Properties

Label 729.2.g.c.55.6
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.6
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.c.676.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.311913 - 0.723096i) q^{2} +(0.946905 + 1.00366i) q^{4} +(0.161980 + 2.78108i) q^{5} +(4.84803 + 1.14900i) q^{7} +(2.50111 - 0.910331i) q^{8} +O(q^{10})\) \(q+(0.311913 - 0.723096i) q^{2} +(0.946905 + 1.00366i) q^{4} +(0.161980 + 2.78108i) q^{5} +(4.84803 + 1.14900i) q^{7} +(2.50111 - 0.910331i) q^{8} +(2.06152 + 0.750330i) q^{10} +(-1.45131 - 0.954539i) q^{11} +(-2.15633 - 0.252038i) q^{13} +(2.34301 - 3.14720i) q^{14} +(-0.0385876 + 0.662524i) q^{16} +(-3.39468 + 2.84848i) q^{17} +(-1.63306 - 1.37030i) q^{19} +(-2.63789 + 2.79600i) q^{20} +(-1.14291 + 0.751701i) q^{22} +(-0.659824 + 0.156381i) q^{23} +(-2.74200 + 0.320494i) q^{25} +(-0.854835 + 1.48062i) q^{26} +(3.43741 + 5.95378i) q^{28} +(-3.43613 - 4.61552i) q^{29} +(1.68658 - 5.63358i) q^{31} +(5.22407 + 2.62363i) q^{32} +(1.00088 + 3.34316i) q^{34} +(-2.41020 + 13.6689i) q^{35} +(0.131814 + 0.747552i) q^{37} +(-1.50023 + 0.753445i) q^{38} +(2.93684 + 6.80835i) q^{40} +(0.0489024 + 0.113369i) q^{41} +(2.27552 - 1.14281i) q^{43} +(-0.416216 - 2.36048i) q^{44} +(-0.0927292 + 0.525894i) q^{46} +(-0.487133 - 1.62714i) q^{47} +(15.9278 + 7.99922i) q^{49} +(-0.623519 + 2.08270i) q^{50} +(-1.78887 - 2.40288i) q^{52} +(-5.02192 - 8.69822i) q^{53} +(2.41957 - 4.19082i) q^{55} +(13.1715 - 1.53952i) q^{56} +(-4.40924 + 1.04501i) q^{58} +(9.71683 - 6.39086i) q^{59} +(-5.43508 + 5.76085i) q^{61} +(-3.54755 - 2.97675i) q^{62} +(2.50983 - 2.10599i) q^{64} +(0.351659 - 6.03775i) q^{65} +(-0.277935 + 0.373331i) q^{67} +(-6.07334 - 0.709872i) q^{68} +(9.13216 + 6.00632i) q^{70} +(11.4588 + 4.17067i) q^{71} +(-2.01159 + 0.732160i) q^{73} +(0.581667 + 0.137858i) q^{74} +(-0.171036 - 2.93658i) q^{76} +(-5.93921 - 6.29519i) q^{77} +(2.77777 - 6.43960i) q^{79} -1.84879 q^{80} +0.0972297 q^{82} +(-1.31099 + 3.03921i) q^{83} +(-8.47172 - 8.97950i) q^{85} +(-0.116596 - 2.00188i) q^{86} +(-4.49883 - 1.06624i) q^{88} +(-4.72182 + 1.71860i) q^{89} +(-10.1643 - 3.69952i) q^{91} +(-0.781744 - 0.514161i) q^{92} +(-1.32852 - 0.155282i) q^{94} +(3.54640 - 4.76364i) q^{95} +(0.436507 - 7.49453i) q^{97} +(10.7523 - 9.02224i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.311913 0.723096i 0.220556 0.511306i −0.771630 0.636071i \(-0.780558\pi\)
0.992186 + 0.124765i \(0.0398177\pi\)
\(3\) 0 0
\(4\) 0.946905 + 1.00366i 0.473452 + 0.501830i
\(5\) 0.161980 + 2.78108i 0.0724395 + 1.24374i 0.817179 + 0.576384i \(0.195537\pi\)
−0.744740 + 0.667355i \(0.767426\pi\)
\(6\) 0 0
\(7\) 4.84803 + 1.14900i 1.83238 + 0.434283i 0.993866 0.110592i \(-0.0352746\pi\)
0.838518 + 0.544875i \(0.183423\pi\)
\(8\) 2.50111 0.910331i 0.884277 0.321851i
\(9\) 0 0
\(10\) 2.06152 + 0.750330i 0.651909 + 0.237275i
\(11\) −1.45131 0.954539i −0.437585 0.287804i 0.311540 0.950233i \(-0.399155\pi\)
−0.749125 + 0.662429i \(0.769526\pi\)
\(12\) 0 0
\(13\) −2.15633 0.252038i −0.598057 0.0699029i −0.188322 0.982107i \(-0.560305\pi\)
−0.409735 + 0.912205i \(0.634379\pi\)
\(14\) 2.34301 3.14720i 0.626195 0.841126i
\(15\) 0 0
\(16\) −0.0385876 + 0.662524i −0.00964691 + 0.165631i
\(17\) −3.39468 + 2.84848i −0.823331 + 0.690857i −0.953750 0.300602i \(-0.902812\pi\)
0.130419 + 0.991459i \(0.458368\pi\)
\(18\) 0 0
\(19\) −1.63306 1.37030i −0.374650 0.314369i 0.435948 0.899972i \(-0.356413\pi\)
−0.810598 + 0.585603i \(0.800858\pi\)
\(20\) −2.63789 + 2.79600i −0.589849 + 0.625204i
\(21\) 0 0
\(22\) −1.14291 + 0.751701i −0.243668 + 0.160263i
\(23\) −0.659824 + 0.156381i −0.137583 + 0.0326077i −0.298830 0.954306i \(-0.596596\pi\)
0.161247 + 0.986914i \(0.448448\pi\)
\(24\) 0 0
\(25\) −2.74200 + 0.320494i −0.548401 + 0.0640989i
\(26\) −0.854835 + 1.48062i −0.167647 + 0.290373i
\(27\) 0 0
\(28\) 3.43741 + 5.95378i 0.649610 + 1.12516i
\(29\) −3.43613 4.61552i −0.638073 0.857080i 0.359016 0.933331i \(-0.383112\pi\)
−0.997089 + 0.0762510i \(0.975705\pi\)
\(30\) 0 0
\(31\) 1.68658 5.63358i 0.302919 1.01182i −0.662050 0.749459i \(-0.730313\pi\)
0.964970 0.262362i \(-0.0845013\pi\)
\(32\) 5.22407 + 2.62363i 0.923494 + 0.463796i
\(33\) 0 0
\(34\) 1.00088 + 3.34316i 0.171649 + 0.573347i
\(35\) −2.41020 + 13.6689i −0.407397 + 2.31047i
\(36\) 0 0
\(37\) 0.131814 + 0.747552i 0.0216700 + 0.122897i 0.993724 0.111861i \(-0.0356813\pi\)
−0.972054 + 0.234758i \(0.924570\pi\)
\(38\) −1.50023 + 0.753445i −0.243370 + 0.122225i
\(39\) 0 0
\(40\) 2.93684 + 6.80835i 0.464355 + 1.07650i
\(41\) 0.0489024 + 0.113369i 0.00763727 + 0.0177052i 0.921992 0.387209i \(-0.126561\pi\)
−0.914355 + 0.404914i \(0.867301\pi\)
\(42\) 0 0
\(43\) 2.27552 1.14281i 0.347014 0.174277i −0.266751 0.963765i \(-0.585950\pi\)
0.613766 + 0.789488i \(0.289654\pi\)
\(44\) −0.416216 2.36048i −0.0627469 0.355855i
\(45\) 0 0
\(46\) −0.0927292 + 0.525894i −0.0136722 + 0.0775388i
\(47\) −0.487133 1.62714i −0.0710556 0.237342i 0.915083 0.403265i \(-0.132125\pi\)
−0.986139 + 0.165923i \(0.946940\pi\)
