Properties

Label 729.2.g.b.676.3
Level $729$
Weight $2$
Character 729.676
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 676.3
Character \(\chi\) \(=\) 729.676
Dual form 729.2.g.b.55.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.311913 - 0.723096i) q^{2} +(0.946905 - 1.00366i) q^{4} +(-0.161980 + 2.78108i) q^{5} +(4.84803 - 1.14900i) q^{7} +(-2.50111 - 0.910331i) q^{8} +(2.06152 - 0.750330i) q^{10} +(1.45131 - 0.954539i) q^{11} +(-2.15633 + 0.252038i) q^{13} +(-2.34301 - 3.14720i) q^{14} +(-0.0385876 - 0.662524i) q^{16} +(3.39468 + 2.84848i) q^{17} +(-1.63306 + 1.37030i) q^{19} +(2.63789 + 2.79600i) q^{20} +(-1.14291 - 0.751701i) q^{22} +(0.659824 + 0.156381i) q^{23} +(-2.74200 - 0.320494i) q^{25} +(0.854835 + 1.48062i) q^{26} +(3.43741 - 5.95378i) q^{28} +(3.43613 - 4.61552i) q^{29} +(1.68658 + 5.63358i) q^{31} +(-5.22407 + 2.62363i) q^{32} +(1.00088 - 3.34316i) q^{34} +(2.41020 + 13.6689i) q^{35} +(0.131814 - 0.747552i) q^{37} +(1.50023 + 0.753445i) q^{38} +(2.93684 - 6.80835i) q^{40} +(-0.0489024 + 0.113369i) q^{41} +(2.27552 + 1.14281i) q^{43} +(0.416216 - 2.36048i) q^{44} +(-0.0927292 - 0.525894i) q^{46} +(0.487133 - 1.62714i) q^{47} +(15.9278 - 7.99922i) q^{49} +(0.623519 + 2.08270i) q^{50} +(-1.78887 + 2.40288i) q^{52} +(5.02192 - 8.69822i) q^{53} +(2.41957 + 4.19082i) q^{55} +(-13.1715 - 1.53952i) q^{56} +(-4.40924 - 1.04501i) q^{58} +(-9.71683 - 6.39086i) q^{59} +(-5.43508 - 5.76085i) q^{61} +(3.54755 - 2.97675i) q^{62} +(2.50983 + 2.10599i) q^{64} +(-0.351659 - 6.03775i) q^{65} +(-0.277935 - 0.373331i) q^{67} +(6.07334 - 0.709872i) q^{68} +(9.13216 - 6.00632i) q^{70} +(-11.4588 + 4.17067i) q^{71} +(-2.01159 - 0.732160i) q^{73} +(-0.581667 + 0.137858i) q^{74} +(-0.171036 + 2.93658i) q^{76} +(5.93921 - 6.29519i) q^{77} +(2.77777 + 6.43960i) q^{79} +1.84879 q^{80} +0.0972297 q^{82} +(1.31099 + 3.03921i) q^{83} +(-8.47172 + 8.97950i) q^{85} +(0.116596 - 2.00188i) q^{86} +(-4.49883 + 1.06624i) q^{88} +(4.72182 + 1.71860i) q^{89} +(-10.1643 + 3.69952i) q^{91} +(0.781744 - 0.514161i) q^{92} +(-1.32852 + 0.155282i) q^{94} +(-3.54640 - 4.76364i) q^{95} +(0.436507 + 7.49453i) q^{97} +(-10.7523 - 9.02224i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{10}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.311913 0.723096i −0.220556 0.511306i 0.771630 0.636071i \(-0.219442\pi\)
−0.992186 + 0.124765i \(0.960182\pi\)
\(3\) 0 0
\(4\) 0.946905 1.00366i 0.473452 0.501830i
\(5\) −0.161980 + 2.78108i −0.0724395 + 1.24374i 0.744740 + 0.667355i \(0.232574\pi\)
−0.817179 + 0.576384i \(0.804463\pi\)
\(6\) 0 0
\(7\) 4.84803 1.14900i 1.83238 0.434283i 0.838518 0.544875i \(-0.183423\pi\)
0.993866 + 0.110592i \(0.0352746\pi\)
\(8\) −2.50111 0.910331i −0.884277 0.321851i
\(9\) 0 0
\(10\) 2.06152 0.750330i 0.651909 0.237275i
\(11\) 1.45131 0.954539i 0.437585 0.287804i −0.311540 0.950233i \(-0.600845\pi\)
0.749125 + 0.662429i \(0.230474\pi\)
\(12\) 0 0
\(13\) −2.15633 + 0.252038i −0.598057 + 0.0699029i −0.409735 0.912205i \(-0.634379\pi\)
−0.188322 + 0.982107i \(0.560305\pi\)
\(14\) −2.34301 3.14720i −0.626195 0.841126i
\(15\) 0 0
\(16\) −0.0385876 0.662524i −0.00964691 0.165631i
\(17\) 3.39468 + 2.84848i 0.823331 + 0.690857i 0.953750 0.300602i \(-0.0971877\pi\)
−0.130419 + 0.991459i \(0.541632\pi\)
\(18\) 0 0
\(19\) −1.63306 + 1.37030i −0.374650 + 0.314369i −0.810598 0.585603i \(-0.800858\pi\)
0.435948 + 0.899972i \(0.356413\pi\)
\(20\) 2.63789 + 2.79600i 0.589849 + 0.625204i
\(21\) 0 0
\(22\) −1.14291 0.751701i −0.243668 0.160263i
\(23\) 0.659824 + 0.156381i 0.137583 + 0.0326077i 0.298830 0.954306i \(-0.403404\pi\)
−0.161247 + 0.986914i \(0.551552\pi\)
\(24\) 0 0
\(25\) −2.74200 0.320494i −0.548401 0.0640989i
\(26\) 0.854835 + 1.48062i 0.167647 + 0.290373i
\(27\) 0 0
\(28\) 3.43741 5.95378i 0.649610 1.12516i
\(29\) 3.43613 4.61552i 0.638073 0.857080i −0.359016 0.933331i \(-0.616888\pi\)
0.997089 + 0.0762510i \(0.0242950\pi\)
\(30\) 0 0
\(31\) 1.68658 + 5.63358i 0.302919 + 1.01182i 0.964970 + 0.262362i \(0.0845013\pi\)
−0.662050 + 0.749459i \(0.730313\pi\)
\(32\) −5.22407 + 2.62363i −0.923494 + 0.463796i
\(33\) 0 0
\(34\) 1.00088 3.34316i 0.171649 0.573347i
\(35\) 2.41020 + 13.6689i 0.407397 + 2.31047i
\(36\) 0 0
\(37\) 0.131814 0.747552i 0.0216700 0.122897i −0.972054 0.234758i \(-0.924570\pi\)
0.993724 + 0.111861i \(0.0356813\pi\)
\(38\) 1.50023 + 0.753445i 0.243370 + 0.122225i
\(39\) 0 0
\(40\) 2.93684 6.80835i 0.464355 1.07650i
\(41\) −0.0489024 + 0.113369i −0.00763727 + 0.0177052i −0.921992 0.387209i \(-0.873439\pi\)
0.914355 + 0.404914i \(0.132699\pi\)
\(42\) 0 0
\(43\) 2.27552 + 1.14281i 0.347014 + 0.174277i 0.613766 0.789488i \(-0.289654\pi\)
−0.266751 + 0.963765i \(0.585950\pi\)
\(44\) 0.416216 2.36048i 0.0627469 0.355855i
\(45\) 0 0
\(46\) −0.0927292 0.525894i −0.0136722 0.0775388i
\(47\) 0.487133 1.62714i 0.0710556 0.237342i −0.915083 0.403265i \(-0.867875\pi\)
0.986139 + 0.165923i \(0.0530604\pi\)
\(48\) 0 0
\(49\) 15.9278 7.99922i 2.27539 1.14275i
\(50\) 0.623519 + 2.08270i 0.0881789 + 0.294538i
\(51\) 0 0
\(52\) −1.78887 + 2.40288i −0.248072 + 0.333219i
\(53\) 5.02192 8.69822i 0.689814 1.19479i −0.282084 0.959390i \(-0.591026\pi\)
0.971898 0.235403i \(-0.0756410\pi\)
\(54\) 0 0
\(55\) 2.41957 + 4.19082i 0.326255 + 0.565090i
\(56\) −13.1715 1.53952i −1.76011 0.205727i
\(57\) 0 0
\(58\) −4.40924 1.04501i −0.578961 0.137216i
\(59\) −9.71683 6.39086i −1.26502 0.832019i −0.273491 0.961875i \(-0.588178\pi\)
−0.991533 + 0.129855i \(0.958549\pi\)
\(60\) 0 0
\(61\) −5.43508 5.76085i −0.695891 0.737601i 0.278998 0.960292i \(-0.409998\pi\)
−0.974889 + 0.222690i \(0.928516\pi\)
\(62\) 3.54755 2.97675i 0.450540 0.378048i
\(63\) 0 0
\(64\) 2.50983 + 2.10599i 0.313728 + 0.263249i
\(65\) −0.351659 6.03775i −0.0436179 0.748891i
\(66\) 0 0
\(67\) −0.277935 0.373331i −0.0339551 0.0456097i 0.784821 0.619722i \(-0.212755\pi\)
−0.818777 + 0.574112i \(0.805347\pi\)
\(68\) 6.07334 0.709872i 0.736501 0.0860846i
\(69\) 0 0
\(70\) 9.13216 6.00632i 1.09150 0.717892i
\(71\) −11.4588 + 4.17067i −1.35991 + 0.494968i −0.916027 0.401116i \(-0.868622\pi\)
−0.443885 + 0.896084i \(0.646400\pi\)
\(72\) 0 0
