0.998668 0.0515938i \(-0.983570\pi\)
0.956087 + 0.293082i \(0.0946810\pi\)
\(570\) 0 0
\(571\) 5.20969e6 + 1.89617e6i 0.668686 + 0.243382i 0.653982 0.756510i \(-0.273097\pi\)
0.0147037 + 0.999892i \(0.495319\pi\)
\(572\) 4.02995e6 3.38153e6i 0.515003 0.432139i
\(573\) 0 0
\(574\) −8.21692e6 + 2.99071e6i −1.04095 + 0.378874i
\(575\) 3.22900e6 5.59280e6i 0.407286 0.705439i
\(576\) 0 0
\(577\) −3.95063e6 6.84269e6i −0.494000 0.855633i 0.505976 0.862547i \(-0.331132\pi\)
−0.999976 + 0.00691467i \(0.997799\pi\)
\(578\) 3.43283e6 + 2.88049e6i 0.427398 + 0.358630i
\(579\) 0 0
\(580\) −11680.9 66245.4i −0.00144180 0.00817685i
\(581\) 1.24859e6 + 7.08108e6i 0.153454 + 0.870280i
\(582\) 0 0
\(583\) 3.66287e6 + 3.07352e6i 0.446324 + 0.374511i
\(584\) 184062. + 318804.i 0.0223322 + 0.0386805i
\(585\) 0 0
\(586\) 1.14304e7 1.97980e7i 1.37504 2.38165i
\(587\) 1.45319e7 5.28919e6i 1.74072 0.633569i 0.741419 0.671042i \(-0.234153\pi\)
0.999298 + 0.0374727i \(0.0119307\pi\)
\(588\) 0 0
\(589\) 9.63300e6 8.08305e6i 1.14412 0.960035i
\(590\) 2.31558e6 + 842801.i 0.273860 + 0.0996771i
\(591\) 0 0
\(592\) −1.83688e6 + 1.04174e7i −0.215415 + 1.22168i
\(593\) 6.33686e6 0.740009 0.370005 0.929030i \(-0.379356\pi\)
0.370005 + 0.929030i \(0.379356\pi\)
\(594\) 0 0
\(595\) 1.39108e6 0.161087
\(596\) 443447. 2.51491e6i 0.0511359 0.290006i
\(597\) 0 0
\(598\) −1.50417e7 5.47472e6i −1.72006 0.626050i
\(599\) 5.69469e6 4.77841e6i 0.648490 0.544147i −0.258123 0.966112i \(-0.583104\pi\)
0.906612 + 0.421965i \(0.138659\pi\)
\(600\) 0 0
\(601\) −1.05116e7 + 3.82591e6i −1.18709 + 0.432065i −0.858700 0.512478i \(-0.828727\pi\)
−0.328388 + 0.944543i \(0.606505\pi\)
\(602\) 203338. 352192.i 0.0228679 0.0396085i
\(603\) 0 0
\(604\) −5.69236e6 9.85945e6i −0.634892 1.09967i
\(605\) 1.91010e6 + 1.60276e6i 0.212162 + 0.178025i
\(606\) 0 0
\(607\) −39412.6 223520.i −0.00434174 0.0246232i 0.982560 0.185946i \(-0.0595350\pi\)
−0.986902 + 0.161323i \(0.948424\pi\)
\(608\) −3.09466e6 1.75507e7i −0.339511 1.92546i
\(609\) 0 0
\(610\) 1.10279e6 + 925349.i 0.119996 + 0.100689i
\(611\) 1.19095e7 + 2.06279e7i 1.29060 + 2.23539i
\(612\) 0 0
\(613\) −4.90647e6 + 8.49826e6i −0.527373 + 0.913438i 0.472118 + 0.881536i \(0.343490\pi\)
−0.999491 + 0.0319019i \(0.989844\pi\)
\(614\) −945260. + 344047.i −0.101188 + 0.0368295i
\(615\) 0 0
\(616\) 113129. 94926.2i 0.0120122 0.0100794i
\(617\) 9.61915e6 + 3.50109e6i 1.01724 + 0.370246i 0.796209 0.605021i \(-0.206835\pi\)
0.221032 + 0.975267i \(0.429058\pi\)
\(618\) 0 0
\(619\) 470254. 2.66694e6i 0.0493294 0.279761i −0.950158 0.311768i \(-0.899079\pi\)