\(48\) 0 0
\(49\) 15.9278 + 7.99922i 2.27539 + 1.14275i
\(50\) −0.623519 + 2.08270i −0.0881789 + 0.294538i
\(51\) 0 0
\(52\) −1.78887 2.40288i −0.248072 0.333219i
\(53\) −5.02192 8.69822i −0.689814 1.19479i −0.971898 0.235403i \(-0.924359\pi\)
0.282084 0.959390i \(-0.408974\pi\)
\(54\) 0 0
\(55\) 2.41957 4.19082i 0.326255 0.565090i
\(56\) 13.1715 1.53952i 1.76011 0.205727i
\(57\) 0 0
\(58\) −4.40924 + 1.04501i −0.578961 + 0.137216i
\(59\) 9.71683 6.39086i 1.26502 0.832019i 0.273491 0.961875i \(-0.411822\pi\)
0.991533 + 0.129855i \(0.0414512\pi\)
\(60\) 0 0
\(61\) −5.43508 + 5.76085i −0.695891 + 0.737601i −0.974889 0.222690i \(-0.928516\pi\)
0.278998 + 0.960292i \(0.409998\pi\)
\(62\) −3.54755 2.97675i −0.450540 0.378048i
\(63\) 0 0
\(64\) 2.50983 2.10599i 0.313728 0.263249i
\(65\) 0.351659 6.03775i 0.0436179 0.748891i
\(66\) 0 0
\(67\) −0.277935 + 0.373331i −0.0339551 + 0.0456097i −0.818777 0.574112i \(-0.805347\pi\)
0.784821 + 0.619722i \(0.212755\pi\)
\(68\) −6.07334 0.709872i −0.736501 0.0860846i
\(69\) 0 0
\(70\) 9.13216 + 6.00632i 1.09150 + 0.717892i
\(71\) 11.4588 + 4.17067i 1.35991 + 0.494968i 0.916027 0.401116i \(-0.131378\pi\)
0.443885 + 0.896084i \(0.353600\pi\)
\(72\) 0 0
\(73\) −2.01159 + 0.732160i −0.235439 + 0.0856928i −0.457045 0.889443i \(-0.651092\pi\)
0.221606 + 0.975136i \(0.428870\pi\)
\(74\) 0.581667 + 0.137858i 0.0676174 + 0.0160256i
\(75\) 0 0
\(76\) −0.171036 2.93658i −0.0196192 0.336849i
\(77\) −5.93921 6.29519i −0.676835 0.717404i
\(78\) 0 0
\(79\) 2.77777 6.43960i 0.312524 0.724512i −0.687475 0.726208i \(-0.741281\pi\)
0.999999 + 0.00169654i \(0.000540027\pi\)
\(80\) −1.84879 −0.206701
\(81\) 0 0
\(82\) 0.0972297 0.0107372
\(83\) −1.31099 + 3.03921i −0.143899 + 0.333596i −0.974889 0.222692i \(-0.928516\pi\)
0.830989 + 0.556288i \(0.187775\pi\)
\(84\) 0 0
\(85\) −8.47172 8.97950i −0.918887 0.973963i
\(86\) −0.116596 2.00188i −0.0125729 0.215868i
\(87\) 0 0
\(88\) −4.49883 1.06624i −0.479577 0.113662i
\(89\) −4.72182 + 1.71860i −0.500512 + 0.182171i −0.579924 0.814670i \(-0.696918\pi\)
0.0794124 + 0.996842i \(0.474696\pi\)
\(90\) 0 0
\(91\) −10.1643 3.69952i −1.06551 0.387815i
\(92\) −0.781744 0.514161i −0.0815024 0.0536050i
\(93\) 0 0
\(94\) −1.32852 0.155282i −0.137026 0.0160161i
\(95\) 3.54640 4.76364i 0.363853 0.488739i
\(96\) 0 0
\(97\) 0.436507 7.49453i 0.0443206 0.760955i −0.900800 0.434234i \(-0.857019\pi\)
0.945121 0.326721i \(-0.105944\pi\)
\(98\) 10.7523 9.02224i 1.08615 0.911384i
\(99\) 0 0
\(100\) −2.91808 2.44856i −0.291808 0.244856i
\(101\) −1.55076 + 1.64371i −0.154307 + 0.163555i −0.799915 0.600113i \(-0.795122\pi\)
0.645609 + 0.763668i \(0.276604\pi\)
\(102\) 0 0
\(103\) 0.223770 0.147176i 0.0220487 0.0145017i −0.538437 0.842666i \(-0.680985\pi\)
0.560485 + 0.828164i \(0.310615\pi\)
\(104\) −5.62265 + 1.33259i −0.551347 + 0.130672i
\(105\) 0 0
\(106\) −7.85606 + 0.918241i −0.763048 + 0.0891875i
\(107\) 4.97987 8.62539i 0.481423 0.833848i −0.518350 0.855169i \(-0.673454\pi\)
0.999773 + 0.0213201i \(0.00678691\pi\)
\(108\) 0 0
\(109\) 6.70725 + 11.6173i 0.642438 + 1.11273i 0.984887 + 0.173198i \(0.0554102\pi\)
−0.342449 + 0.939536i \(0.611256\pi\)
\(110\) −2.27567 3.05676i −0.216977 0.291450i
\(111\) 0 0
\(112\) −0.948317 + 3.16760i −0.0896075 + 0.299310i
\(113\) 0.358445 + 0.180018i 0.0337196 + 0.0169346i 0.465579 0.885006i \(-0.345846\pi\)
−0.431859 + 0.901941i \(0.642142\pi\)
\(114\) 0 0
\(115\) −0.541787 1.80970i −0.0505219 0.168755i
\(116\) 1.37873 7.81916i 0.128012 0.725991i
\(117\) 0 0
\(118\) −1.59040 9.01960i −0.146408 0.830322i
\(119\) −19.7304 + 9.90899i −1.80869 + 0.908356i
\(120\) 0 0
\(121\) −3.16173 7.32972i −0.287430 0.666338i
\(122\) 2.47037 + 5.72697i 0.223657 + 0.518496i
\(123\) 0 0
\(124\) 7.25124 3.64171i 0.651180 0.327035i
\(125\) 1.08327 + 6.14355i 0.0968909 + 0.549495i
\(126\) 0 0
\(127\) −1.81470 + 10.2917i −0.161029 + 0.913239i 0.792037 + 0.610474i \(0.209021\pi\)
−0.953065 + 0.302765i \(0.902090\pi\)
\(128\) 2.61325 + 8.72885i 0.230981 + 0.771529i
\(129\) 0 0
\(130\) −4.25619 2.13754i −0.373292 0.187474i
\(131\) −3.85774 + 12.8857i −0.337052 + 1.12583i 0.606632 + 0.794983i \(0.292520\pi\)
−0.943684 + 0.330849i \(0.892665\pi\)
\(132\) 0 0
\(133\) −6.34265 8.51965i −0.549977 0.738748i
\(134\) 0.183263 + 0.317421i 0.0158315 + 0.0274210i
\(135\) 0 0
\(136\) −5.89743 + 10.2146i −0.505700 + 0.875898i
\(137\) 14.2020 1.65997i 1.21335 0.141821i 0.514757 0.857336i \(-0.327882\pi\)
0.698597 + 0.715515i \(0.253808\pi\)
\(138\) 0 0
\(139\) −0.315089 + 0.0746776i −0.0267255 + 0.00633407i −0.243957 0.969786i \(-0.578446\pi\)
0.217231 + 0.976120i \(0.430297\pi\)
\(140\) −16.0012 + 10.5241i −1.35235 + 0.889451i
\(141\) 0 0
\(142\) 6.58996 6.98495i 0.553017 0.586164i
\(143\) 2.88891 + 2.42408i 0.241583 + 0.202712i
\(144\) 0 0
\(145\) 12.2796 10.3038i 1.01976 0.855682i
\(146\) −0.0980204 + 1.68295i −0.00811223 + 0.139282i
\(147\) 0 0
\(148\) −0.625474 + 0.840157i −0.0514136 + 0.0690605i