\(73\) −2.01159 0.732160i −0.235439 0.0856928i 0.221606 0.975136i \(-0.428870\pi\)
−0.457045 + 0.889443i \(0.651092\pi\)
\(74\) −0.581667 + 0.137858i −0.0676174 + 0.0160256i
\(75\) 0 0
\(76\) −0.171036 + 2.93658i −0.0196192 + 0.336849i
\(77\) 5.93921 6.29519i 0.676835 0.717404i
\(78\) 0 0
\(79\) 2.77777 + 6.43960i 0.312524 + 0.724512i 0.999999 0.00169654i \(-0.000540027\pi\)
−0.687475 + 0.726208i \(0.741281\pi\)
\(80\) 1.84879 0.206701
\(81\) 0 0
\(82\) 0.0972297 0.0107372
\(83\) 1.31099 + 3.03921i 0.143899 + 0.333596i 0.974889 0.222692i \(-0.0714843\pi\)
−0.830989 + 0.556288i \(0.812225\pi\)
\(84\) 0 0
\(85\) −8.47172 + 8.97950i −0.918887 + 0.973963i
\(86\) 0.116596 2.00188i 0.0125729 0.215868i
\(87\) 0 0
\(88\) −4.49883 + 1.06624i −0.479577 + 0.113662i
\(89\) 4.72182 + 1.71860i 0.500512 + 0.182171i 0.579924 0.814670i \(-0.303082\pi\)
−0.0794124 + 0.996842i \(0.525304\pi\)
\(90\) 0 0
\(91\) −10.1643 + 3.69952i −1.06551 + 0.387815i
\(92\) 0.781744 0.514161i 0.0815024 0.0536050i
\(93\) 0 0
\(94\) −1.32852 + 0.155282i −0.137026 + 0.0160161i
\(95\) −3.54640 4.76364i −0.363853 0.488739i
\(96\) 0 0
\(97\) 0.436507 + 7.49453i 0.0443206 + 0.760955i 0.945121 + 0.326721i \(0.105944\pi\)
−0.900800 + 0.434234i \(0.857019\pi\)
\(98\) −10.7523 9.02224i −1.08615 0.911384i
\(99\) 0 0
\(100\) −2.91808 + 2.44856i −0.291808 + 0.244856i
\(101\) 1.55076 + 1.64371i 0.154307 + 0.163555i 0.799915 0.600113i \(-0.204878\pi\)
−0.645609 + 0.763668i \(0.723396\pi\)
\(102\) 0 0
\(103\) 0.223770 + 0.147176i 0.0220487 + 0.0145017i 0.560485 0.828164i \(-0.310615\pi\)
−0.538437 + 0.842666i \(0.680985\pi\)
\(104\) 5.62265 + 1.33259i 0.551347 + 0.130672i
\(105\) 0 0
\(106\) −7.85606 0.918241i −0.763048 0.0891875i
\(107\) −4.97987 8.62539i −0.481423 0.833848i 0.518350 0.855169i \(-0.326546\pi\)
−0.999773 + 0.0213201i \(0.993213\pi\)
\(108\) 0 0
\(109\) 6.70725 11.6173i 0.642438 1.11273i −0.342449 0.939536i \(-0.611256\pi\)
0.984887 0.173198i \(-0.0554102\pi\)
\(110\) 2.27567 3.05676i 0.216977 0.291450i
\(111\) 0 0
\(112\) −0.948317 3.16760i −0.0896075 0.299310i
\(113\) −0.358445 + 0.180018i −0.0337196 + 0.0169346i −0.465579 0.885006i \(-0.654154\pi\)
0.431859 + 0.901941i \(0.357858\pi\)
\(114\) 0 0
\(115\) −0.541787 + 1.80970i −0.0505219 + 0.168755i
\(116\) −1.37873 7.81916i −0.128012 0.725991i
\(117\) 0 0
\(118\) −1.59040 + 9.01960i −0.146408 + 0.830322i
\(119\) 19.7304 + 9.90899i 1.80869 + 0.908356i
\(120\) 0 0
\(121\) −3.16173 + 7.32972i −0.287430 + 0.666338i
\(122\) −2.47037 + 5.72697i −0.223657 + 0.518496i
\(123\) 0 0
\(124\) 7.25124 + 3.64171i 0.651180 + 0.327035i
\(125\) −1.08327 + 6.14355i −0.0968909 + 0.549495i
\(126\) 0 0
\(127\) −1.81470 10.2917i −0.161029 0.913239i −0.953065 0.302765i \(-0.902090\pi\)
0.792037 0.610474i \(-0.209021\pi\)
\(128\) −2.61325 + 8.72885i −0.230981 + 0.771529i
\(129\) 0 0
\(130\) −4.25619 + 2.13754i −0.373292 + 0.187474i
\(131\) 3.85774 + 12.8857i 0.337052 + 1.12583i 0.943684 + 0.330849i \(0.107335\pi\)
−0.606632 + 0.794983i \(0.707480\pi\)
\(132\) 0 0
\(133\) −6.34265 + 8.51965i −0.549977 + 0.738748i
\(134\) −0.183263 + 0.317421i −0.0158315 + 0.0274210i
\(135\) 0 0
\(136\) −5.89743 10.2146i −0.505700 0.875898i
\(137\) −14.2020 1.65997i −1.21335 0.141821i −0.514757 0.857336i \(-0.672118\pi\)
−0.698597 + 0.715515i \(0.746192\pi\)
\(138\) 0 0
\(139\) −0.315089 0.0746776i −0.0267255 0.00633407i 0.217231 0.976120i \(-0.430297\pi\)
−0.243957 + 0.969786i \(0.578446\pi\)
\(140\) 16.0012 + 10.5241i 1.35235 + 0.889451i
\(141\) 0 0
\(142\) 6.58996 + 6.98495i 0.553017 + 0.586164i
\(143\) −2.88891 + 2.42408i −0.241583 + 0.202712i
\(144\) 0 0
\(145\) 12.2796 + 10.3038i 1.01976 + 0.855682i
\(146\) 0.0980204 + 1.68295i 0.00811223 + 0.139282i
\(147\) 0 0
\(148\) −0.625474 0.840157i −0.0514136 0.0690605i
\(149\) −3.05716 + 0.357331i −0.250452 + 0.0292737i −0.240393 0.970676i \(-0.577276\pi\)
−0.0100596 + 0.999949i \(0.503202\pi\)
\(150\) 0 0
\(151\) −10.4653 + 6.88317i −0.851658 + 0.560144i −0.898608 0.438753i \(-0.855420\pi\)
0.0469497 + 0.998897i \(0.485050\pi\)
\(152\) 5.33190 1.94065i 0.432474 0.157408i
\(153\) 0 0
\(154\) −6.40455 2.33106i −0.516093 0.187843i
\(155\) −15.9407 + 3.77801i −1.28038 + 0.303457i
\(156\) 0 0
\(157\) −0.338473 + 5.81136i −0.0270131 + 0.463797i 0.957494 + 0.288453i \(0.0931408\pi\)
−0.984507 + 0.175344i \(0.943896\pi\)
\(158\) 3.79003 4.01720i 0.301518 0.319591i
\(159\) 0 0
\(160\) −6.45034 14.9536i −0.509944 1.18218i
\(161\) 3.37853 0.266265
\(162\) 0 0
\(163\) −6.75084 −0.528767 −0.264383 0.964418i \(-0.585168\pi\)
−0.264383 + 0.964418i \(0.585168\pi\)
\(164\) 0.0674776 + 0.156431i 0.00526912 + 0.0122152i
\(165\) 0 0
\(166\) 1.78873 1.89594i 0.138832 0.147153i
\(167\) −1.01103 + 17.3588i −0.0782362 + 1.34326i 0.699482 + 0.714651i \(0.253414\pi\)
−0.777718 + 0.628614i \(0.783623\pi\)
\(168\) 0 0
\(169\) −8.06337 + 1.91105i −0.620259 + 0.147004i
\(170\) 9.13549 + 3.32504i 0.700660 + 0.255019i
\(171\) 0 0
\(172\) 3.30170 1.20172i 0.251752 0.0916303i
\(173\) −11.4838 + 7.55304i −0.873100 + 0.574247i −0.905080 0.425242i \(-0.860189\pi\)
0.0319801 + 0.999489i \(0.489819\pi\)
\(174\) 0 0
\(175\) −13.6616 + 1.59681i −1.03272 + 0.120707i
\(176\) −0.688407 0.924691i −0.0518907 0.0697012i
\(177\) 0 0
\(178\) −0.230084 3.95038i −0.0172455 0.296094i
\(179\) −1.66053 1.39335i −0.124114 0.104144i 0.578618 0.815599i \(-0.303592\pi\)
−0.702732 + 0.711455i \(0.748037\pi\)
\(180\) 0 0
\(181\) −17.7173 + 14.8665i −1.31691 + 1.10502i −0.329963 + 0.943994i \(0.607036\pi\)
−0.986950 + 0.161028i \(0.948519\pi\)
\(182\) 5.84550 + 6.19587i 0.433297 + 0.459268i
\(183\) 0 0
\(184\) −1.50794 0.991785i −0.111167 0.0731154i
\(185\) 2.05766 + 0.487673i 0.151282 + 0.0358544i
\(186\) 0 0
\(187\) 7.64570 + 0.893654i 0.559109 + 0.0653505i
\(188\) −1.17182 2.02966i −0.0854640 0.148028i
\(189\) 0 0
\(190\) −2.33840 + 4.05023i −0.169646 + 0.293835i
\(191\) 13.0701 17.5562i 0.945719 1.27032i −0.0170111 0.999855i \(-0.505415\pi\)
0.962730 0.270465i \(-0.0871775\pi\)
\(192\) 0 0
\(193\) 2.06918 + 6.91153i 0.148943 + 0.497503i 0.999602 0.0282144i \(-0.00898211\pi\)
−0.850659 + 0.525717i \(0.823797\pi\)
\(194\) 5.28312 2.65328i 0.379306 0.190494i