0.999488 + 0.0320071i \(0.0101899\pi\)
\(620\) 3.85695e6 0.402962
\(621\) 0 0
\(622\) 1.62899e7 1.68827
\(623\) 1.31606e6 7.46372e6i 0.135848 0.770434i
\(624\) 0 0
\(625\) −5.84217e6 2.12637e6i −0.598238 0.217741i
\(626\) −1.45626e7 + 1.22195e7i −1.48526 + 1.24628i
\(627\) 0 0
\(628\) 1.39793e6 508805.i 0.141445 0.0514816i
\(629\) 5.01436e6 8.68513e6i 0.505346 0.875285i
\(630\) 0 0
\(631\) 6.63331e6 + 1.14892e7i 0.663219 + 1.14873i 0.979765 + 0.200151i \(0.0641434\pi\)
−0.316546 + 0.948577i \(0.602523\pi\)
\(632\) 438258. + 367742.i 0.0436453 + 0.0366228i
\(633\) 0 0
\(634\) −787084. 4.46378e6i −0.0777675 0.441041i
\(635\) −161366. 915154.i −0.0158810 0.0900658i
\(636\) 0 0
\(637\) 7.15091e6 + 6.00032e6i 0.698253 + 0.585904i
\(638\) −77509.5 134250.i −0.00753882 0.0130576i
\(639\) 0 0
\(640\) 211558. 366430.i 0.0204164 0.0353623i
\(641\) 1.54658e7 5.62908e6i 1.48671 0.541118i 0.534129 0.845403i \(-0.320640\pi\)
0.952581 + 0.304284i \(0.0984173\pi\)
\(642\) 0 0
\(643\) 6.81488e6 5.71836e6i 0.650026 0.545437i −0.257053 0.966397i \(-0.582751\pi\)
0.907079 + 0.420961i \(0.138307\pi\)
\(644\) −5.56698e6 2.02621e6i −0.528938 0.192518i
\(645\) 0 0
\(646\) −2.81571e6 + 1.59687e7i −0.265464 + 1.50552i
\(647\) −8.09399e6 −0.760154 −0.380077 0.924955i \(-0.624103\pi\)
−0.380077 + 0.924955i \(0.624103\pi\)
\(648\) 0 0
\(649\) 2.89537e6 0.269831
\(650\) −3.20741e6 + 1.81901e7i −0.297763 + 1.68870i
\(651\) 0 0
\(652\) 3.21317e6 + 1.16950e6i 0.296015 + 0.107741i
\(653\) 6.97748e6 5.85480e6i 0.640348 0.537315i −0.263777 0.964584i \(-0.584968\pi\)
0.904125 + 0.427268i \(0.140524\pi\)
\(654\) 0 0
\(655\) −2.26585e6 + 824703.i −0.206361 + 0.0751094i
\(656\) −7.05702e6 + 1.22231e7i −0.640268 + 1.10898i
\(657\) 0 0
\(658\) 8.64507e6 + 1.49737e7i 0.778402 + 1.34823i
\(659\) −6.90678e6 5.79548e6i −0.619530 0.519847i 0.278126 0.960545i \(-0.410287\pi\)
−0.897656 + 0.440697i \(0.854731\pi\)
\(660\) 0 0
\(661\) 1.78471e6 + 1.01216e7i 0.158878 + 0.901044i 0.955154 + 0.296110i \(0.0956895\pi\)
−0.796275 + 0.604934i \(0.793199\pi\)
\(662\) −2.63804e6 1.49611e7i −0.233957 1.32684i
\(663\) 0 0
\(664\) −761555. 639020.i −0.0670318 0.0562464i
\(665\) −1.61318e6 2.79412e6i −0.141459 0.245014i
\(666\) 0 0
\(667\) −120245. + 208271.i −0.0104654 + 0.0181265i
\(668\) −1.61983e6 + 589571.i −0.140452 + 0.0511205i
\(669\) 0 0
\(670\) −7.53578e6 + 6.32327e6i −0.648547 + 0.544195i
\(671\) 1.58948e6 + 578522.i 0.136285 + 0.0496037i
\(672\) 0 0
\(673\) 584432. 3.31448e6i 0.0497389 0.282083i −0.949786 0.312900i \(-0.898700\pi\)
0.999525 + 0.0308164i \(0.00981072\pi\)
\(674\) −3.22842e7 −2.73742