\(149\) 3.05716 + 0.357331i 0.250452 + 0.0292737i 0.240393 0.970676i \(-0.422724\pi\)
0.0100596 + 0.999949i \(0.496798\pi\)
\(150\) 0 0
\(151\) −10.4653 6.88317i −0.851658 0.560144i 0.0469497 0.998897i \(-0.485050\pi\)
−0.898608 + 0.438753i \(0.855420\pi\)
\(152\) −5.33190 1.94065i −0.432474 0.157408i
\(153\) 0 0
\(154\) −6.40455 + 2.33106i −0.516093 + 0.187843i
\(155\) 15.9407 + 3.77801i 1.28038 + 0.303457i
\(156\) 0 0
\(157\) −0.338473 5.81136i −0.0270131 0.463797i −0.984507 0.175344i \(-0.943896\pi\)
0.957494 0.288453i \(-0.0931408\pi\)
\(158\) −3.79003 4.01720i −0.301518 0.319591i
\(159\) 0 0
\(160\) −6.45034 + 14.9536i −0.509944 + 1.18218i
\(161\) −3.37853 −0.266265
\(162\) 0 0
\(163\) −6.75084 −0.528767 −0.264383 0.964418i \(-0.585168\pi\)
−0.264383 + 0.964418i \(0.585168\pi\)
\(164\) −0.0674776 + 0.156431i −0.00526912 + 0.0122152i
\(165\) 0 0
\(166\) 1.78873 + 1.89594i 0.138832 + 0.147153i
\(167\) 1.01103 + 17.3588i 0.0782362 + 1.34326i 0.777718 + 0.628614i \(0.216377\pi\)
−0.699482 + 0.714651i \(0.746586\pi\)
\(168\) 0 0
\(169\) −8.06337 1.91105i −0.620259 0.147004i
\(170\) −9.13549 + 3.32504i −0.700660 + 0.255019i
\(171\) 0 0
\(172\) 3.30170 + 1.20172i 0.251752 + 0.0916303i
\(173\) 11.4838 + 7.55304i 0.873100 + 0.574247i 0.905080 0.425242i \(-0.139811\pi\)
−0.0319801 + 0.999489i \(0.510181\pi\)
\(174\) 0 0
\(175\) −13.6616 1.59681i −1.03272 0.120707i
\(176\) 0.688407 0.924691i 0.0518907 0.0697012i
\(177\) 0 0
\(178\) −0.230084 + 3.95038i −0.0172455 + 0.296094i
\(179\) 1.66053 1.39335i 0.124114 0.104144i −0.578618 0.815599i \(-0.696408\pi\)
0.702732 + 0.711455i \(0.251963\pi\)
\(180\) 0 0
\(181\) −17.7173 14.8665i −1.31691 1.10502i −0.986950 0.161028i \(-0.948519\pi\)
−0.329963 0.943994i \(-0.607036\pi\)
\(182\) −5.84550 + 6.19587i −0.433297 + 0.459268i
\(183\) 0 0
\(184\) −1.50794 + 0.991785i −0.111167 + 0.0731154i
\(185\) −2.05766 + 0.487673i −0.151282 + 0.0358544i
\(186\) 0 0
\(187\) 7.64570 0.893654i 0.559109 0.0653505i
\(188\) 1.17182 2.02966i 0.0854640 0.148028i
\(189\) 0 0
\(190\) −2.33840 4.05023i −0.169646 0.293835i
\(191\) −13.0701 17.5562i −0.945719 1.27032i −0.962730 0.270465i \(-0.912822\pi\)
0.0170111 0.999855i \(-0.494585\pi\)
\(192\) 0 0
\(193\) 2.06918 6.91153i 0.148943 0.497503i −0.850659 0.525717i \(-0.823797\pi\)
0.999602 + 0.0282144i \(0.00898211\pi\)
\(194\) −5.28312 2.65328i −0.379306 0.190494i
\(195\) 0 0
\(196\) 7.05357 + 23.5606i 0.503827 + 1.68290i
\(197\) 2.84835 16.1538i 0.202936 1.15091i −0.697718 0.716373i \(-0.745801\pi\)
0.900654 0.434537i \(-0.143088\pi\)
\(198\) 0 0
\(199\) −1.40107 7.94587i −0.0993193 0.563268i −0.993338 0.115238i \(-0.963237\pi\)
0.894019 0.448030i \(-0.147874\pi\)
\(200\) −6.56631 + 3.29772i −0.464308 + 0.233184i
\(201\) 0 0
\(202\) 0.704859 + 1.63405i 0.0495937 + 0.114971i
\(203\) −11.3552 26.3243i −0.796979 1.84760i
\(204\) 0 0
\(205\) −0.307366 + 0.154365i −0.0214674 + 0.0107813i
\(206\) −0.0366255 0.207713i −0.00255182 0.0144721i
\(207\) 0 0
\(208\) 0.250189 1.41889i 0.0173475 0.0983824i
\(209\) 1.06207 + 3.54755i 0.0734646 + 0.245389i
\(210\) 0 0
\(211\) −21.3780 10.7364i −1.47172 0.739125i −0.481215 0.876603i \(-0.659804\pi\)
−0.990505 + 0.137477i \(0.956101\pi\)
\(212\) 3.97478 13.2767i 0.272989 0.911847i
\(213\) 0 0
\(214\) −4.68370 6.29130i −0.320171 0.430065i
\(215\) 3.54684 + 6.14331i 0.241893 + 0.418970i
\(216\) 0 0
\(217\) 14.6496 25.3739i 0.994481 1.72249i
\(218\) 10.4925 1.22640i 0.710642 0.0830621i
\(219\) 0 0
\(220\) 6.49727 1.53988i 0.438046 0.103819i
\(221\) 8.03796 5.28665i 0.540692 0.355619i
\(222\) 0 0
\(223\) −8.21140 + 8.70358i −0.549876 + 0.582835i −0.941383 0.337341i \(-0.890473\pi\)
0.391507 + 0.920175i \(0.371954\pi\)
\(224\) 22.3119 + 18.7219i 1.49078 + 1.25091i
\(225\) 0 0
\(226\) 0.241974 0.203040i 0.0160959 0.0135060i
\(227\) 1.46018 25.0704i 0.0969158 1.66398i −0.503278 0.864125i \(-0.667873\pi\)
0.600194 0.799855i \(-0.295090\pi\)
\(228\) 0 0
\(229\) −15.3910 + 20.6737i −1.01706 + 1.36615i −0.0880481 + 0.996116i \(0.528063\pi\)
−0.929016 + 0.370038i \(0.879344\pi\)
\(230\) −1.47757 0.172704i −0.0974284 0.0113877i
\(231\) 0 0
\(232\) −12.7958 8.41593i −0.840085 0.552533i
\(233\) −8.58260 3.12381i −0.562265 0.204648i 0.0452226 0.998977i \(-0.485600\pi\)
−0.607488 + 0.794329i \(0.707823\pi\)
\(234\) 0 0
\(235\) 4.44630 1.61832i 0.290044 0.105568i
\(236\) 15.6152 + 3.70086i 1.01646 + 0.240906i
\(237\) 0 0
\(238\) 1.01097 + 17.3577i 0.0655317 + 1.12514i
\(239\) 14.9323 + 15.8273i 0.965890 + 1.02378i 0.999703 + 0.0243558i \(0.00775345\pi\)
−0.0338130 + 0.999428i \(0.510765\pi\)
\(240\) 0 0
\(241\) 5.49154 12.7308i 0.353741 0.820064i −0.644710 0.764427i \(-0.723022\pi\)
0.998451 0.0556368i \(-0.0177189\pi\)
\(242\) −6.28628 −0.404097
\(243\) 0 0
\(244\) −10.9284 −0.699622
\(245\) −19.6665 + 45.5922i −1.25645 + 2.91278i
\(246\) 0 0
\(247\) 3.17604 + 3.36641i 0.202087 + 0.214199i
\(248\) −0.910086 15.6256i −0.0577905 0.992225i
\(249\) 0 0
\(250\) 4.78026 + 1.13294i 0.302330 + 0.0716536i
\(251\) −10.0143 + 3.64492i −0.632099 + 0.230065i −0.638144 0.769917i \(-0.720298\pi\)