\(195\) 0 0
\(196\) 7.05357 23.5606i 0.503827 1.68290i
\(197\) −2.84835 16.1538i −0.202936 1.15091i −0.900654 0.434537i \(-0.856912\pi\)
0.697718 0.716373i \(-0.254199\pi\)
\(198\) 0 0
\(199\) −1.40107 + 7.94587i −0.0993193 + 0.563268i 0.894019 + 0.448030i \(0.147874\pi\)
−0.993338 + 0.115238i \(0.963237\pi\)
\(200\) 6.56631 + 3.29772i 0.464308 + 0.233184i
\(201\) 0 0
\(202\) 0.704859 1.63405i 0.0495937 0.114971i
\(203\) 11.3552 26.3243i 0.796979 1.84760i
\(204\) 0 0
\(205\) −0.307366 0.154365i −0.0214674 0.0107813i
\(206\) 0.0366255 0.207713i 0.00255182 0.0144721i
\(207\) 0 0
\(208\) 0.250189 + 1.41889i 0.0173475 + 0.0983824i
\(209\) −1.06207 + 3.54755i −0.0734646 + 0.245389i
\(210\) 0 0
\(211\) −21.3780 + 10.7364i −1.47172 + 0.739125i −0.990505 0.137477i \(-0.956101\pi\)
−0.481215 + 0.876603i \(0.659804\pi\)
\(212\) −3.97478 13.2767i −0.272989 0.911847i
\(213\) 0 0
\(214\) −4.68370 + 6.29130i −0.320171 + 0.430065i
\(215\) −3.54684 + 6.14331i −0.241893 + 0.418970i
\(216\) 0 0
\(217\) 14.6496 + 25.3739i 0.994481 + 1.72249i
\(218\) −10.4925 1.22640i −0.710642 0.0830621i
\(219\) 0 0
\(220\) 6.49727 + 1.53988i 0.438046 + 0.103819i
\(221\) −8.03796 5.28665i −0.540692 0.355619i
\(222\) 0 0
\(223\) −8.21140 8.70358i −0.549876 0.582835i 0.391507 0.920175i \(-0.371954\pi\)
−0.941383 + 0.337341i \(0.890473\pi\)
\(224\) −22.3119 + 18.7219i −1.49078 + 1.25091i
\(225\) 0 0
\(226\) 0.241974 + 0.203040i 0.0160959 + 0.0135060i
\(227\) −1.46018 25.0704i −0.0969158 1.66398i −0.600194 0.799855i \(-0.704910\pi\)
0.503278 0.864125i \(-0.332127\pi\)
\(228\) 0 0
\(229\) −15.3910 20.6737i −1.01706 1.36615i −0.929016 0.370038i \(-0.879344\pi\)
−0.0880481 0.996116i \(-0.528063\pi\)
\(230\) 1.47757 0.172704i 0.0974284 0.0113877i
\(231\) 0 0
\(232\) −12.7958 + 8.41593i −0.840085 + 0.552533i
\(233\) 8.58260 3.12381i 0.562265 0.204648i −0.0452226 0.998977i \(-0.514400\pi\)
0.607488 + 0.794329i \(0.292177\pi\)
\(234\) 0 0
\(235\) 4.44630 + 1.61832i 0.290044 + 0.105568i
\(236\) −15.6152 + 3.70086i −1.01646 + 0.240906i
\(237\) 0 0
\(238\) 1.01097 17.3577i 0.0655317 1.12514i
\(239\) −14.9323 + 15.8273i −0.965890 + 1.02378i 0.0338130 + 0.999428i \(0.489235\pi\)
−0.999703 + 0.0243558i \(0.992247\pi\)
\(240\) 0 0
\(241\) 5.49154 + 12.7308i 0.353741 + 0.820064i 0.998451 + 0.0556368i \(0.0177189\pi\)
−0.644710 + 0.764427i \(0.723022\pi\)
\(242\) 6.28628 0.404097
\(243\) 0 0
\(244\) −10.9284 −0.699622
\(245\) 19.6665 + 45.5922i 1.25645 + 2.91278i
\(246\) 0 0
\(247\) 3.17604 3.36641i 0.202087 0.214199i
\(248\) 0.910086 15.6256i 0.0577905 0.992225i
\(249\) 0 0
\(250\) 4.78026 1.13294i 0.302330 0.0716536i
\(251\) 10.0143 + 3.64492i 0.632099 + 0.230065i 0.638144 0.769917i \(-0.279702\pi\)
−0.00604584 + 0.999982i \(0.501924\pi\)
\(252\) 0 0
\(253\) 1.10688 0.402871i 0.0695888 0.0253283i
\(254\) −6.87585 + 4.52232i −0.431429 + 0.283755i
\(255\) 0 0
\(256\) 13.6353 1.59374i 0.852206 0.0996086i
\(257\) 0.701983 + 0.942927i 0.0437885 + 0.0588181i 0.823478 0.567348i \(-0.192031\pi\)
−0.779690 + 0.626166i \(0.784623\pi\)
\(258\) 0 0
\(259\) −0.219904 3.77561i −0.0136642 0.234605i
\(260\) −6.39284 5.36423i −0.396467 0.332675i
\(261\) 0 0
\(262\) 8.11435 6.80875i 0.501306 0.420646i
\(263\) 6.40456 + 6.78844i 0.394922 + 0.418593i 0.894072 0.447922i \(-0.147836\pi\)
−0.499150 + 0.866515i \(0.666354\pi\)
\(264\) 0 0
\(265\) 23.3770 + 15.3753i 1.43604 + 0.944499i
\(266\) 8.13889 + 1.92895i 0.499027 + 0.118272i
\(267\) 0 0
\(268\) −0.637875 0.0745569i −0.0389644 0.00455429i
\(269\) 1.25116 + 2.16707i 0.0762845 + 0.132129i 0.901644 0.432479i \(-0.142361\pi\)
−0.825360 + 0.564607i \(0.809028\pi\)
\(270\) 0 0
\(271\) −2.76243 + 4.78467i −0.167806 + 0.290648i −0.937648 0.347586i \(-0.887002\pi\)
0.769842 + 0.638234i \(0.220335\pi\)
\(272\) 1.75619 2.35897i 0.106485 0.143034i
\(273\) 0 0
\(274\) 3.22946 + 10.7871i 0.195099 + 0.651675i
\(275\) −4.28541 + 2.15221i −0.258420 + 0.129783i
\(276\) 0 0
\(277\) −7.66146 + 25.5911i −0.460333 + 1.53762i 0.341390 + 0.939922i \(0.389102\pi\)
−0.801722 + 0.597696i \(0.796083\pi\)
\(278\) 0.0442815 + 0.251133i 0.00265583 + 0.0150620i
\(279\) 0 0
\(280\) 6.41505 36.3816i 0.383373 2.17421i
\(281\) −28.1325 14.1287i −1.67824 0.842846i −0.993470 0.114090i \(-0.963605\pi\)
−0.684774 0.728756i \(-0.740099\pi\)
\(282\) 0 0
\(283\) 2.65029 6.14405i 0.157543 0.365226i −0.821102 0.570781i \(-0.806641\pi\)
0.978646 + 0.205555i \(0.0658999\pi\)
\(284\) −6.66448 + 15.4500i −0.395464 + 0.916789i
\(285\) 0 0
\(286\) 2.65393 + 1.33286i 0.156930 + 0.0788134i
\(287\) −0.106819 + 0.605803i −0.00630535 + 0.0357594i
\(288\) 0 0
\(289\) 0.458026 + 2.59759i 0.0269427 + 0.152800i
\(290\) 3.62047 12.0932i 0.212601 0.710137i
\(291\) 0 0
\(292\) −2.63963 + 1.32567i −0.154472 + 0.0775790i
\(293\) 1.07661 + 3.59613i 0.0628962 + 0.210088i 0.983661 0.180030i \(-0.0576194\pi\)
−0.920765 + 0.390118i \(0.872434\pi\)
\(294\) 0 0
\(295\) 19.3475 25.9882i 1.12645 1.51309i
\(296\) −1.01020 + 1.74972i −0.0587167 + 0.101700i
\(297\) 0 0
\(298\) 1.21195 + 2.09916i 0.0702066 + 0.121601i
\(299\) −1.46221 0.170908i −0.0845617 0.00988385i
\(300\) 0 0
\(301\) 12.3449 + 2.92580i 0.711549 + 0.168640i
\(302\) 8.24148 + 5.42050i 0.474244 + 0.311915i
\(303\) 0 0
\(304\) 0.970873 + 1.02907i 0.0556834 + 0.0590209i
\(305\) 16.9018 14.1823i 0.967793 0.812075i
\(306\) 0 0
\(307\) −22.9491 19.2566i −1.30977 1.09903i −0.988367 0.152088i \(-0.951400\pi\)
−0.321406 0.946942i \(-0.604155\pi\)
\(308\) −0.694371 11.9219i −0.0395655 0.679313i
\(309\) 0 0
\(310\) 7.70397 + 10.3482i 0.437556 + 0.587740i
\(311\) 4.41818 0.516411i 0.250532 0.0292830i 0.0101001 0.999949i \(-0.496785\pi\)
0.240432 + 0.970666i \(0.422711\pi\)
\(312\) 0 0
\(313\) 26.0864 17.1573i 1.47449 0.969789i 0.478717 0.877969i \(-0.341102\pi\)
0.995776 0.0918201i \(-0.0292685\pi\)
\(314\) 4.30775 1.56789i 0.243100 0.0884812i
\(315\) 0 0
\(316\) 9.09346 + 3.30975i 0.511547 + 0.186188i
\(317\) 27.0789 6.41782i 1.52090 0.360461i 0.616575 0.787297i \(-0.288520\pi\)
0.904329 + 0.426836i \(0.140372\pi\)
\(318\) 0 0
\(319\) 0.581178 9.97845i 0.0325397 0.558686i
\(320\) −6.26349 + 6.63891i −0.350140 + 0.371126i
\(321\) 0 0