\(675\) 0 0
\(676\) 1.09831e7 0.924392
\(677\) 1.36986e6 7.76886e6i 0.114869 0.651457i −0.871945 0.489603i \(-0.837142\pi\)
0.986815 0.161854i \(-0.0517473\pi\)
\(678\) 0 0
\(679\) −6.61920e6 2.40919e6i −0.550974 0.200538i
\(680\) −147335. + 123629.i −0.0122190 + 0.0102529i
\(681\) 0 0
\(682\) 8.35237e6 3.04002e6i 0.687621 0.250273i
\(683\) −5.56506e6 + 9.63896e6i −0.456476 + 0.790640i −0.998772 0.0495481i \(-0.984222\pi\)
0.542296 + 0.840188i \(0.317555\pi\)
\(684\) 0 0
\(685\) −2.40715e6 4.16931e6i −0.196009 0.339498i
\(686\) 1.30170e7 + 1.09226e7i 1.05609 + 0.886165i
\(687\) 0 0
\(688\) −113985. 646440.i −0.00918070 0.0520663i
\(689\) 3.68415e6 + 2.08939e7i 0.295658 + 1.67676i
\(690\) 0 0
\(691\) −5.40132e6 4.53224e6i −0.430333 0.361092i 0.401744 0.915752i \(-0.368404\pi\)
−0.832077 + 0.554660i \(0.812848\pi\)
\(692\) 5.48228e6 + 9.49559e6i 0.435207 + 0.753801i
\(693\) 0 0
\(694\) −5.43829e6 + 9.41939e6i −0.428611 + 0.742376i
\(695\) −6.32528e6 + 2.30221e6i −0.496727 + 0.180794i
\(696\) 0 0
\(697\) 1.02504e7 8.60112e6i 0.799207 0.670614i
\(698\) −2.00237e7 7.28802e6i −1.55563 0.566202i
\(699\) 0 0
\(700\) −1.18707e6 + 6.73223e6i −0.0915657 + 0.519295i
\(701\) −7.27260e6 −0.558978 −0.279489 0.960149i \(-0.590165\pi\)
−0.279489 + 0.960149i \(0.590165\pi\)
\(702\) 0 0
\(703\) −2.32598e7 −1.77508
\(704\) 1.15847e6 6.57000e6i 0.0880952 0.499613i
\(705\) 0 0
\(706\) −3.41243e7 1.24202e7i −2.57663 0.937817i
\(707\) −4.96944e6 + 4.16986e6i −0.373903 + 0.313742i
\(708\) 0 0
\(709\) 1.85022e7 6.73425e6i 1.38232 0.503122i 0.459437 0.888210i \(-0.348051\pi\)
0.922880 + 0.385088i \(0.125829\pi\)
\(710\) 409929. 710017.i 0.0305184 0.0528595i
\(711\) 0 0
\(712\) 523930. + 907474.i 0.0387323 + 0.0670863i
\(713\) −1.05631e7 8.86351e6i −0.778159 0.652953i
\(714\) 0 0
\(715\) −545541. 3.09392e6i −0.0399082 0.226331i
\(716\) 1.88087e6 + 1.06669e7i 0.137112 + 0.777602i
\(717\) 0 0
\(718\) 6.50611e6 + 5.45927e6i 0.470988 + 0.395206i
\(719\) −3.97787e6 6.88987e6i −0.286965 0.497037i 0.686119 0.727489i \(-0.259313\pi\)
−0.973084 + 0.230452i \(0.925980\pi\)
\(720\) 0 0
\(721\) 4.50653e6 7.80554e6i 0.322853 0.559197i
\(722\) 1.65393e7 6.01983e6i 1.18080 0.429775i
\(723\) 0 0
\(724\) −5.78112e6 + 4.85093e6i −0.409888 + 0.343937i
\(725\) 260771. + 94912.7i 0.0184253 + 0.00670624i
\(726\) 0 0
\(727\) 1.10525e6 6.26818e6i 0.0775575 0.439850i −0.921158 0.389188i \(-0.872756\pi\)
0.998716 0.0506624i \(-0.0161333\pi\)
\(728\) 655267. 0.0458236
\(729\) 0 0
\(730\) 5.68467e6 0.394819
\(731\) −108064. + 612864.i −0.00747979 + 0.0424200i
\(732\) 0 0