0.00604584 + 0.999982i \(0.498076\pi\)
\(252\) 0 0
\(253\) 1.10688 + 0.402871i 0.0695888 + 0.0253283i
\(254\) 6.87585 + 4.52232i 0.431429 + 0.283755i
\(255\) 0 0
\(256\) 13.6353 + 1.59374i 0.852206 + 0.0996086i
\(257\) −0.701983 + 0.942927i −0.0437885 + 0.0588181i −0.823478 0.567348i \(-0.807969\pi\)
0.779690 + 0.626166i \(0.215377\pi\)
\(258\) 0 0
\(259\) −0.219904 + 3.77561i −0.0136642 + 0.234605i
\(260\) 6.39284 5.36423i 0.396467 0.332675i
\(261\) 0 0
\(262\) 8.11435 + 6.80875i 0.501306 + 0.420646i
\(263\) −6.40456 + 6.78844i −0.394922 + 0.418593i −0.894072 0.447922i \(-0.852164\pi\)
0.499150 + 0.866515i \(0.333646\pi\)
\(264\) 0 0
\(265\) 23.3770 15.3753i 1.43604 0.944499i
\(266\) −8.13889 + 1.92895i −0.499027 + 0.118272i
\(267\) 0 0
\(268\) −0.637875 + 0.0745569i −0.0389644 + 0.00455429i
\(269\) −1.25116 + 2.16707i −0.0762845 + 0.132129i −0.901644 0.432479i \(-0.857639\pi\)
0.825360 + 0.564607i \(0.190972\pi\)
\(270\) 0 0
\(271\) −2.76243 4.78467i −0.167806 0.290648i 0.769842 0.638234i \(-0.220335\pi\)
−0.937648 + 0.347586i \(0.887002\pi\)
\(272\) −1.75619 2.35897i −0.106485 0.143034i
\(273\) 0 0
\(274\) 3.22946 10.7871i 0.195099 0.651675i
\(275\) 4.28541 + 2.15221i 0.258420 + 0.129783i
\(276\) 0 0
\(277\) −7.66146 25.5911i −0.460333 1.53762i −0.801722 0.597696i \(-0.796083\pi\)
0.341390 0.939922i \(-0.389102\pi\)
\(278\) −0.0442815 + 0.251133i −0.00265583 + 0.0150620i
\(279\) 0 0
\(280\) 6.41505 + 36.3816i 0.383373 + 2.17421i
\(281\) 28.1325 14.1287i 1.67824 0.842846i 0.684774 0.728756i \(-0.259901\pi\)
0.993470 0.114090i \(-0.0363952\pi\)
\(282\) 0 0
\(283\) 2.65029 + 6.14405i 0.157543 + 0.365226i 0.978646 0.205555i \(-0.0658999\pi\)
−0.821102 + 0.570781i \(0.806641\pi\)
\(284\) 6.66448 + 15.4500i 0.395464 + 0.916789i
\(285\) 0 0
\(286\) 2.65393 1.33286i 0.156930 0.0788134i
\(287\) 0.106819 + 0.605803i 0.00630535 + 0.0357594i
\(288\) 0 0
\(289\) 0.458026 2.59759i 0.0269427 0.152800i
\(290\) −3.62047 12.0932i −0.212601 0.710137i
\(291\) 0 0
\(292\) −2.63963 1.32567i −0.154472 0.0775790i
\(293\) −1.07661 + 3.59613i −0.0628962 + 0.210088i −0.983661 0.180030i \(-0.942381\pi\)
0.920765 + 0.390118i \(0.127566\pi\)
\(294\) 0 0
\(295\) 19.3475 + 25.9882i 1.12645 + 1.51309i
\(296\) 1.01020 + 1.74972i 0.0587167 + 0.101700i
\(297\) 0 0
\(298\) 1.21195 2.09916i 0.0702066 0.121601i
\(299\) 1.46221 0.170908i 0.0845617 0.00988385i
\(300\) 0 0
\(301\) 12.3449 2.92580i 0.711549 0.168640i
\(302\) −8.24148 + 5.42050i −0.474244 + 0.311915i
\(303\) 0 0
\(304\) 0.970873 1.02907i 0.0556834 0.0590209i
\(305\) −16.9018 14.1823i −0.967793 0.812075i
\(306\) 0 0
\(307\) −22.9491 + 19.2566i −1.30977 + 1.09903i −0.321406 + 0.946942i \(0.604155\pi\)
−0.988367 + 0.152088i \(0.951400\pi\)
\(308\) 0.694371 11.9219i 0.0395655 0.679313i
\(309\) 0 0
\(310\) 7.70397 10.3482i 0.437556 0.587740i
\(311\) −4.41818 0.516411i −0.250532 0.0292830i −0.0101001 0.999949i \(-0.503215\pi\)
−0.240432 + 0.970666i \(0.577289\pi\)
\(312\) 0 0
\(313\) 26.0864 + 17.1573i 1.47449 + 0.969789i 0.995776 + 0.0918201i \(0.0292685\pi\)
0.478717 + 0.877969i \(0.341102\pi\)
\(314\) −4.30775 1.56789i −0.243100 0.0884812i
\(315\) 0 0
\(316\) 9.09346 3.30975i 0.511547 0.186188i
\(317\) −27.0789 6.41782i −1.52090 0.360461i −0.616575 0.787297i \(-0.711480\pi\)
−0.904329 + 0.426836i \(0.859628\pi\)
\(318\) 0 0
\(319\) 0.581178 + 9.97845i 0.0325397 + 0.558686i
\(320\) 6.26349 + 6.63891i 0.350140 + 0.371126i
\(321\) 0 0
\(322\) −1.05381 + 2.44300i −0.0587264 + 0.136143i
\(323\) 9.44699 0.525644
\(324\) 0 0
\(325\) 5.99343 0.332456
\(326\) −2.10568 + 4.88151i −0.116623 + 0.270362i
\(327\) 0 0
\(328\) 0.225513 + 0.239030i 0.0124519 + 0.0131982i
\(329\) −0.492047 8.44812i −0.0271274 0.465760i
\(330\) 0 0
\(331\) 0.191772 + 0.0454508i 0.0105408 + 0.00249820i 0.235883 0.971781i \(-0.424202\pi\)
−0.225342 + 0.974280i \(0.572350\pi\)
\(332\) −4.29171 + 1.56206i −0.235538 + 0.0857289i
\(333\) 0 0
\(334\) 12.8674 + 4.68336i 0.704075 + 0.256262i
\(335\) −1.08329 0.712488i −0.0591862 0.0389274i
\(336\) 0 0
\(337\) 17.7835 + 2.07859i 0.968730 + 0.113228i 0.585718 0.810515i \(-0.300813\pi\)
0.383012 + 0.923743i \(0.374887\pi\)
\(338\) −3.89695 + 5.23451i −0.211966 + 0.284720i
\(339\) 0 0
\(340\) 0.990455 17.0055i 0.0537150 0.922251i
\(341\) −7.82522 + 6.56614i −0.423759 + 0.355576i
\(342\) 0 0
\(343\) 41.3103 + 34.6635i 2.23055 + 1.87165i
\(344\) 4.65101 4.92978i 0.250766 0.265796i
\(345\) 0 0
\(346\) 9.04353 5.94803i 0.486183 0.319768i
\(347\) 21.9243 5.19616i 1.17696 0.278944i 0.404819 0.914397i \(-0.367335\pi\)
0.772140 + 0.635453i \(0.219186\pi\)
\(348\) 0 0
\(349\) 11.7759 1.37641i 0.630349 0.0736773i 0.205082 0.978745i \(-0.434254\pi\)
0.425268 + 0.905068i \(0.360180\pi\)
\(350\) −5.41587 + 9.38056i −0.289490 + 0.501412i
\(351\) 0 0
\(352\) −5.07737 8.79426i −0.270625 0.468736i
\(353\) −11.2290 15.0832i −0.597661 0.802798i 0.395634 0.918408i \(-0.370525\pi\)
−0.993295 + 0.115610i \(0.963118\pi\)
\(354\) 0 0
\(355\) −9.74289 + 32.5435i −0.517099 + 1.72723i