\(322\) −1.05381 2.44300i −0.0587264 0.136143i
\(323\) −9.44699 −0.525644
\(324\) 0 0
\(325\) 5.99343 0.332456
\(326\) 2.10568 + 4.88151i 0.116623 + 0.270362i
\(327\) 0 0
\(328\) 0.225513 0.239030i 0.0124519 0.0131982i
\(329\) 0.492047 8.44812i 0.0271274 0.465760i
\(330\) 0 0
\(331\) 0.191772 0.0454508i 0.0105408 0.00249820i −0.225342 0.974280i \(-0.572350\pi\)
0.235883 + 0.971781i \(0.424202\pi\)
\(332\) 4.29171 + 1.56206i 0.235538 + 0.0857289i
\(333\) 0 0
\(334\) 12.8674 4.68336i 0.704075 0.256262i
\(335\) 1.08329 0.712488i 0.0591862 0.0389274i
\(336\) 0 0
\(337\) 17.7835 2.07859i 0.968730 0.113228i 0.383012 0.923743i \(-0.374887\pi\)
0.585718 + 0.810515i \(0.300813\pi\)
\(338\) 3.89695 + 5.23451i 0.211966 + 0.284720i
\(339\) 0 0
\(340\) 0.990455 + 17.0055i 0.0537150 + 0.922251i
\(341\) 7.82522 + 6.56614i 0.423759 + 0.355576i
\(342\) 0 0
\(343\) 41.3103 34.6635i 2.23055 1.87165i
\(344\) −4.65101 4.92978i −0.250766 0.265796i
\(345\) 0 0
\(346\) 9.04353 + 5.94803i 0.486183 + 0.319768i
\(347\) −21.9243 5.19616i −1.17696 0.278944i −0.404819 0.914397i \(-0.632665\pi\)
−0.772140 + 0.635453i \(0.780814\pi\)
\(348\) 0 0
\(349\) 11.7759 + 1.37641i 0.630349 + 0.0736773i 0.425268 0.905068i \(-0.360180\pi\)
0.205082 + 0.978745i \(0.434254\pi\)
\(350\) 5.41587 + 9.38056i 0.289490 + 0.501412i
\(351\) 0 0
\(352\) −5.07737 + 8.79426i −0.270625 + 0.468736i
\(353\) 11.2290 15.0832i 0.597661 0.802798i −0.395634 0.918408i \(-0.629475\pi\)
0.993295 + 0.115610i \(0.0368824\pi\)
\(354\) 0 0
\(355\) −9.74289 32.5435i −0.517099 1.72723i
\(356\) 6.19601 3.11175i 0.328388 0.164922i
\(357\) 0 0
\(358\) −0.489585 + 1.63533i −0.0258754 + 0.0864297i
\(359\) 1.61227 + 9.14366i 0.0850926 + 0.482584i 0.997337 + 0.0729368i \(0.0232371\pi\)
−0.912244 + 0.409647i \(0.865652\pi\)
\(360\) 0 0
\(361\) −2.51015 + 14.2358i −0.132113 + 0.749251i
\(362\) 16.2762 + 8.17421i 0.855458 + 0.429627i
\(363\) 0 0
\(364\) −5.91160 + 13.7046i −0.309852 + 0.718318i
\(365\) 2.36204 5.47581i 0.123635 0.286617i
\(366\) 0 0
\(367\) −26.1118 13.1138i −1.36302 0.684536i −0.391213 0.920300i \(-0.627945\pi\)
−0.971810 + 0.235764i \(0.924241\pi\)
\(368\) 0.0781452 0.443183i 0.00407360 0.0231025i
\(369\) 0 0
\(370\) −0.289175 1.63999i −0.0150335 0.0852593i
\(371\) 14.3521 47.9395i 0.745126 2.48889i
\(372\) 0 0
\(373\) 4.97275 2.49741i 0.257479 0.129311i −0.315378 0.948966i \(-0.602131\pi\)
0.572857 + 0.819655i \(0.305835\pi\)
\(374\) −1.73860 5.80732i −0.0899007 0.300289i
\(375\) 0 0
\(376\) −2.69961 + 3.62620i −0.139222 + 0.187007i
\(377\) −6.24612 + 10.8186i −0.321692 + 0.557186i
\(378\) 0 0
\(379\) −14.7919 25.6203i −0.759808 1.31603i −0.942948 0.332940i \(-0.891959\pi\)
0.183140 0.983087i \(-0.441374\pi\)
\(380\) −8.13918 0.951334i −0.417531 0.0488024i
\(381\) 0 0
\(382\) −16.7715 3.97493i −0.858107 0.203375i
\(383\) −10.3490 6.80665i −0.528810 0.347804i 0.256861 0.966448i \(-0.417312\pi\)
−0.785671 + 0.618645i \(0.787682\pi\)
\(384\) 0 0
\(385\) 16.5454 + 17.5371i 0.843233 + 0.893775i
\(386\) 4.35230 3.65201i 0.221526 0.185883i
\(387\) 0 0
\(388\) 7.93530 + 6.65850i 0.402854 + 0.338034i
\(389\) 1.08026 + 18.5473i 0.0547712 + 0.940386i 0.908032 + 0.418901i \(0.137585\pi\)
−0.853261 + 0.521485i \(0.825378\pi\)
\(390\) 0 0
\(391\) 1.79444 + 2.41036i 0.0907489 + 0.121897i
\(392\) −47.1191 + 5.50743i −2.37987 + 0.278167i
\(393\) 0 0
\(394\) −10.7923 + 7.09821i −0.543708 + 0.357603i
\(395\) −18.3590 + 6.68214i −0.923743 + 0.336215i
\(396\) 0 0
\(397\) 9.59694 + 3.49300i 0.481657 + 0.175309i 0.571426 0.820654i \(-0.306391\pi\)
−0.0897688 + 0.995963i \(0.528613\pi\)
\(398\) 6.18264 1.46531i 0.309908 0.0734495i
\(399\) 0 0
\(400\) −0.106528 + 1.82901i −0.00532639 + 0.0914505i
\(401\) 1.38543 1.46847i 0.0691851 0.0733319i −0.691856 0.722035i \(-0.743207\pi\)
0.761041 + 0.648703i \(0.224688\pi\)
\(402\) 0 0
\(403\) −5.05670 11.7228i −0.251892 0.583952i
\(404\) 3.11815 0.155134
\(405\) 0 0
\(406\) −22.5768 −1.12047
\(407\) −0.522266 1.21075i −0.0258878 0.0600146i
\(408\) 0 0
\(409\) 0.596821 0.632593i 0.0295109 0.0312797i −0.712450 0.701723i \(-0.752414\pi\)
0.741961 + 0.670443i \(0.233896\pi\)
\(410\) −0.0157492 + 0.270404i −0.000777800 + 0.0133543i
\(411\) 0 0
\(412\) 0.359603 0.0852276i 0.0177164 0.00419886i
\(413\) −54.4506 19.8184i −2.67934 0.975200i
\(414\) 0 0
\(415\) −8.66465 + 3.15367i −0.425331 + 0.154808i
\(416\) 10.6035 6.97406i 0.519881 0.341931i
\(417\) 0 0
\(418\) 2.89649 0.338551i 0.141672 0.0165591i
\(419\) 15.0749 + 20.2492i 0.736459 + 0.989236i 0.999700 + 0.0245058i \(0.00780121\pi\)
−0.263241 + 0.964730i \(0.584791\pi\)
\(420\) 0 0
\(421\) −0.974084 16.7244i −0.0474740 0.815096i −0.935068 0.354469i \(-0.884662\pi\)
0.887594 0.460627i \(-0.152375\pi\)
\(422\) 14.4315 + 12.1095i 0.702516 + 0.589481i
\(423\) 0 0
\(424\) −20.4787 + 17.1836i −0.994532 + 0.834511i
\(425\) −8.39531 8.89850i −0.407232 0.431641i
\(426\) 0 0
\(427\) −32.9687 21.6838i −1.59547 1.04935i
\(428\) −13.3724 3.16933i −0.646381 0.153195i
\(429\) 0 0
\(430\) 5.54851 + 0.648528i 0.267573 + 0.0312748i
\(431\) 13.1811 + 22.8303i 0.634911 + 1.09970i 0.986534 + 0.163556i \(0.0522966\pi\)
−0.351623 + 0.936142i \(0.614370\pi\)
\(432\) 0 0
\(433\) 6.29345 10.9006i 0.302444 0.523848i −0.674245 0.738508i \(-0.735531\pi\)
0.976689 + 0.214660i \(0.0688642\pi\)
\(434\) 13.7784 18.5075i 0.661382 0.888390i
\(435\) 0 0
\(436\) −5.30869 17.7323i −0.254240 0.849222i
\(437\) −1.29182 + 0.648777i −0.0617962 + 0.0310352i
\(438\) 0 0
\(439\) −2.52350 + 8.42909i −0.120440 + 0.402299i −0.996854 0.0792605i \(-0.974744\pi\)
0.876414 + 0.481559i \(0.159929\pi\)
\(440\) −2.23659 12.6843i −0.106625 0.604702i
\(441\) 0 0
\(442\) −1.31561 + 7.46120i −0.0625772 + 0.354893i
\(443\) 13.6033 + 6.83182i 0.646311 + 0.324590i 0.741582 0.670862i \(-0.234076\pi\)
−0.0952714 + 0.995451i \(0.530372\pi\)
\(444\) 0 0
\(445\) −5.54442 + 12.8534i −0.262831 + 0.609310i
\(446\) −3.73228 + 8.65240i −0.176729 + 0.409703i
\(447\) 0 0
\(448\) 14.5875 + 7.32613i 0.689195 + 0.346127i
\(449\) 0.214786 1.21811i 0.0101364 0.0574862i −0.979320 0.202317i \(-0.935153\pi\)
0.989456 + 0.144831i \(0.0462639\pi\)
\(450\) 0 0
\(451\) 0.0372423 + 0.211212i 0.00175367 + 0.00994557i