\(733\) −2.40900e7 8.76803e6i −1.65606 0.602757i −0.666324 0.745662i \(-0.732133\pi\)
−0.989736 + 0.142906i \(0.954355\pi\)
\(734\) 1.06027e7 8.89674e6i 0.726402 0.609524i
\(735\) 0 0
\(736\) −1.83637e7 + 6.68382e6i −1.24958 + 0.454810i
\(737\) −5.77929e6 + 1.00100e7i −0.391927 + 0.678838i
\(738\) 0 0
\(739\) 3.31109e6 + 5.73498e6i 0.223028 + 0.386296i 0.955726 0.294258i \(-0.0950724\pi\)
−0.732698 + 0.680554i \(0.761739\pi\)
\(740\) −5.46508e6 4.58574e6i −0.366874 0.307844i
\(741\) 0 0
\(742\) 2.67431e6 + 1.51667e7i 0.178321 + 1.01131i
\(743\) 62505.3 + 354485.i 0.00415379 + 0.0235573i 0.986814 0.161857i \(-0.0517484\pi\)
−0.982660 + 0.185414i \(0.940637\pi\)
\(744\) 0 0
\(745\) −1.16825e6 980279.i −0.0771162 0.0647081i
\(746\) −1.93915e7 3.35871e7i −1.27575 2.20966i
\(747\) 0 0
\(748\) −2.92182e6 + 5.06074e6i −0.190941 + 0.330720i
\(749\) 8.98490e6 3.27024e6i 0.585206 0.212997i
\(750\) 0 0
\(751\) 3.97959e6 3.33927e6i 0.257477 0.216049i −0.504907 0.863174i \(-0.668473\pi\)
0.762384 + 0.647125i \(0.224029\pi\)
\(752\) 2.62248e7 + 9.54505e6i 1.69109 + 0.615508i
\(753\) 0 0
\(754\) 119441. 677385.i 0.00765114 0.0433918i
\(755\) −6.79881e6 −0.434076
\(756\) 0 0
\(757\) 6.85707e6 0.434909 0.217455 0.976070i \(-0.430225\pi\)
0.217455 + 0.976070i \(0.430225\pi\)
\(758\) −2.36058e6 + 1.33875e7i −0.149227 + 0.846307i
\(759\) 0 0
\(760\) 419179. + 152569.i 0.0263248 + 0.00958145i
\(761\) −8.70747e6 + 7.30643e6i −0.545042 + 0.457345i −0.873258 0.487258i \(-0.837997\pi\)
0.328216 + 0.944603i \(0.393553\pi\)
\(762\) 0 0
\(763\) 7.98417e6 2.90600e6i 0.496499 0.180711i
\(764\) −6.81613e6 + 1.18059e7i −0.422479 + 0.731754i
\(765\) 0 0
\(766\) −1.97367e6 3.41849e6i −0.121535 0.210505i
\(767\) 9.84140e6 + 8.25792e6i 0.604044 + 0.506853i
\(768\) 0 0
\(769\) 718369. + 4.07407e6i 0.0438058 + 0.248435i 0.998845 0.0480437i \(-0.0152987\pi\)
−0.955039 + 0.296479i \(0.904188\pi\)
\(770\) −396005. 2.24586e6i −0.0240699 0.136507i
\(771\) 0 0
\(772\) 1.20643e7 + 1.01232e7i 0.728550 + 0.611326i
\(773\) −774280. 1.34109e6i −0.0466068 0.0807254i 0.841781 0.539819i \(-0.181507\pi\)
−0.888388 + 0.459094i \(0.848174\pi\)
\(774\) 0 0
\(775\) −7.95577e6 + 1.37798e7i −0.475804 + 0.824116i
\(776\) 915176. 333097.i 0.0545570 0.0198571i
\(777\) 0 0
\(778\) 1.37295e7 1.15204e7i 0.813215 0.682369i
\(779\) −2.91631e7 1.06145e7i −1.72183 0.626695i
\(780\) 0 0
\(781\) 167278. 948680.i 0.00981321 0.0556535i
\(782\) 1.77807e7 1.03975
\(783\) 0 0
\(784\) 1.09373e7 0.635505
\(785\) 154270. 874907.i 0.00893525 0.0506743i
\(786\) 0 0
\(787\) 2.21710e7 + 8.06958e6i 1.27599 + 0.464423i 0.889105 0.457704i \(-0.151328\pi\)