\(356\) −6.19601 3.11175i −0.328388 0.164922i
\(357\) 0 0
\(358\) −0.489585 1.63533i −0.0258754 0.0864297i
\(359\) −1.61227 + 9.14366i −0.0850926 + 0.482584i 0.912244 + 0.409647i \(0.134348\pi\)
−0.997337 + 0.0729368i \(0.976763\pi\)
\(360\) 0 0
\(361\) −2.51015 14.2358i −0.132113 0.749251i
\(362\) −16.2762 + 8.17421i −0.855458 + 0.429627i
\(363\) 0 0
\(364\) −5.91160 13.7046i −0.309852 0.718318i
\(365\) −2.36204 5.47581i −0.123635 0.286617i
\(366\) 0 0
\(367\) −26.1118 + 13.1138i −1.36302 + 0.684536i −0.971810 0.235764i \(-0.924241\pi\)
−0.391213 + 0.920300i \(0.627945\pi\)
\(368\) −0.0781452 0.443183i −0.00407360 0.0231025i
\(369\) 0 0
\(370\) −0.289175 + 1.63999i −0.0150335 + 0.0852593i
\(371\) −14.3521 47.9395i −0.745126 2.48889i
\(372\) 0 0
\(373\) 4.97275 + 2.49741i 0.257479 + 0.129311i 0.572857 0.819655i \(-0.305835\pi\)
−0.315378 + 0.948966i \(0.602131\pi\)
\(374\) 1.73860 5.80732i 0.0899007 0.300289i
\(375\) 0 0
\(376\) −2.69961 3.62620i −0.139222 0.187007i
\(377\) 6.24612 + 10.8186i 0.321692 + 0.557186i
\(378\) 0 0
\(379\) −14.7919 + 25.6203i −0.759808 + 1.31603i 0.183140 + 0.983087i \(0.441374\pi\)
−0.942948 + 0.332940i \(0.891959\pi\)
\(380\) 8.13918 0.951334i 0.417531 0.0488024i
\(381\) 0 0
\(382\) −16.7715 + 3.97493i −0.858107 + 0.203375i
\(383\) 10.3490 6.80665i 0.528810 0.347804i −0.256861 0.966448i \(-0.582688\pi\)
0.785671 + 0.618645i \(0.212318\pi\)
\(384\) 0 0
\(385\) 16.5454 17.5371i 0.843233 0.893775i
\(386\) −4.35230 3.65201i −0.221526 0.185883i
\(387\) 0 0
\(388\) 7.93530 6.65850i 0.402854 0.338034i
\(389\) −1.08026 + 18.5473i −0.0547712 + 0.940386i 0.853261 + 0.521485i \(0.174622\pi\)
−0.908032 + 0.418901i \(0.862415\pi\)
\(390\) 0 0
\(391\) 1.79444 2.41036i 0.0907489 0.121897i
\(392\) 47.1191 + 5.50743i 2.37987 + 0.278167i
\(393\) 0 0
\(394\) −10.7923 7.09821i −0.543708 0.357603i
\(395\) 18.3590 + 6.68214i 0.923743 + 0.336215i
\(396\) 0 0
\(397\) 9.59694 3.49300i 0.481657 0.175309i −0.0897688 0.995963i \(-0.528613\pi\)
0.571426 + 0.820654i \(0.306391\pi\)
\(398\) −6.18264 1.46531i −0.309908 0.0734495i
\(399\) 0 0
\(400\) −0.106528 1.82901i −0.00532639 0.0914505i
\(401\) −1.38543 1.46847i −0.0691851 0.0733319i 0.691856 0.722035i \(-0.256793\pi\)
−0.761041 + 0.648703i \(0.775312\pi\)
\(402\) 0 0
\(403\) −5.05670 + 11.7228i −0.251892 + 0.583952i
\(404\) −3.11815 −0.155134
\(405\) 0 0
\(406\) −22.5768 −1.12047
\(407\) 0.522266 1.21075i 0.0258878 0.0600146i
\(408\) 0 0
\(409\) 0.596821 + 0.632593i 0.0295109 + 0.0312797i 0.741961 0.670443i \(-0.233896\pi\)
−0.712450 + 0.701723i \(0.752414\pi\)
\(410\) 0.0157492 + 0.270404i 0.000777800 + 0.0133543i
\(411\) 0 0
\(412\) 0.359603 + 0.0852276i 0.0177164 + 0.00419886i
\(413\) 54.4506 19.8184i 2.67934 0.975200i
\(414\) 0 0
\(415\) −8.66465 3.15367i −0.425331 0.154808i
\(416\) −10.6035 6.97406i −0.519881 0.341931i
\(417\) 0 0
\(418\) 2.89649 + 0.338551i 0.141672 + 0.0165591i
\(419\) −15.0749 + 20.2492i −0.736459 + 0.989236i 0.263241 + 0.964730i \(0.415209\pi\)
−0.999700 + 0.0245058i \(0.992199\pi\)
\(420\) 0 0
\(421\) −0.974084 + 16.7244i −0.0474740 + 0.815096i 0.887594 + 0.460627i \(0.152375\pi\)
−0.935068 + 0.354469i \(0.884662\pi\)
\(422\) −14.4315 + 12.1095i −0.702516 + 0.589481i
\(423\) 0 0
\(424\) −20.4787 17.1836i −0.994532 0.834511i
\(425\) 8.39531 8.89850i 0.407232 0.431641i
\(426\) 0 0
\(427\) −32.9687 + 21.6838i −1.59547 + 1.04935i
\(428\) 13.3724 3.16933i 0.646381 0.153195i
\(429\) 0 0
\(430\) 5.54851 0.648528i 0.267573 0.0312748i
\(431\) −13.1811 + 22.8303i −0.634911 + 1.09970i 0.351623 + 0.936142i \(0.385630\pi\)
−0.986534 + 0.163556i \(0.947703\pi\)
\(432\) 0 0
\(433\) 6.29345 + 10.9006i 0.302444 + 0.523848i 0.976689 0.214660i \(-0.0688642\pi\)
−0.674245 + 0.738508i \(0.735531\pi\)
\(434\) −13.7784 18.5075i −0.661382 0.888390i
\(435\) 0 0
\(436\) −5.30869 + 17.7323i −0.254240 + 0.849222i
\(437\) 1.29182 + 0.648777i 0.0617962 + 0.0310352i
\(438\) 0 0
\(439\) −2.52350 8.42909i −0.120440 0.402299i 0.876414 0.481559i \(-0.159929\pi\)
−0.996854 + 0.0792605i \(0.974744\pi\)
\(440\) 2.23659 12.6843i 0.106625 0.604702i
\(441\) 0 0
\(442\) −1.31561 7.46120i −0.0625772 0.354893i
\(443\) −13.6033 + 6.83182i −0.646311 + 0.324590i −0.741582 0.670862i \(-0.765924\pi\)
0.0952714 + 0.995451i \(0.469628\pi\)
\(444\) 0 0
\(445\) −5.54442 12.8534i −0.262831 0.609310i
\(446\) 3.73228 + 8.65240i 0.176729 + 0.409703i
\(447\) 0 0
\(448\) 14.5875 7.32613i 0.689195 0.346127i
\(449\) −0.214786 1.21811i −0.0101364 0.0574862i 0.979320 0.202317i \(-0.0648472\pi\)
−0.989456 + 0.144831i \(0.953736\pi\)
\(450\) 0 0
\(451\) 0.0372423 0.211212i 0.00175367 0.00994557i
\(452\) 0.158736 + 0.530217i 0.00746633 + 0.0249393i
\(453\) 0 0
\(454\) −17.6728 8.87564i −0.829428 0.416554i
\(455\) 8.64225 28.8671i 0.405155 1.35331i
\(456\) 0 0
\(457\) 18.5032 + 24.8541i 0.865542 + 1.16263i 0.985471 + 0.169843i \(0.0543259\pi\)
−0.119929 + 0.992782i \(0.538267\pi\)
\(458\) 10.1484 + 17.5776i 0.474204 + 0.821345i
\(459\) 0 0
\(460\) 1.30330 2.25738i 0.0607666 0.105251i