\(452\) −0.158736 + 0.530217i −0.00746633 + 0.0249393i
\(453\) 0 0
\(454\) −17.6728 + 8.87564i −0.829428 + 0.416554i
\(455\) −8.64225 28.8671i −0.405155 1.35331i
\(456\) 0 0
\(457\) 18.5032 24.8541i 0.865542 1.16263i −0.119929 0.992782i \(-0.538267\pi\)
0.985471 0.169843i \(-0.0543259\pi\)
\(458\) −10.1484 + 17.5776i −0.474204 + 0.821345i
\(459\) 0 0
\(460\) 1.30330 + 2.25738i 0.0607666 + 0.105251i
\(461\) −16.8270 1.96679i −0.783710 0.0916026i −0.285179 0.958474i \(-0.592053\pi\)
−0.498531 + 0.866872i \(0.666127\pi\)
\(462\) 0 0
\(463\) 34.7253 + 8.23005i 1.61382 + 0.382483i 0.935792 0.352551i \(-0.114686\pi\)
0.678030 + 0.735034i \(0.262834\pi\)
\(464\) −3.19048 2.09841i −0.148114 0.0974164i
\(465\) 0 0
\(466\) −4.93584 5.23169i −0.228649 0.242353i
\(467\) 32.1894 27.0101i 1.48955 1.24988i 0.594353 0.804204i \(-0.297408\pi\)
0.895195 0.445675i \(-0.147036\pi\)
\(468\) 0 0
\(469\) −1.77640 1.49057i −0.0820263 0.0688282i
\(470\) −0.216658 3.71988i −0.00999370 0.171585i
\(471\) 0 0
\(472\) 18.4851 + 24.8298i 0.850846 + 1.14288i
\(473\) 4.39334 0.513508i 0.202006 0.0236111i
\(474\) 0 0
\(475\) 4.91703 3.23398i 0.225609 0.148385i
\(476\) 28.6281 10.4198i 1.31217 0.477590i
\(477\) 0 0
\(478\) 16.1023 + 5.86074i 0.736500 + 0.268064i
\(479\) −35.1181 + 8.32315i −1.60459 + 0.380295i −0.932785 0.360434i \(-0.882629\pi\)
−0.671804 + 0.740729i \(0.734480\pi\)
\(480\) 0 0
\(481\) −0.0958213 + 1.64519i −0.00436908 + 0.0750141i
\(482\) 7.49272 7.94182i 0.341284 0.361740i
\(483\) 0 0
\(484\) 4.36269 + 10.1139i 0.198304 + 0.459721i
\(485\) −20.9136 −0.949639
\(486\) 0 0
\(487\) 27.8890 1.26377 0.631885 0.775062i \(-0.282282\pi\)
0.631885 + 0.775062i \(0.282282\pi\)
\(488\) 8.34948 + 19.3563i 0.377963 + 0.876217i
\(489\) 0 0
\(490\) 26.8333 28.4416i 1.21220 1.28486i
\(491\) 1.26476 21.7151i 0.0570777 0.979987i −0.841246 0.540653i \(-0.818177\pi\)
0.898324 0.439334i \(-0.144786\pi\)
\(492\) 0 0
\(493\) 24.8117 5.88049i 1.11746 0.264844i
\(494\) −3.42489 1.24656i −0.154093 0.0560853i
\(495\) 0 0
\(496\) 3.66730 1.33479i 0.164667 0.0599338i
\(497\) −50.7606 + 33.3858i −2.27692 + 1.49756i
\(498\) 0 0
\(499\) 2.96418 0.346463i 0.132695 0.0155098i −0.0494861 0.998775i \(-0.515758\pi\)
0.182181 + 0.983265i \(0.441684\pi\)
\(500\) 5.14028 + 6.90459i 0.229880 + 0.308783i
\(501\) 0 0
\(502\) −0.487976 8.37822i −0.0217794 0.373938i
\(503\) 30.5223 + 25.6113i 1.36092 + 1.14195i 0.975696 + 0.219128i \(0.0703214\pi\)
0.385227 + 0.922822i \(0.374123\pi\)
\(504\) 0 0
\(505\) −4.82249 + 4.04655i −0.214598 + 0.180069i
\(506\) −0.636564 0.674719i −0.0282987 0.0299949i
\(507\) 0 0
\(508\) −12.0477 7.92390i −0.534530 0.351566i
\(509\) 19.3907 + 4.59567i 0.859476 + 0.203700i 0.636645 0.771157i \(-0.280322\pi\)
0.222832 + 0.974857i \(0.428470\pi\)
\(510\) 0 0
\(511\) −10.5935 1.23820i −0.468630 0.0547750i
\(512\) 3.70618 + 6.41930i 0.163792 + 0.283695i
\(513\) 0 0
\(514\) 0.462869 0.801713i 0.0204163 0.0353620i
\(515\) −0.445555 + 0.598484i −0.0196335 + 0.0263723i
\(516\) 0 0
\(517\) −0.846186 2.82646i −0.0372152 0.124308i
\(518\) −2.66154 + 1.33668i −0.116941 + 0.0587301i
\(519\) 0 0
\(520\) −4.61681 + 15.4212i −0.202461 + 0.676265i
\(521\) 6.17183 + 35.0022i 0.270393 + 1.53347i 0.753226 + 0.657762i \(0.228497\pi\)
−0.482833 + 0.875713i \(0.660392\pi\)
\(522\) 0 0
\(523\) 4.17875 23.6989i 0.182724 1.03628i −0.746121 0.665810i \(-0.768086\pi\)
0.928845 0.370469i \(-0.120803\pi\)
\(524\) 16.5858 + 8.32971i 0.724555 + 0.363885i
\(525\) 0 0
\(526\) 2.91103 6.74852i 0.126927 0.294249i
\(527\) −10.3217 + 23.9284i −0.449620 + 1.04234i
\(528\) 0 0
\(529\) −20.1426 10.1160i −0.875767 0.439827i
\(530\) 3.82623 21.6996i 0.166201 0.942571i
\(531\) 0 0
\(532\) 2.54496 + 14.4332i 0.110338 + 0.625757i
\(533\) 0.0768763 0.256785i 0.00332988 0.0111226i
\(534\) 0 0
\(535\) 24.7946 12.4523i 1.07196 0.538360i
\(536\) 0.355291 + 1.18676i 0.0153463 + 0.0512601i
\(537\) 0 0
\(538\) 1.17675 1.58065i 0.0507332 0.0681466i
\(539\) 15.4805 26.8130i 0.666792 1.15492i
\(540\) 0 0
\(541\) 5.32644 + 9.22567i 0.229002 + 0.396642i 0.957512 0.288392i \(-0.0931206\pi\)
−0.728511 + 0.685034i \(0.759787\pi\)
\(542\) 4.32142 + 0.505102i 0.185621 + 0.0216960i
\(543\) 0 0
\(544\) −25.2074 5.97426i −1.08076 0.256144i
\(545\) 31.2222 + 20.5352i 1.33741 + 0.879631i
\(546\) 0 0
\(547\) −9.33306 9.89247i −0.399053 0.422971i 0.496423 0.868081i \(-0.334646\pi\)
−0.895476 + 0.445109i \(0.853165\pi\)
\(548\) −15.1139 + 12.6821i −0.645636 + 0.541753i
\(549\) 0 0
\(550\) 2.89293 + 2.42746i 0.123355 + 0.103507i
\(551\) 0.713245 + 12.2460i 0.0303853 + 0.521695i
\(552\) 0 0
\(553\) 20.8659 + 28.0277i 0.887307 + 1.19186i
\(554\) 20.8945 2.44222i 0.887723 0.103760i
\(555\) 0 0
\(556\) −0.373311 + 0.245530i −0.0158319 + 0.0104128i
\(557\) −4.31357 + 1.57001i −0.182772 + 0.0665235i −0.431785 0.901977i \(-0.642116\pi\)
0.249013 + 0.968500i \(0.419894\pi\)
\(558\) 0 0
\(559\) −5.19480 1.89075i −0.219717 0.0799704i
\(560\) 8.96297 2.12426i 0.378755 0.0897665i
\(561\) 0 0
\(562\) −1.44149 + 24.7494i −0.0608056 + 1.04399i
\(563\) 0.680134 0.720900i 0.0286642 0.0303823i −0.712883 0.701283i \(-0.752611\pi\)
0.741547 + 0.670901i \(0.234092\pi\)
\(564\) 0 0
\(565\) −0.442584 1.02602i −0.0186196 0.0431652i
\(566\) −5.26940 −0.221489
\(567\) 0 0
\(568\) 32.4565 1.36185
\(569\) 3.07723 + 7.13381i 0.129004 + 0.299065i 0.970461 0.241260i \(-0.0775606\pi\)
−0.841457 + 0.540325i \(0.818301\pi\)
\(570\) 0 0
\(571\) −14.6837 + 15.5638i −0.614494 + 0.651326i −0.957644 0.287955i \(-0.907025\pi\)
0.343150 + 0.939281i \(0.388506\pi\)
\(572\) −0.302566 + 5.19486i −0.0126509 + 0.217208i
\(573\) 0 0
\(574\) 0.471373 0.111717i 0.0196747 0.00466299i
\(575\) −1.75912 0.640267i −0.0733604 0.0267010i
\(576\) 0 0
\(577\) −8.13925 + 2.96244i −0.338841 + 0.123328i −0.505836 0.862630i \(-0.668816\pi\)
0.166995 + 0.985958i \(0.446594\pi\)
\(578\) 1.73545 1.14142i 0.0721851 0.0474769i
\(579\) 0 0
\(580\) 21.9691 2.56782i 0.912216 0.106623i
\(581\) 9.84777 + 13.2278i 0.408554 + 0.548784i
\(582\) 0 0
\(583\) −1.01445 17.4174i −0.0420141 0.721355i
\(584\) 4.36471 + 3.66243i 0.180613 + 0.151552i
\(585\) 0 0