0.386888 + 0.922127i \(0.373550\pi\)
\(788\) 9.48793e6 7.96132e6i 0.544322 0.456740i
\(789\) 0 0
\(790\) 8.30183e6 3.02162e6i 0.473267 0.172255i
\(791\) −3.53568e6 + 6.12397e6i −0.200924 + 0.348010i
\(792\) 0 0
\(793\) 3.75265e6 + 6.49977e6i 0.211912 + 0.367042i
\(794\) 7.08708e6 + 5.94677e6i 0.398948 + 0.334757i
\(795\) 0 0
\(796\) 3.54139e6 + 2.00842e7i 0.198103 + 1.12350i
\(797\) −1.77651e6 1.00751e7i −0.0990652 0.561827i −0.993426 0.114480i \(-0.963480\pi\)
0.894360 0.447347i \(-0.147631\pi\)
\(798\) 0 0
\(799\) −2.02683e7 1.70071e7i −1.12318 0.942461i
\(800\) 1.12750e7 + 1.95289e7i 0.622863 + 1.07883i
\(801\) 0 0
\(802\) 9.51760e6 1.64850e7i 0.522506 0.905007i
\(803\) 6.27655e6 2.28448e6i 0.343504 0.125025i
\(804\) 0 0
\(805\) −2.71018e6 + 2.27411e6i −0.147404 + 0.123686i
\(806\) 3.70603e7 + 1.34889e7i 2.00942 + 0.731371i
\(807\) 0 0
\(808\) 155748. 883293.i 0.00839257 0.0475966i
\(809\) 2.67937e7 1.43933 0.719667 0.694319i \(-0.244294\pi\)
0.719667 + 0.694319i \(0.244294\pi\)
\(810\) 0 0
\(811\) −3.77636e6 −0.201614 −0.100807 0.994906i \(-0.532142\pi\)
−0.100807 + 0.994906i \(0.532142\pi\)
\(812\) 44205.7 250703.i 0.00235281 0.0133435i
\(813\) 0 0
\(814\) −1.54493e7 5.62308e6i −0.817236 0.297450i
\(815\) 1.56427e6 1.31258e6i 0.0824933 0.0692201i
\(816\) 0 0
\(817\) 1.35631e6 493657.i 0.0710893 0.0258744i
\(818\) 1.70699e7 2.95659e7i 0.891965 1.54493i
\(819\) 0 0
\(820\) −4.75942e6 8.24356e6i −0.247184 0.428134i
\(821\) −1.97495e7 1.65718e7i −1.02258 0.858050i −0.0326337 0.999467i \(-0.510389\pi\)
−0.989950 + 0.141418i \(0.954834\pi\)
\(822\) 0 0
\(823\) −2.15299e6 1.22102e7i −0.110801 0.628383i −0.988744 0.149618i \(-0.952196\pi\)
0.877943 0.478765i \(-0.158915\pi\)
\(824\) 216392. + 1.22722e6i 0.0111026 + 0.0629659i
\(825\) 0 0
\(826\) 7.14382e6 + 5.99438e6i 0.364318 + 0.305699i
\(827\) −638693. 1.10625e6i −0.0324734 0.0562456i 0.849332 0.527859i \(-0.177005\pi\)
−0.881805 + 0.471613i \(0.843672\pi\)
\(828\) 0 0
\(829\) 7.89038e6 1.36665e7i 0.398760 0.690673i −0.594813 0.803864i \(-0.702774\pi\)
0.993573 + 0.113191i \(0.0361073\pi\)
\(830\) −1.44260e7 + 5.25062e6i −0.726858 + 0.264555i
\(831\) 0 0
\(832\) 2.26760e7 1.90275e7i 1.13569 0.952955i
\(833\) −9.74385e6 3.54647e6i −0.486540 0.177086i
\(834\) 0 0
\(835\) −178758. + 1.01379e6i −0.00887257 + 0.0503189i
\(836\) 1.35533e7 0.670701
\(837\) 0 0
\(838\) −1.59912e7 −0.786629
\(839\) 6.36209e6 3.60812e7i 0.312029 1.76960i −0.276388 0.961046i \(-0.589137\pi\)
0.588417 0.808558i \(-0.299751\pi\)
\(840\) 0 0
\(841\) 1.92645e7 + 7.01169e6i 0.939219 + 0.341848i
\(842\) −1.29833e7 + 1.08942e7i −0.631108 + 0.529562i