\(461\) 16.8270 1.96679i 0.783710 0.0916026i 0.285179 0.958474i \(-0.407947\pi\)
0.498531 + 0.866872i \(0.333873\pi\)
\(462\) 0 0
\(463\) 34.7253 8.23005i 1.61382 0.382483i 0.678030 0.735034i \(-0.262834\pi\)
0.935792 + 0.352551i \(0.114686\pi\)
\(464\) 3.19048 2.09841i 0.148114 0.0974164i
\(465\) 0 0
\(466\) −4.93584 + 5.23169i −0.228649 + 0.242353i
\(467\) −32.1894 27.0101i −1.48955 1.24988i −0.895195 0.445675i \(-0.852964\pi\)
−0.594353 0.804204i \(-0.702592\pi\)
\(468\) 0 0
\(469\) −1.77640 + 1.49057i −0.0820263 + 0.0688282i
\(470\) 0.216658 3.71988i 0.00999370 0.171585i
\(471\) 0 0
\(472\) 18.4851 24.8298i 0.850846 1.14288i
\(473\) −4.39334 0.513508i −0.202006 0.0236111i
\(474\) 0 0
\(475\) 4.91703 + 3.23398i 0.225609 + 0.148385i
\(476\) −28.6281 10.4198i −1.31217 0.477590i
\(477\) 0 0
\(478\) 16.1023 5.86074i 0.736500 0.268064i
\(479\) 35.1181 + 8.32315i 1.60459 + 0.380295i 0.932785 0.360434i \(-0.117371\pi\)
0.671804 + 0.740729i \(0.265520\pi\)
\(480\) 0 0
\(481\) −0.0958213 1.64519i −0.00436908 0.0750141i
\(482\) −7.49272 7.94182i −0.341284 0.361740i
\(483\) 0 0
\(484\) 4.36269 10.1139i 0.198304 0.459721i
\(485\) 20.9136 0.949639
\(486\) 0 0
\(487\) 27.8890 1.26377 0.631885 0.775062i \(-0.282282\pi\)
0.631885 + 0.775062i \(0.282282\pi\)
\(488\) −8.34948 + 19.3563i −0.377963 + 0.876217i
\(489\) 0 0
\(490\) 26.8333 + 28.4416i 1.21220 + 1.28486i
\(491\) −1.26476 21.7151i −0.0570777 0.979987i −0.898324 0.439334i \(-0.855214\pi\)
0.841246 0.540653i \(-0.181823\pi\)
\(492\) 0 0
\(493\) 24.8117 + 5.88049i 1.11746 + 0.264844i
\(494\) 3.42489 1.24656i 0.154093 0.0560853i
\(495\) 0 0
\(496\) 3.66730 + 1.33479i 0.164667 + 0.0599338i
\(497\) 50.7606 + 33.3858i 2.27692 + 1.49756i
\(498\) 0 0
\(499\) 2.96418 + 0.346463i 0.132695 + 0.0155098i 0.182181 0.983265i \(-0.441684\pi\)
−0.0494861 + 0.998775i \(0.515758\pi\)
\(500\) −5.14028 + 6.90459i −0.229880 + 0.308783i
\(501\) 0 0
\(502\) −0.487976 + 8.37822i −0.0217794 + 0.373938i
\(503\) −30.5223 + 25.6113i −1.36092 + 1.14195i −0.385227 + 0.922822i \(0.625877\pi\)
−0.975696 + 0.219128i \(0.929679\pi\)
\(504\) 0 0
\(505\) −4.82249 4.04655i −0.214598 0.180069i
\(506\) 0.636564 0.674719i 0.0282987 0.0299949i
\(507\) 0 0
\(508\) −12.0477 + 7.92390i −0.534530 + 0.351566i
\(509\) −19.3907 + 4.59567i −0.859476 + 0.203700i −0.636645 0.771157i \(-0.719678\pi\)
−0.222832 + 0.974857i \(0.571530\pi\)
\(510\) 0 0
\(511\) −10.5935 + 1.23820i −0.468630 + 0.0547750i
\(512\) −3.70618 + 6.41930i −0.163792 + 0.283695i
\(513\) 0 0
\(514\) 0.462869 + 0.801713i 0.0204163 + 0.0353620i
\(515\) 0.445555 + 0.598484i 0.0196335 + 0.0263723i
\(516\) 0 0
\(517\) −0.846186 + 2.82646i −0.0372152 + 0.124308i
\(518\) 2.66154 + 1.33668i 0.116941 + 0.0587301i
\(519\) 0 0
\(520\) −4.61681 15.4212i −0.202461 0.676265i
\(521\) −6.17183 + 35.0022i −0.270393 + 1.53347i 0.482833 + 0.875713i \(0.339608\pi\)
−0.753226 + 0.657762i \(0.771503\pi\)
\(522\) 0 0
\(523\) 4.17875 + 23.6989i 0.182724 + 1.03628i 0.928845 + 0.370469i \(0.120803\pi\)
−0.746121 + 0.665810i \(0.768086\pi\)
\(524\) −16.5858 + 8.32971i −0.724555 + 0.363885i
\(525\) 0 0
\(526\) 2.91103 + 6.74852i 0.126927 + 0.294249i
\(527\) 10.3217 + 23.9284i 0.449620 + 1.04234i
\(528\) 0 0
\(529\) −20.1426 + 10.1160i −0.875767 + 0.439827i
\(530\) −3.82623 21.6996i −0.166201 0.942571i
\(531\) 0 0
\(532\) 2.54496 14.4332i 0.110338 0.625757i
\(533\) −0.0768763 0.256785i −0.00332988 0.0111226i
\(534\) 0 0
\(535\) 24.7946 + 12.4523i 1.07196 + 0.538360i
\(536\) −0.355291 + 1.18676i −0.0153463 + 0.0512601i
\(537\) 0 0
\(538\) 1.17675 + 1.58065i 0.0507332 + 0.0681466i
\(539\) −15.4805 26.8130i −0.666792 1.15492i
\(540\) 0 0
\(541\) 5.32644 9.22567i 0.229002 0.396642i −0.728511 0.685034i \(-0.759787\pi\)
0.957512 + 0.288392i \(0.0931206\pi\)
\(542\) −4.32142 + 0.505102i −0.185621 + 0.0216960i
\(543\) 0 0
\(544\) −25.2074 + 5.97426i −1.08076 + 0.256144i
\(545\) −31.2222 + 20.5352i −1.33741 + 0.879631i
\(546\) 0 0
\(547\) −9.33306 + 9.89247i −0.399053 + 0.422971i −0.895476 0.445109i \(-0.853165\pi\)
0.496423 + 0.868081i \(0.334646\pi\)
\(548\) 15.1139 + 12.6821i 0.645636 + 0.541753i
\(549\) 0 0
\(550\) 2.89293 2.42746i 0.123355 0.103507i
\(551\) −0.713245 + 12.2460i −0.0303853 + 0.521695i
\(552\) 0 0
\(553\) 20.8659 28.0277i 0.887307 1.19186i
\(554\) −20.8945 2.44222i −0.887723 0.103760i
\(555\) 0 0
\(556\) −0.373311 0.245530i −0.0158319 0.0104128i
\(557\) 4.31357 + 1.57001i 0.182772 + 0.0665235i 0.431785 0.901977i \(-0.357884\pi\)
−0.249013 + 0.968500i \(0.580106\pi\)
\(558\) 0 0
\(559\) −5.19480 + 1.89075i −0.219717 + 0.0799704i
\(560\) −8.96297 2.12426i −0.378755 0.0897665i
\(561\) 0 0
\(562\) −1.44149 24.7494i −0.0608056 1.04399i
\(563\) −0.680134 0.720900i −0.0286642 0.0303823i 0.712883 0.701283i \(-0.247389\pi\)
−0.741547 + 0.670901i \(0.765908\pi\)
\(564\) 0 0
\(565\) −0.442584 + 1.02602i −0.0186196 + 0.0431652i
\(566\) 5.26940 0.221489
\(567\) 0 0
\(568\) 32.4565 1.36185
\(569\) −3.07723 + 7.13381i −0.129004 + 0.299065i −0.970461 0.241260i \(-0.922439\pi\)