\(586\) 2.26454 1.90017i 0.0935472 0.0784954i
\(587\) 7.21493 + 7.64738i 0.297792 + 0.315641i 0.858942 0.512073i \(-0.171122\pi\)
−0.561150 + 0.827714i \(0.689641\pi\)
\(588\) 0 0
\(589\) −10.4740 6.88885i −0.431573 0.283850i
\(590\) −24.8267 5.88403i −1.02210 0.242242i
\(591\) 0 0
\(592\) −0.500358 0.0584834i −0.0205646 0.00240365i
\(593\) −14.0175 24.2790i −0.575630 0.997020i −0.995973 0.0896551i \(-0.971424\pi\)
0.420343 0.907365i \(-0.361910\pi\)
\(594\) 0 0
\(595\) −30.7537 + 53.2669i −1.26078 + 2.18373i
\(596\) −2.53620 + 3.40671i −0.103887 + 0.139544i
\(597\) 0 0
\(598\) 0.332500 + 1.11063i 0.0135969 + 0.0454169i
\(599\) 20.7959 10.4441i 0.849699 0.426735i 0.0300143 0.999549i \(-0.490445\pi\)
0.819685 + 0.572814i \(0.194148\pi\)
\(600\) 0 0
\(601\) −6.16371 + 20.5882i −0.251423 + 0.839811i 0.735348 + 0.677690i \(0.237019\pi\)
−0.986771 + 0.162121i \(0.948166\pi\)
\(602\) −1.73491 9.83915i −0.0707096 0.401014i
\(603\) 0 0
\(604\) −3.00133 + 17.0214i −0.122122 + 0.692589i
\(605\) −19.8724 9.98031i −0.807930 0.405757i
\(606\) 0 0
\(607\) 1.91860 4.44782i 0.0778737 0.180531i −0.874832 0.484427i \(-0.839028\pi\)
0.952705 + 0.303896i \(0.0982874\pi\)
\(608\) 4.93607 11.4431i 0.200184 0.464079i
\(609\) 0 0
\(610\) −15.5270 7.79798i −0.628672 0.315731i
\(611\) −0.640316 + 3.63141i −0.0259044 + 0.146911i
\(612\) 0 0
\(613\) 2.42381 + 13.7461i 0.0978969 + 0.555201i 0.993821 + 0.110994i \(0.0354034\pi\)
−0.895924 + 0.444207i \(0.853485\pi\)
\(614\) −6.76622 + 22.6008i −0.273063 + 0.912093i
\(615\) 0 0
\(616\) −20.5853 + 10.3383i −0.829407 + 0.416544i
\(617\) 5.79638 + 19.3612i 0.233353 + 0.779454i 0.991809 + 0.127730i \(0.0407690\pi\)
−0.758456 + 0.651725i \(0.774046\pi\)
\(618\) 0 0
\(619\) −17.2355 + 23.1513i −0.692753 + 0.930529i −0.999776 0.0211729i \(-0.993260\pi\)
0.307022 + 0.951702i \(0.400667\pi\)
\(620\) −11.3025 + 19.5764i −0.453917 + 0.786208i
\(621\) 0 0
\(622\) −1.75151 3.03370i −0.0702290 0.121640i
\(623\) 24.8662 + 2.90644i 0.996243 + 0.116444i
\(624\) 0 0
\(625\) −30.3415 7.19108i −1.21366 0.287643i
\(626\) −20.5431 13.5114i −0.821068 0.540025i
\(627\) 0 0
\(628\) 5.51213 + 5.84252i 0.219958 + 0.233142i
\(629\) 2.57685 2.16223i 0.102746 0.0862139i
\(630\) 0 0
\(631\) −35.3851 29.6916i −1.40866 1.18200i −0.957099 0.289762i \(-0.906424\pi\)
−0.451558 0.892242i \(-0.649132\pi\)
\(632\) −1.08536 18.6349i −0.0431732 0.741255i
\(633\) 0 0
\(634\) −13.0870 17.5789i −0.519750 0.698146i
\(635\) 28.9160 3.37979i 1.14750 0.134123i
\(636\) 0 0
\(637\) −32.3293 + 21.2633i −1.28093 + 0.842484i
\(638\) −7.39666 + 2.69216i −0.292836 + 0.106584i
\(639\) 0 0
\(640\) −23.8524 8.68156i −0.942848 0.343169i
\(641\) 24.2211 5.74051i 0.956676 0.226736i 0.277512 0.960722i \(-0.410490\pi\)
0.679165 + 0.733986i \(0.262342\pi\)
\(642\) 0 0
\(643\) −0.128744 + 2.21044i −0.00507715 + 0.0871713i −0.999895 0.0145037i \(-0.995383\pi\)
0.994818 + 0.101675i \(0.0324202\pi\)
\(644\) 3.19915 3.39090i 0.126064 0.133620i
\(645\) 0 0
\(646\) 2.94664 + 6.83108i 0.115934 + 0.268765i
\(647\) −26.5378 −1.04331 −0.521654 0.853157i \(-0.674685\pi\)
−0.521654 + 0.853157i \(0.674685\pi\)
\(648\) 0 0
\(649\) −20.2024 −0.793015
\(650\) −1.86943 4.33383i −0.0733251 0.169987i
\(651\) 0 0
\(652\) −6.39241 + 6.77556i −0.250346 + 0.265351i
\(653\) 0.0123406 0.211880i 0.000482926 0.00829152i −0.998058 0.0622901i \(-0.980160\pi\)
0.998541 + 0.0539986i \(0.0171966\pi\)
\(654\) 0 0
\(655\) −36.4612 + 8.64147i −1.42466 + 0.337650i
\(656\) 0.0769964 + 0.0280244i 0.00300620 + 0.00109417i
\(657\) 0 0
\(658\) −6.26228 + 2.27928i −0.244129 + 0.0888558i
\(659\) −22.6208 + 14.8779i −0.881180 + 0.579561i −0.907481 0.420093i \(-0.861998\pi\)
0.0263011 + 0.999654i \(0.491627\pi\)
\(660\) 0 0
\(661\) −35.5356 + 4.15352i −1.38218 + 0.161553i −0.774471 0.632609i \(-0.781984\pi\)
−0.607705 + 0.794163i \(0.707910\pi\)
\(662\) −0.0926816 0.124493i −0.00360217 0.00483856i
\(663\) 0 0
\(664\) −0.512241 8.79484i −0.0198788 0.341306i
\(665\) −22.6665 19.0195i −0.878969 0.737543i
\(666\) 0 0
\(667\) 2.98902 2.50808i 0.115735 0.0971134i
\(668\) 16.4650 + 17.4519i 0.637049 + 0.675233i
\(669\) 0 0
\(670\) −0.853088 0.561085i −0.0329577 0.0216766i
\(671\) −13.3869 3.17276i −0.516796 0.122483i
\(672\) 0 0
\(673\) 28.3593 + 3.31473i 1.09317 + 0.127773i 0.643519 0.765430i \(-0.277474\pi\)
0.449652 + 0.893204i \(0.351548\pi\)
\(674\) −7.04994 12.2109i −0.271554 0.470345i
\(675\) 0 0
\(676\) −5.71719 + 9.90247i −0.219892 + 0.380864i
\(677\) −8.79309 + 11.8112i −0.337946 + 0.453940i −0.938314 0.345783i \(-0.887613\pi\)
0.600369 + 0.799723i \(0.295021\pi\)
\(678\) 0 0
\(679\) 10.7274 + 35.8322i 0.411682 + 1.37511i
\(680\) 29.3631 14.7467i 1.12602 0.565509i
\(681\) 0 0
\(682\) 2.30716 7.70646i 0.0883458 0.295095i
\(683\) −0.764140 4.33365i −0.0292390 0.165823i 0.966692 0.255943i \(-0.0823859\pi\)
−0.995931 + 0.0901204i \(0.971275\pi\)
\(684\) 0 0
\(685\) 6.91695 39.2280i 0.264283 1.49882i
\(686\) −37.9503 19.0594i −1.44895 0.727690i
\(687\) 0 0
\(688\) 0.669333 1.55169i 0.0255181 0.0591575i
\(689\) −8.63661 + 20.0219i −0.329029 + 0.762774i
\(690\) 0 0
\(691\) 2.70634 + 1.35918i 0.102954 + 0.0517055i 0.499531 0.866296i \(-0.333506\pi\)
−0.396577 + 0.918001i \(0.629802\pi\)
\(692\) −3.29341 + 18.6779i −0.125197 + 0.710026i
\(693\) 0 0
\(694\) 3.08116 + 17.4741i 0.116959 + 0.663309i
\(695\) 0.258723 0.864194i 0.00981391 0.0327808i
\(696\) 0 0
\(697\) −0.488936 + 0.245553i −0.0185198 + 0.00930097i
\(698\) −2.67779 8.94443i −0.101356 0.338552i
\(699\) 0 0
\(700\) −11.3336 + 15.2236i −0.428368 + 0.575398i
\(701\) 21.6147 37.4378i 0.816377 1.41401i −0.0919585 0.995763i \(-0.529313\pi\)
0.908335 0.418243i \(-0.137354\pi\)
\(702\) 0 0
\(703\) 0.809112 + 1.40142i 0.0305162 + 0.0528557i
\(704\) 5.65278 + 0.660715i 0.213047 + 0.0249016i
\(705\) 0 0
\(706\) −14.4091 3.41502i −0.542294 0.128526i
\(707\) 9.40677 + 6.18693i 0.353778 + 0.232684i
\(708\) 0 0
\(709\) 22.0808 + 23.4043i 0.829261 + 0.878966i 0.994223 0.107334i \(-0.0342316\pi\)
−0.164962 + 0.986300i \(0.552750\pi\)
\(710\) −20.4932 + 17.1958i −0.769095 + 0.645347i
\(711\) 0 0
\(712\) −10.2453 8.59684i −0.383959 0.322180i
\(713\) 0.231862 + 3.98092i 0.00868331 + 0.149087i