\(843\) 0 0
\(844\) −1.37846e7 + 5.01719e6i −0.666099 + 0.242440i
\(845\) 3.27947e6 5.68022e6i 0.158002 0.273667i
\(846\) 0 0
\(847\) 4.71818e6 + 8.17214e6i 0.225978 + 0.391406i
\(848\) 1.90425e7 + 1.59785e7i 0.909355 + 0.763039i
\(849\) 0 0
\(850\) −3.56281e6 2.02057e7i −0.169139 0.959237i
\(851\) 4.42901e6 + 2.51182e7i 0.209644 + 1.18895i
\(852\) 0 0
\(853\) 4.67099e6 + 3.91942e6i 0.219804 + 0.184438i 0.746040 0.665901i \(-0.231953\pi\)
−0.526236 + 0.850339i \(0.676397\pi\)
\(854\) 2.72403e6 + 4.71815e6i 0.127811 + 0.221374i
\(855\) 0 0
\(856\) −660993. + 1.14487e6i −0.0308327 + 0.0534039i
\(857\) −3.17840e7 + 1.15684e7i −1.47828 + 0.538050i −0.950335 0.311228i \(-0.899260\pi\)
−0.527945 + 0.849278i \(0.677037\pi\)
\(858\) 0 0
\(859\) 3.51837e6 2.95227e6i 0.162689 0.136513i −0.557809 0.829970i \(-0.688358\pi\)
0.720498 + 0.693457i \(0.243913\pi\)
\(860\) 416002. + 151412.i 0.0191800 + 0.00698096i
\(861\) 0 0
\(862\) 6.05644e6 3.43478e7i 0.277619 1.57446i
\(863\) 4.00578e7 1.83088 0.915441 0.402451i \(-0.131842\pi\)
0.915441 + 0.402451i \(0.131842\pi\)
\(864\) 0 0
\(865\) 6.54791e6 0.297552
\(866\) 5.63715e6 3.19699e7i 0.255426 1.44859i
\(867\) 0 0
\(868\) 1.37162e7 + 4.99228e6i 0.617922 + 0.224905i
\(869\) 7.95192e6 6.67246e6i 0.357209 0.299734i
\(870\) 0 0
\(871\) −4.81936e7 + 1.75410e7i −2.15251 + 0.783448i
\(872\) −587372. + 1.01736e6i −0.0261591 + 0.0453088i
\(873\) 0 0
\(874\) −2.06195e7 3.57141e7i −0.913061 1.58147i
\(875\) 6.70735e6 + 5.62813e6i 0.296163 + 0.248510i
\(876\) 0 0
\(877\) 4.86976e6 + 2.76178e7i 0.213800 + 1.21252i 0.882976 + 0.469418i \(0.155536\pi\)
−0.669176 + 0.743104i \(0.733353\pi\)
\(878\) −7.17245e6 4.06770e7i −0.314001 1.78079i
\(879\) 0 0
\(880\) −2.81976e6 2.36606e6i −0.122746 0.102996i
\(881\) −4.53807e6 7.86017e6i −0.196984 0.341187i 0.750565 0.660797i \(-0.229781\pi\)
−0.947549 + 0.319610i \(0.896448\pi\)
\(882\) 0 0
\(883\) −1.36576e7 + 2.36557e7i −0.589486 + 1.02102i 0.404814 + 0.914399i \(0.367336\pi\)
−0.994300 + 0.106620i \(0.965997\pi\)
\(884\) −2.43651e7 + 8.86819e6i −1.04867 + 0.381684i
\(885\) 0 0
\(886\) −1.53462e7 + 1.28770e7i −0.656774 + 0.551099i
\(887\) −3.46203e7 1.26008e7i −1.47748 0.537759i −0.527360 0.849642i \(-0.676818\pi\)
−0.950120 + 0.311883i \(0.899040\pi\)
\(888\) 0 0
\(889\) 610683. 3.46336e6i 0.0259156 0.146975i
\(890\) 1.61814e7 0.684763
\(891\) 0 0
\(892\) −3.25654e7 −1.37039
\(893\) −1.06560e7 + 6.04331e7i −0.447162 + 2.53598i
\(894\) 0 0
\(895\) 6.07834e6 + 2.21234e6i 0.253646 + 0.0923195i
\(896\) 1.22664e6 1.02927e6i 0.0510443 0.0428312i
\(897\) 0 0