0.841457 + 0.540325i \(0.181699\pi\)
\(570\) 0 0
\(571\) −14.6837 15.5638i −0.614494 0.651326i 0.343150 0.939281i \(-0.388506\pi\)
−0.957644 + 0.287955i \(0.907025\pi\)
\(572\) 0.302566 + 5.19486i 0.0126509 + 0.217208i
\(573\) 0 0
\(574\) 0.471373 + 0.111717i 0.0196747 + 0.00466299i
\(575\) 1.75912 0.640267i 0.0733604 0.0267010i
\(576\) 0 0
\(577\) −8.13925 2.96244i −0.338841 0.123328i 0.166995 0.985958i \(-0.446594\pi\)
−0.505836 + 0.862630i \(0.668816\pi\)
\(578\) −1.73545 1.14142i −0.0721851 0.0474769i
\(579\) 0 0
\(580\) 21.9691 + 2.56782i 0.912216 + 0.106623i
\(581\) −9.84777 + 13.2278i −0.408554 + 0.548784i
\(582\) 0 0
\(583\) −1.01445 + 17.4174i −0.0420141 + 0.721355i
\(584\) −4.36471 + 3.66243i −0.180613 + 0.151552i
\(585\) 0 0
\(586\) 2.26454 + 1.90017i 0.0935472 + 0.0784954i
\(587\) −7.21493 + 7.64738i −0.297792 + 0.315641i −0.858942 0.512073i \(-0.828878\pi\)
0.561150 + 0.827714i \(0.310359\pi\)
\(588\) 0 0
\(589\) −10.4740 + 6.88885i −0.431573 + 0.283850i
\(590\) 24.8267 5.88403i 1.02210 0.242242i
\(591\) 0 0
\(592\) −0.500358 + 0.0584834i −0.0205646 + 0.00240365i
\(593\) 14.0175 24.2790i 0.575630 0.997020i −0.420343 0.907365i \(-0.638090\pi\)
0.995973 0.0896551i \(-0.0285765\pi\)
\(594\) 0 0
\(595\) −30.7537 53.2669i −1.26078 2.18373i
\(596\) 2.53620 + 3.40671i 0.103887 + 0.139544i
\(597\) 0 0
\(598\) 0.332500 1.11063i 0.0135969 0.0454169i
\(599\) −20.7959 10.4441i −0.849699 0.426735i −0.0300143 0.999549i \(-0.509555\pi\)
−0.819685 + 0.572814i \(0.805852\pi\)
\(600\) 0 0
\(601\) −6.16371 20.5882i −0.251423 0.839811i −0.986771 0.162121i \(-0.948166\pi\)
0.735348 0.677690i \(-0.237019\pi\)
\(602\) 1.73491 9.83915i 0.0707096 0.401014i
\(603\) 0 0
\(604\) −3.00133 17.0214i −0.122122 0.692589i
\(605\) 19.8724 9.98031i 0.807930 0.405757i
\(606\) 0 0
\(607\) 1.91860 + 4.44782i 0.0778737 + 0.180531i 0.952705 0.303896i \(-0.0982874\pi\)
−0.874832 + 0.484427i \(0.839028\pi\)
\(608\) −4.93607 11.4431i −0.200184 0.464079i
\(609\) 0 0
\(610\) −15.5270 + 7.79798i −0.628672 + 0.315731i
\(611\) 0.640316 + 3.63141i 0.0259044 + 0.146911i
\(612\) 0 0
\(613\) 2.42381 13.7461i 0.0978969 0.555201i −0.895924 0.444207i \(-0.853485\pi\)
0.993821 0.110994i \(-0.0354034\pi\)
\(614\) 6.76622 + 22.6008i 0.273063 + 0.912093i
\(615\) 0 0
\(616\) −20.5853 10.3383i −0.829407 0.416544i
\(617\) −5.79638 + 19.3612i −0.233353 + 0.779454i 0.758456 + 0.651725i \(0.225954\pi\)
−0.991809 + 0.127730i \(0.959231\pi\)
\(618\) 0 0
\(619\) −17.2355 23.1513i −0.692753 0.930529i 0.307022 0.951702i \(-0.400667\pi\)
−0.999776 + 0.0211729i \(0.993260\pi\)
\(620\) 11.3025 + 19.5764i 0.453917 + 0.786208i
\(621\) 0 0
\(622\) −1.75151 + 3.03370i −0.0702290 + 0.121640i
\(623\) −24.8662 + 2.90644i −0.996243 + 0.116444i
\(624\) 0 0
\(625\) −30.3415 + 7.19108i −1.21366 + 0.287643i
\(626\) 20.5431 13.5114i 0.821068 0.540025i
\(627\) 0 0
\(628\) 5.51213 5.84252i 0.219958 0.233142i
\(629\) −2.57685 2.16223i −0.102746 0.0862139i
\(630\) 0 0
\(631\) −35.3851 + 29.6916i −1.40866 + 1.18200i −0.451558 + 0.892242i \(0.649132\pi\)
−0.957099 + 0.289762i \(0.906424\pi\)
\(632\) 1.08536 18.6349i 0.0431732 0.741255i
\(633\) 0 0
\(634\) −13.0870 + 17.5789i −0.519750 + 0.698146i
\(635\) −28.9160 3.37979i −1.14750 0.134123i
\(636\) 0 0
\(637\) −32.3293 21.2633i −1.28093 0.842484i
\(638\) 7.39666 + 2.69216i 0.292836 + 0.106584i
\(639\) 0 0
\(640\) −23.8524 + 8.68156i −0.942848 + 0.343169i
\(641\) −24.2211 5.74051i −0.956676 0.226736i −0.277512 0.960722i \(-0.589510\pi\)
−0.679165 + 0.733986i \(0.737658\pi\)
\(642\) 0 0
\(643\) −0.128744 2.21044i −0.00507715 0.0871713i 0.994818 0.101675i \(-0.0324202\pi\)
−0.999895 + 0.0145037i \(0.995383\pi\)
\(644\) −3.19915 3.39090i −0.126064 0.133620i
\(645\) 0 0
\(646\) 2.94664 6.83108i 0.115934 0.268765i
\(647\) 26.5378 1.04331 0.521654 0.853157i \(-0.325315\pi\)
0.521654 + 0.853157i \(0.325315\pi\)
\(648\) 0 0
\(649\) −20.2024 −0.793015
\(650\) 1.86943 4.33383i 0.0733251 0.169987i
\(651\) 0 0
\(652\) −6.39241 6.77556i −0.250346 0.265351i
\(653\) −0.0123406 0.211880i −0.000482926 0.00829152i 0.998058 0.0622901i \(-0.0198404\pi\)
−0.998541 + 0.0539986i \(0.982803\pi\)
\(654\) 0 0
\(655\) −36.4612 8.64147i −1.42466 0.337650i
\(656\) −0.0769964 + 0.0280244i −0.00300620 + 0.00109417i
\(657\) 0 0
\(658\) −6.26228 2.27928i −0.244129 0.0888558i
\(659\) 22.6208 + 14.8779i 0.881180 + 0.579561i 0.907481 0.420093i \(-0.138002\pi\)
−0.0263011 + 0.999654i \(0.508373\pi\)
\(660\) 0 0
\(661\) −35.5356 4.15352i −1.38218 0.161553i −0.607705 0.794163i \(-0.707910\pi\)
−0.774471 + 0.632609i \(0.781984\pi\)
\(662\) 0.0926816 0.124493i 0.00360217 0.00483856i
\(663\) 0 0
\(664\) −0.512241 + 8.79484i −0.0198788 + 0.341306i
\(665\) 22.6665 19.0195i 0.878969 0.737543i
\(666\) 0 0
\(667\) 2.98902 + 2.50808i 0.115735 + 0.0971134i
\(668\) −16.4650 + 17.4519i −0.637049 + 0.675233i
\(669\) 0 0
\(670\) −0.853088 + 0.561085i −0.0329577 + 0.0216766i
\(671\) 13.3869 3.17276i 0.516796 0.122483i
\(672\) 0 0
