Properties

Label 81.6
Level 81
Weight 6
Dimension 932
Nonzero newspaces 4
Newform subspaces 16
Sturm bound 2916
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 81 = 3^{4} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 16 \)
Sturm bound: \(2916\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(81))\).

Total New Old
Modular forms 1269 988 281
Cusp forms 1161 932 229
Eisenstein series 108 56 52

Trace form

\( 932 q - 12 q^{2} - 18 q^{3} - 52 q^{4} + 75 q^{5} - 18 q^{6} - 107 q^{7} - 591 q^{8} - 18 q^{9} - 69 q^{10} - 129 q^{11} - 18 q^{12} + 1717 q^{13} + 1623 q^{14} - 18 q^{15} - 3328 q^{16} - 3483 q^{17} + 8658 q^{18}+ \cdots - 1736586 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(81))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
81.6.a \(\chi_{81}(1, \cdot)\) 81.6.a.a 2 1
81.6.a.b 2
81.6.a.c 4
81.6.a.d 4
81.6.a.e 6
81.6.c \(\chi_{81}(28, \cdot)\) 81.6.c.a 2 2
81.6.c.b 2
81.6.c.c 2
81.6.c.d 4
81.6.c.e 4
81.6.c.f 4
81.6.c.g 4
81.6.c.h 4
81.6.c.i 12
81.6.e \(\chi_{81}(10, \cdot)\) 81.6.e.a 84 6
81.6.g \(\chi_{81}(4, \cdot)\) 81.6.g.a 792 18

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(81))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(81)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)