\(898\) 2.85780e7 1.04015e7i 1.18261 0.430434i
\(899\) 296266. 513148.i 0.0122260 0.0211760i
\(900\) 0 0
\(901\) −1.17835e7 2.04097e7i −0.483574 0.837575i
\(902\) −1.68042e7 1.41004e7i −0.687705 0.577053i
\(903\) 0 0
\(904\) −169774. 962838.i −0.00690957 0.0391861i
\(905\) 782599. + 4.43834e6i 0.0317627 + 0.180135i
\(906\) 0 0
\(907\) −2.97699e7 2.49799e7i −1.20160 1.00826i −0.999583 0.0288777i \(-0.990807\pi\)
−0.202015 0.979382i \(-0.564749\pi\)
\(908\) −1.83303e7 3.17490e7i −0.737827 1.27795i
\(909\) 0 0
\(910\) 5.05941e6 8.76316e6i 0.202533 0.350798i
\(911\) −2.87284e7 + 1.04563e7i −1.14688 + 0.417428i −0.844392 0.535726i \(-0.820038\pi\)
−0.302483 + 0.953155i \(0.597816\pi\)
\(912\) 0 0
\(913\) −1.38179e7 + 1.15946e7i −0.548613 + 0.460341i
\(914\) 3.48026e7 + 1.26671e7i 1.37799 + 0.501547i
\(915\) 0 0
\(916\) −549357. + 3.11556e6i −0.0216329 + 0.122687i
\(917\) −9.12534e6 −0.358365
\(918\) 0 0
\(919\) −4.08434e6 −0.159527 −0.0797633 0.996814i \(-0.525416\pi\)
−0.0797633 + 0.996814i \(0.525416\pi\)
\(920\) 84940.3 481721.i 0.00330860 0.0187640i
\(921\) 0 0
\(922\) 5.33402e7 + 1.94142e7i 2.06646 + 0.752130i
\(923\) 3.27433e6 2.74749e6i 0.126508 0.106153i
\(924\) 0 0
\(925\) 2.76564e7 1.00661e7i 1.06278 0.386819i
\(926\) −2.81848e7 + 4.88175e7i −1.08016 + 1.87089i
\(927\) 0 0
\(928\) −419872. 727240.i −0.0160047 0.0277209i
\(929\) 1.82066e7 + 1.52772e7i 0.692134 + 0.580769i 0.919524 0.393035i \(-0.128575\pi\)
−0.227390 + 0.973804i \(0.573019\pi\)
\(930\) 0 0
\(931\) 4.17615e6 + 2.36841e7i 0.157907 + 0.895536i
\(932\) 6.22503e6 + 3.53039e7i 0.234748 + 1.33132i
\(933\) 0 0
\(934\) −3.85320e6 3.23322e6i −0.144529 0.121274i
\(935\) 1.74488e6 + 3.02222e6i 0.0652733 + 0.113057i
\(936\) 0 0
\(937\) 6.24788e6 1.08216e7i 0.232479 0.402665i −0.726058 0.687633i \(-0.758650\pi\)
0.958537 + 0.284968i \(0.0919830\pi\)
\(938\) −3.49835e7 + 1.27330e7i −1.29824 + 0.472522i
\(939\) 0 0
\(940\) −1.44183e7 + 1.20984e7i −0.532223 + 0.446588i
\(941\) 6.24655e6 + 2.27356e6i 0.229967 + 0.0837012i 0.454434 0.890781i \(-0.349842\pi\)
−0.224466 + 0.974482i \(0.572064\pi\)
\(942\) 0 0
\(943\) −5.90947e6 + 3.35143e7i −0.216406 + 1.22730i
\(944\) 1.50524e7 0.549762
\(945\) 0 0
\(946\) 1.02021e6 0.0370648
\(947\) −751796. + 4.26365e6i −0.0272411 + 0.154492i −0.995394 0.0958671i \(-0.969438\pi\)
0.968153 + 0.250359i \(0.0805487\pi\)
\(948\) 0 0
\(949\) 2.78497e7 + 1.01365e7i 1.00382 + 0.365360i
\(950\) −3.64533e7 + 3.05879e7i −1.31047 + 1.09962i
\(951\) 0 0
\(952\) −683977. + 248947.i −0.0244596 + 0.00890257i
\(953\) 2.03268e7 3.52070e7i 0.724997 1.25573i −0.233978 0.972242i \(-0.575174\pi\)