\(673\) 28.3593 3.31473i 1.09317 0.127773i 0.449652 0.893204i \(-0.351548\pi\)
0.643519 + 0.765430i \(0.277474\pi\)
\(674\) 7.04994 12.2109i 0.271554 0.470345i
\(675\) 0 0
\(676\) −5.71719 9.90247i −0.219892 0.380864i
\(677\) 8.79309 + 11.8112i 0.337946 + 0.453940i 0.938314 0.345783i \(-0.112387\pi\)
−0.600369 + 0.799723i \(0.704979\pi\)
\(678\) 0 0
\(679\) 10.7274 35.8322i 0.411682 1.37511i
\(680\) −29.3631 14.7467i −1.12602 0.565509i
\(681\) 0 0
\(682\) 2.30716 + 7.70646i 0.0883458 + 0.295095i
\(683\) 0.764140 4.33365i 0.0292390 0.165823i −0.966692 0.255943i \(-0.917614\pi\)
0.995931 + 0.0901204i \(0.0287252\pi\)
\(684\) 0 0
\(685\) 6.91695 + 39.2280i 0.264283 + 1.49882i
\(686\) 37.9503 19.0594i 1.44895 0.727690i
\(687\) 0 0
\(688\) 0.669333 + 1.55169i 0.0255181 + 0.0591575i
\(689\) 8.63661 + 20.0219i 0.329029 + 0.762774i
\(690\) 0 0
\(691\) 2.70634 1.35918i 0.102954 0.0517055i −0.396577 0.918001i \(-0.629802\pi\)
0.499531 + 0.866296i \(0.333506\pi\)
\(692\) 3.29341 + 18.6779i 0.125197 + 0.710026i
\(693\) 0 0
\(694\) 3.08116 17.4741i 0.116959 0.663309i
\(695\) −0.258723 0.864194i −0.00981391 0.0327808i
\(696\) 0 0
\(697\) −0.488936 0.245553i −0.0185198 0.00930097i
\(698\) 2.67779 8.94443i 0.101356 0.338552i
\(699\) 0 0
\(700\) −11.3336 15.2236i −0.428368 0.575398i
\(701\) −21.6147 37.4378i −0.816377 1.41401i −0.908335 0.418243i \(-0.862646\pi\)
0.0919585 0.995763i \(-0.470687\pi\)
\(702\) 0 0
\(703\) 0.809112 1.40142i 0.0305162 0.0528557i
\(704\) −5.65278 + 0.660715i −0.213047 + 0.0249016i
\(705\) 0 0
\(706\) −14.4091 + 3.41502i −0.542294 + 0.128526i
\(707\) −9.40677 + 6.18693i −0.353778 + 0.232684i
\(708\) 0 0
\(709\) 22.0808 23.4043i 0.829261 0.878966i −0.164962 0.986300i \(-0.552750\pi\)
0.994223 + 0.107334i \(0.0342316\pi\)
\(710\) 20.4932 + 17.1958i 0.769095 + 0.645347i
\(711\) 0 0
\(712\) −10.2453 + 8.59684i −0.383959 + 0.322180i
\(713\) −0.231862 + 3.98092i −0.00868331 + 0.149087i
\(714\) 0 0
\(715\) −6.27363 + 8.42695i −0.234621 + 0.315150i
\(716\) 2.97081 + 0.347238i 0.111024 + 0.0129769i
\(717\) 0 0
\(718\) 6.10886 + 4.01786i 0.227981 + 0.149945i
\(719\) −9.54600 3.47446i −0.356006 0.129576i 0.157825 0.987467i \(-0.449552\pi\)
−0.513831 + 0.857892i \(0.671774\pi\)
\(720\) 0 0
\(721\) 1.25395 0.456400i 0.0466995 0.0169972i
\(722\) −11.0768 2.62525i −0.412235 0.0977016i
\(723\) 0 0
\(724\) −1.85559 31.8593i −0.0689626 1.18404i
\(725\) 10.9011 + 11.5545i 0.404857 + 0.429124i
\(726\) 0 0
\(727\) 5.58259 12.9419i 0.207047 0.479989i −0.782774 0.622306i \(-0.786196\pi\)
0.989821 + 0.142317i \(0.0454553\pi\)
\(728\) −28.7900 −1.06703
\(729\) 0 0
\(730\) −4.69629 −0.173818
\(731\) −4.46941 + 10.3613i −0.165307 + 0.383225i
\(732\) 0 0
\(733\) 10.7728 + 11.4185i 0.397904 + 0.421753i 0.895086 0.445893i \(-0.147114\pi\)
−0.497183 + 0.867646i \(0.665632\pi\)
\(734\) 1.33795 + 22.9717i 0.0493846 + 0.847901i
\(735\) 0 0
\(736\) −3.85725 0.914186i −0.142180 0.0336973i
\(737\) 0.759727 0.276518i 0.0279849 0.0101857i
\(738\) 0 0
\(739\) −3.42025 1.24487i −0.125816 0.0457933i 0.278345 0.960481i \(-0.410214\pi\)
−0.404161 + 0.914688i \(0.632436\pi\)
\(740\) −2.43786 1.60341i −0.0896176 0.0589424i
\(741\) 0 0
\(742\) −39.1415 4.57498i −1.43693 0.167953i
\(743\) 13.9026 18.6745i 0.510039 0.685101i −0.470281 0.882517i \(-0.655848\pi\)
0.980320 + 0.197416i \(0.0632549\pi\)
\(744\) 0 0
\(745\) −0.498569 + 8.56010i −0.0182662 + 0.313618i
\(746\) 3.35694 2.81680i 0.122906 0.103130i
\(747\) 0 0
\(748\) 8.13668 + 6.82748i 0.297506 + 0.249637i
\(749\) 34.0532 36.0943i 1.24428 1.31886i
\(750\) 0 0
\(751\) −6.59964 + 4.34065i −0.240824 + 0.158393i −0.664184 0.747569i \(-0.731221\pi\)
0.423360 + 0.905962i \(0.360851\pi\)
\(752\) 1.09681 0.259950i 0.0399967 0.00947939i
\(753\) 0 0
\(754\) 9.77114 1.14208i 0.355844 0.0415922i
\(755\) 17.4475 30.2200i 0.634980 1.09982i
\(756\) 0 0
\(757\) −2.12074 3.67323i −0.0770795 0.133506i 0.824909 0.565265i \(-0.191226\pi\)
−0.901989 + 0.431760i \(0.857893\pi\)
\(758\) 13.9122 + 18.6873i 0.505312 + 0.678752i
\(759\) 0 0
\(760\) 4.53346 15.1428i 0.164446 0.549287i
\(761\) 36.5389 + 18.3505i 1.32453 + 0.665206i 0.963591 0.267381i \(-0.0861583\pi\)
0.360944 + 0.932588i \(0.382455\pi\)
\(762\) 0 0
\(763\) 19.1686 + 64.0276i 0.693951 + 2.31796i
\(764\) 5.24431 29.7420i 0.189733 1.07603i
\(765\) 0 0
\(766\) −1.69387 9.60642i −0.0612020 0.347094i
\(767\) −22.5634 + 11.3318i −0.814717 + 0.409166i
\(768\) 0 0
\(769\) 12.9500 + 30.0215i 0.466989 + 1.08260i 0.975191 + 0.221364i \(0.0710510\pi\)
−0.508202 + 0.861238i \(0.669690\pi\)
\(770\) −7.52030 17.4340i −0.271013 0.628278i
\(771\) 0 0
\(772\) 8.89615 4.46781i 0.320179 0.160800i
\(773\) −6.74796 38.2696i −0.242707 1.37646i −0.825757 0.564025i \(-0.809252\pi\)
0.583050 0.812436i \(-0.301859\pi\)
\(774\) 0 0
\(775\) −2.81909 + 15.9878i −0.101265 + 0.574300i
\(776\) −5.73075 19.1420i −0.205722 0.687159i
\(777\) 0 0
\(778\) 13.0745 + 6.56628i 0.468745 + 0.235413i
\(779\) 0.0754884 0.252149i 0.00270465 0.00903417i
\(780\) 0 0
\(781\) −12.6492 16.9908i −0.452624 0.607979i