\(714\) 0 0
\(715\) −6.27363 8.42695i −0.234621 0.315150i
\(716\) −2.97081 + 0.347238i −0.111024 + 0.0129769i
\(717\) 0 0
\(718\) 6.10886 4.01786i 0.227981 0.149945i
\(719\) 9.54600 3.47446i 0.356006 0.129576i −0.157825 0.987467i \(-0.550448\pi\)
0.513831 + 0.857892i \(0.328226\pi\)
\(720\) 0 0
\(721\) 1.25395 + 0.456400i 0.0466995 + 0.0169972i
\(722\) 11.0768 2.62525i 0.412235 0.0977016i
\(723\) 0 0
\(724\) −1.85559 + 31.8593i −0.0689626 + 1.18404i
\(725\) −10.9011 + 11.5545i −0.404857 + 0.429124i
\(726\) 0 0
\(727\) 5.58259 + 12.9419i 0.207047 + 0.479989i 0.989821 0.142317i \(-0.0454553\pi\)
−0.782774 + 0.622306i \(0.786196\pi\)
\(728\) 28.7900 1.06703
\(729\) 0 0
\(730\) −4.69629 −0.173818
\(731\) 4.46941 + 10.3613i 0.165307 + 0.383225i
\(732\) 0 0
\(733\) 10.7728 11.4185i 0.397904 0.421753i −0.497183 0.867646i \(-0.665632\pi\)
0.895086 + 0.445893i \(0.147114\pi\)
\(734\) −1.33795 + 22.9717i −0.0493846 + 0.847901i
\(735\) 0 0
\(736\) −3.85725 + 0.914186i −0.142180 + 0.0336973i
\(737\) −0.759727 0.276518i −0.0279849 0.0101857i
\(738\) 0 0
\(739\) −3.42025 + 1.24487i −0.125816 + 0.0457933i −0.404161 0.914688i \(-0.632436\pi\)
0.278345 + 0.960481i \(0.410214\pi\)
\(740\) 2.43786 1.60341i 0.0896176 0.0589424i
\(741\) 0 0
\(742\) −39.1415 + 4.57498i −1.43693 + 0.167953i
\(743\) −13.9026 18.6745i −0.510039 0.685101i 0.470281 0.882517i \(-0.344152\pi\)
−0.980320 + 0.197416i \(0.936745\pi\)
\(744\) 0 0
\(745\) −0.498569 8.56010i −0.0182662 0.313618i
\(746\) −3.35694 2.81680i −0.122906 0.103130i
\(747\) 0 0
\(748\) 8.13668 6.82748i 0.297506 0.249637i
\(749\) −34.0532 36.0943i −1.24428 1.31886i
\(750\) 0 0
\(751\) −6.59964 4.34065i −0.240824 0.158393i 0.423360 0.905962i \(-0.360851\pi\)
−0.664184 + 0.747569i \(0.731221\pi\)
\(752\) −1.09681 0.259950i −0.0399967 0.00947939i
\(753\) 0 0
\(754\) 9.77114 + 1.14208i 0.355844 + 0.0415922i
\(755\) −17.4475 30.2200i −0.634980 1.09982i
\(756\) 0 0
\(757\) −2.12074 + 3.67323i −0.0770795 + 0.133506i −0.901989 0.431760i \(-0.857893\pi\)
0.824909 + 0.565265i \(0.191226\pi\)
\(758\) −13.9122 + 18.6873i −0.505312 + 0.678752i
\(759\) 0 0
\(760\) 4.53346 + 15.1428i 0.164446 + 0.549287i
\(761\) −36.5389 + 18.3505i −1.32453 + 0.665206i −0.963591 0.267381i \(-0.913842\pi\)
−0.360944 + 0.932588i \(0.617545\pi\)
\(762\) 0 0
\(763\) 19.1686 64.0276i 0.693951 2.31796i
\(764\) −5.24431 29.7420i −0.189733 1.07603i
\(765\) 0 0
\(766\) −1.69387 + 9.60642i −0.0612020 + 0.347094i
\(767\) 22.5634 + 11.3318i 0.814717 + 0.409166i
\(768\) 0 0
\(769\) 12.9500 30.0215i 0.466989 1.08260i −0.508202 0.861238i \(-0.669690\pi\)
0.975191 0.221364i \(-0.0710510\pi\)
\(770\) 7.52030 17.4340i 0.271013 0.628278i
\(771\) 0 0
\(772\) 8.89615 + 4.46781i 0.320179 + 0.160800i
\(773\) 6.74796 38.2696i 0.242707 1.37646i −0.583050 0.812436i \(-0.698141\pi\)
0.825757 0.564025i \(-0.190748\pi\)
\(774\) 0 0
\(775\) −2.81909 15.9878i −0.101265 0.574300i
\(776\) 5.73075 19.1420i 0.205722 0.687159i
\(777\) 0 0
\(778\) 13.0745 6.56628i 0.468745 0.235413i
\(779\) −0.0754884 0.252149i −0.00270465 0.00903417i
\(780\) 0 0
\(781\) −12.6492 + 16.9908i −0.452624 + 0.607979i
\(782\) 1.18321 2.04938i 0.0423115 0.0732856i
\(783\) 0 0
\(784\) −5.91429 10.2439i −0.211225 0.365852i
\(785\) −16.1071 1.88264i −0.574885 0.0671945i
\(786\) 0 0
\(787\) 2.21966 + 0.526068i 0.0791222 + 0.0187523i 0.269986 0.962864i \(-0.412981\pi\)
−0.190864 + 0.981616i \(0.561129\pi\)
\(788\) −18.9100 12.4373i −0.673642 0.443061i
\(789\) 0 0
\(790\) 10.5583 + 11.1911i 0.375646 + 0.398161i
\(791\) −1.53091 + 1.28459i −0.0544329 + 0.0456746i
\(792\) 0 0
\(793\) 13.1718 + 11.0524i 0.467743 + 0.392483i
\(794\) −0.467638 8.02903i −0.0165958 0.284940i
\(795\) 0 0
\(796\) 6.64828 + 8.93019i 0.235642 + 0.316522i
\(797\) 33.9740 3.97099i 1.20342 0.140660i 0.509346 0.860562i \(-0.329887\pi\)
0.694076 + 0.719902i \(0.255813\pi\)
\(798\) 0 0
\(799\) 6.28852 4.13602i 0.222472 0.146322i
\(800\) 15.1653 5.51971i 0.536174 0.195151i
\(801\) 0 0
\(802\) −1.49398 0.543764i −0.0527543 0.0192010i
\(803\) −3.61831 + 0.857556i −0.127687 + 0.0302625i
\(804\) 0 0
\(805\) −0.547253 + 9.39598i −0.0192881 + 0.331165i
\(806\) −6.89943 + 7.31296i −0.243022 + 0.257588i
\(807\) 0 0
\(808\) −2.38231 5.52282i −0.0838094 0.194292i
\(809\) 22.5844 0.794027 0.397013 0.917813i \(-0.370047\pi\)
0.397013 + 0.917813i \(0.370047\pi\)
\(810\) 0 0
\(811\) 15.6809 0.550631 0.275315 0.961354i \(-0.411218\pi\)
0.275315 + 0.961354i \(0.411218\pi\)
\(812\) −15.6684 36.3234i −0.549852 1.27470i
\(813\) 0 0
\(814\) −0.712586 + 0.755297i −0.0249761 + 0.0264731i
\(815\) 1.09350 18.7747i 0.0383036 0.657648i
\(816\) 0 0
\(817\) −5.28206 + 1.25187i −0.184796 + 0.0437975i
\(818\) −0.643582 0.234245i −0.0225023 0.00819017i
\(819\) 0 0
\(820\) −0.445977 + 0.162322i −0.0155742 + 0.00566854i
\(821\) 42.7110 28.0914i 1.49062 0.980398i 0.496987 0.867758i \(-0.334440\pi\)
0.993636 0.112640i \(-0.0359307\pi\)
\(822\) 0 0
\(823\) −3.27526 + 0.382822i −0.114168 + 0.0133444i −0.172985 0.984924i \(-0.555341\pi\)
0.0588169 + 0.998269i \(0.481267\pi\)
\(824\) −0.425695 0.571808i −0.0148298 0.0199199i
\(825\) 0 0
\(826\) 2.65326 + 45.5547i 0.0923187 + 1.58505i
\(827\) −15.7734 13.2354i −0.548494 0.460241i 0.325937 0.945392i \(-0.394320\pi\)
−0.874431 + 0.485151i \(0.838765\pi\)
\(828\) 0 0
\(829\) 10.1320 8.50174i 0.351898 0.295278i −0.449654 0.893203i \(-0.648453\pi\)
0.801552 + 0.597925i \(0.204008\pi\)
\(830\) 4.98303 + 5.28170i 0.172964 + 0.183331i
\(831\) 0 0
\(832\) −5.94279 3.90864i −0.206029 0.135508i
\(833\) 76.8553 + 18.2150i 2.66288 + 0.631113i
\(834\) 0 0
\(835\) −48.1125 5.62355i −1.66500 0.194611i
\(836\) 2.55486 + 4.42514i 0.0883616 + 0.153047i
\(837\) 0 0
\(838\) 9.94002 17.2166i 0.343372 0.594738i
\(839\) −3.76755 + 5.06069i −0.130070 + 0.174715i −0.862387 0.506249i \(-0.831032\pi\)
0.732317 + 0.680964i \(0.238439\pi\)
\(840\) 0 0
\(841\) −1.17876 3.93732i −0.0406468 0.135770i
\(842\) −11.7895 + 5.92091i −0.406293 + 0.204048i
\(843\) 0 0
\(844\) −9.46718 + 31.6226i −0.325874 + 1.08849i
\(845\) −4.00870 22.7345i −0.137903 0.782089i
\(846\) 0 0
\(847\) −6.90630 + 39.1676i −0.237303 + 1.34581i