0.958975 0.283490i \(-0.0914923\pi\)
\(954\) 0 0
\(955\) 4.07051e6 + 7.05033e6i 0.144424 + 0.250150i
\(956\) −3.20670e7 2.69074e7i −1.13479 0.952198i
\(957\) 0 0
\(958\) −3.99422e6 2.26524e7i −0.140611 0.797443i
\(959\) −3.16378e6 1.79427e7i −0.111086 0.630001i
\(960\) 0 0
\(961\) 4.09468e6 + 3.43584e6i 0.143025 + 0.120012i
\(962\) −3.64747e7 6.31761e7i −1.27073 2.20097i
\(963\) 0 0
\(964\) −1.07598e7 + 1.86365e7i −0.372917 + 0.645911i
\(965\) 8.83782e6 3.21671e6i 0.305511 0.111197i
\(966\) 0 0
\(967\) −2.24271e7 + 1.88186e7i −0.771271 + 0.647173i −0.941034 0.338312i \(-0.890144\pi\)
0.169763 + 0.985485i \(0.445700\pi\)
\(968\) −1.22600e6 446227.i −0.0420535 0.0153062i
\(969\) 0 0
\(970\) 2.61157e6 1.48109e7i 0.0891193 0.505420i
\(971\) −2.51690e6 −0.0856677 −0.0428338 0.999082i \(-0.513639\pi\)
−0.0428338 + 0.999082i \(0.513639\pi\)
\(972\) 0 0
\(973\) −2.54740e7 −0.862610
\(974\) −4.73767e6 + 2.68687e7i −0.160017 + 0.907504i
\(975\) 0 0
\(976\) 8.26333e6 + 3.00761e6i 0.277671 + 0.101064i
\(977\) 2.23206e7 1.87292e7i 0.748118 0.627746i −0.186886 0.982382i \(-0.559840\pi\)
0.935005 + 0.354636i \(0.115395\pi\)
\(978\) 0 0
\(979\) 1.78662e7 6.50275e6i 0.595764 0.216840i
\(980\) −3.68818e6 + 6.38811e6i −0.122672 + 0.212475i
\(981\) 0 0
\(982\) 2.79891e7 + 4.84786e7i 0.926213 + 1.60425i
\(983\) 3.82122e6 + 3.20638e6i 0.126130 + 0.105836i 0.703671 0.710526i \(-0.251543\pi\)
−0.577541 + 0.816362i \(0.695988\pi\)
\(984\) 0 0
\(985\) −1.28440e6 7.28417e6i −0.0421802 0.239216i
\(986\) 132676. + 752443.i 0.00434610 + 0.0246480i
\(987\) 0 0
\(988\) 4.60678e7 + 3.86555e7i 1.50143 + 1.25985i
\(989\) −791359. 1.37067e6i −0.0257266 0.0445598i
\(990\) 0 0
\(991\) −5.96337e6 + 1.03289e7i −0.192889 + 0.334094i −0.946207 0.323563i \(-0.895119\pi\)
0.753317 + 0.657657i \(0.228452\pi\)
\(992\) 4.52452e7 1.64679e7i 1.45980 0.531324i
\(993\) 0 0
\(994\) 2.37682e6 1.99438e6i 0.0763009 0.0640240i
\(995\) 1.14446e7 + 4.16549e6i 0.366473 + 0.133385i
\(996\) 0 0
\(997\) −350452. + 1.98751e6i −0.0111658 + 0.0633245i −0.989882 0.141896i \(-0.954680\pi\)
0.978716 + 0.205221i \(0.0657912\pi\)
\(998\) 2.07504e7 0.659477
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.6.e.a.73.3 84
3.2 odd 2 27.6.e.a.25.12 yes 84
27.11 odd 18 729.6.a.c.1.35 42
27.13 even 9 inner 81.6.e.a.10.3 84
27.14 odd 18 27.6.e.a.13.12 84
27.16 even 9 729.6.a.e.1.8 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.6.e.a.13.12 84 27.14 odd 18
27.6.e.a.25.12 yes 84 3.2 odd 2
81.6.e.a.10.3 84 27.13 even 9 inner
81.6.e.a.73.3 84 1.1 even 1 trivial
729.6.a.c.1.35 42 27.11 odd 18
729.6.a.e.1.8 42 27.16 even 9