\(848\) −5.95656 2.99150i −0.204549 0.102728i
\(849\) 0 0
\(850\) −3.81587 + 8.84618i −0.130883 + 0.303421i
\(851\) 0.203877 0.472640i 0.00698881 0.0162019i
\(852\) 0 0
\(853\) 16.1960 + 8.13394i 0.554540 + 0.278501i 0.703920 0.710279i \(-0.251431\pi\)
−0.149380 + 0.988780i \(0.547728\pi\)
\(854\) −5.39614 + 30.6030i −0.184652 + 1.04721i
\(855\) 0 0
\(856\) 4.60327 + 26.1064i 0.157336 + 0.892299i
\(857\) −9.75342 + 32.5787i −0.333170 + 1.11287i 0.613239 + 0.789897i \(0.289866\pi\)
−0.946409 + 0.322969i \(0.895319\pi\)
\(858\) 0 0
\(859\) 42.5333 21.3610i 1.45122 0.728828i 0.463649 0.886019i \(-0.346540\pi\)
0.987568 + 0.157191i \(0.0502437\pi\)
\(860\) 2.80728 + 9.37696i 0.0957274 + 0.319752i
\(861\) 0 0
\(862\) 12.3972 16.6523i 0.422249 0.567179i
\(863\) −26.7851 + 46.3932i −0.911777 + 1.57924i −0.100224 + 0.994965i \(0.531956\pi\)
−0.811553 + 0.584279i \(0.801377\pi\)
\(864\) 0 0
\(865\) −19.1455 33.1610i −0.650966 1.12751i
\(866\) −9.84517 1.15074i −0.334553 0.0391036i
\(867\) 0 0
\(868\) 39.3386 + 9.32341i 1.33524 + 0.316457i
\(869\) 10.1782 + 6.69434i 0.345273 + 0.227090i
\(870\) 0 0
\(871\) 0.693411 + 0.734973i 0.0234953 + 0.0249036i
\(872\) −27.3512 + 22.9504i −0.926227 + 0.777197i
\(873\) 0 0
\(874\) 0.872065 + 0.731749i 0.0294980 + 0.0247518i
\(875\) 1.80722 + 31.0288i 0.0610952 + 1.04896i
\(876\) 0 0
\(877\) −8.57919 11.5239i −0.289699 0.389133i 0.633319 0.773891i \(-0.281692\pi\)
−0.923017 + 0.384758i \(0.874285\pi\)
\(878\) 6.88216 0.804409i 0.232262 0.0271475i
\(879\) 0 0
\(880\) 2.68315 1.76474i 0.0904491 0.0594893i
\(881\) −0.647962 + 0.235839i −0.0218304 + 0.00794561i −0.352912 0.935656i \(-0.614809\pi\)
0.331082 + 0.943602i \(0.392586\pi\)
\(882\) 0 0
\(883\) −23.8383 8.67642i −0.802222 0.291985i −0.0918148 0.995776i \(-0.529267\pi\)
−0.710407 + 0.703791i \(0.751489\pi\)
\(884\) −12.9172 + 3.06143i −0.434452 + 0.102967i
\(885\) 0 0
\(886\) 0.697022 11.9674i 0.0234169 0.402053i
\(887\) 28.6258 30.3415i 0.961159 1.01877i −0.0386504 0.999253i \(-0.512306\pi\)
0.999810 0.0195164i \(-0.00621264\pi\)
\(888\) 0 0
\(889\) −20.6229 47.8093i −0.691670 1.60347i
\(890\) 11.0236 0.369513
\(891\) 0 0
\(892\) −16.5109 −0.552824
\(893\) 1.43415 + 3.32473i 0.0479920 + 0.111258i
\(894\) 0 0
\(895\) 4.14399 4.39238i 0.138518 0.146821i
\(896\) −2.63961 + 45.3204i −0.0881832 + 1.51405i
\(897\) 0 0
\(898\) −0.947806 + 0.224634i −0.0316287 + 0.00749613i
\(899\) 31.7972 + 11.5732i 1.06050 + 0.385989i
\(900\) 0 0
\(901\) 41.8245 15.2229i 1.39338 0.507147i
\(902\) 0.141110 0.0928095i 0.00469845 0.00309022i
\(903\) 0 0
\(904\) 1.06039 0.123941i 0.0352679 0.00412223i
\(905\) −38.4753 51.6813i −1.27896 1.71794i
\(906\) 0 0
\(907\) 2.30839 + 39.6335i 0.0766487 + 1.31601i 0.789091 + 0.614277i \(0.210552\pi\)
−0.712442 + 0.701731i \(0.752411\pi\)
\(908\) −26.5448 22.2737i −0.880920 0.739180i
\(909\) 0 0
\(910\) −18.1781 + 15.2532i −0.602598 + 0.505640i
\(911\) 27.0333 + 28.6536i 0.895653 + 0.949337i 0.998973 0.0453115i \(-0.0144280\pi\)
−0.103320 + 0.994648i \(0.532947\pi\)
\(912\) 0 0
\(913\) 4.80369 + 3.15943i 0.158979 + 0.104562i
\(914\) −23.7433 5.62726i −0.785358 0.186133i
\(915\) 0 0
\(916\) −35.3231 4.12868i −1.16711 0.136416i
\(917\) 33.5082 + 58.0379i 1.10654 + 1.91658i
\(918\) 0 0
\(919\) 7.97650 13.8157i 0.263120 0.455738i −0.703949 0.710250i \(-0.748582\pi\)
0.967069 + 0.254513i \(0.0819150\pi\)
\(920\) 3.00249 4.03305i 0.0989893 0.132966i
\(921\) 0 0
\(922\) 3.82638 + 12.7810i 0.126015 + 0.420920i
\(923\) 23.6578 11.8814i 0.778706 0.391081i
\(924\) 0 0
\(925\) −0.601020 + 2.00755i −0.0197614 + 0.0660077i
\(926\) −4.88017 27.6768i −0.160372 0.909516i
\(927\) 0 0
\(928\) −5.84117 + 33.1269i −0.191746 + 1.08744i
\(929\) 22.4314 + 11.2654i 0.735949 + 0.369607i 0.776959 0.629551i \(-0.216761\pi\)
−0.0410101 + 0.999159i \(0.513058\pi\)
\(930\) 0 0
\(931\) −15.0497 + 34.8890i −0.493233 + 1.14344i
\(932\) 4.99166 11.5720i 0.163507 0.379053i
\(933\) 0 0
\(934\) −29.5712 14.8512i −0.967600 0.485947i
\(935\) −3.72378 + 21.1186i −0.121781 + 0.690652i
\(936\) 0 0
\(937\) −6.76540 38.3685i −0.221016 1.25344i −0.870156 0.492776i \(-0.835982\pi\)
0.649140 0.760669i \(-0.275129\pi\)
\(938\) −0.523746 + 1.74943i −0.0171009 + 0.0571211i
\(939\) 0 0
\(940\) 5.83446 2.93018i 0.190299 0.0955719i
\(941\) 9.48562 + 31.6842i 0.309222 + 1.03287i 0.961480 + 0.274877i \(0.0886370\pi\)
−0.652257 + 0.757998i \(0.726178\pi\)
\(942\) 0 0
\(943\) −0.0499957 + 0.0671559i −0.00162808 + 0.00218690i
\(944\) −3.85915 + 6.68424i −0.125605 + 0.217554i
\(945\) 0 0
\(946\) −1.74166 3.01664i −0.0566261 0.0980793i
\(947\) 14.4062 + 1.68384i 0.468138 + 0.0547175i 0.346892 0.937905i \(-0.387237\pi\)
0.121246 + 0.992623i \(0.461311\pi\)
\(948\) 0 0
\(949\) 4.52218 + 1.07178i 0.146796 + 0.0347913i
\(950\) −3.87217 2.54677i −0.125630 0.0826280i
\(951\) 0 0
\(952\) −40.3276 42.7447i −1.30702 1.38536i
\(953\) 4.46031 3.74265i 0.144484 0.121236i −0.567681 0.823249i \(-0.692159\pi\)
0.712165 + 0.702012i \(0.247715\pi\)
\(954\) 0 0
\(955\) 46.7081 + 39.1928i 1.51144 + 1.26825i
\(956\) 1.74578 + 29.9739i 0.0564626 + 0.969426i
\(957\) 0 0
\(958\) 16.9723 + 22.7977i 0.548349 + 0.736560i
\(959\) −70.7588 + 8.27052i −2.28492 + 0.267069i
\(960\) 0 0
\(961\) −2.99255 + 1.96823i −0.0965338 + 0.0634913i
\(962\) 1.21952 0.443868i 0.0393188 0.0143109i
\(963\) 0 0
\(964\) 17.9774 + 6.54323i 0.579013 + 0.210743i
\(965\) −19.5567 + 4.63503i −0.629553 + 0.149207i
\(966\) 0 0
\(967\) 2.65664 45.6128i 0.0854319 1.46681i −0.634585 0.772853i \(-0.718829\pi\)
0.720017 0.693956i \(-0.244134\pi\)
\(968\) 14.5803 15.4542i 0.468629 0.496718i
\(969\) 0 0
\(970\) 6.52324 + 15.1226i 0.209449 + 0.485557i
\(971\) −1.52462 −0.0489275 −0.0244638 0.999701i \(-0.507788\pi\)
−0.0244638 + 0.999701i \(0.507788\pi\)
\(972\) 0 0
\(973\) −1.61337 −0.0517222
\(974\) −8.69894 20.1664i −0.278732 0.646173i
\(975\) 0 0
\(976\) −3.60697 + 3.82317i −0.115456 + 0.122377i
\(977\) 1.18583 20.3600i 0.0379382 0.651373i −0.924719 0.380650i \(-0.875700\pi\)
0.962657 0.270723i \(-0.0872627\pi\)
\(978\) 0 0
\(979\) 8.49328 2.01294i 0.271446 0.0643339i
\(980\) 64.3814 + 23.4329i 2.05659 + 0.748537i
\(981\) 0 0
\(982\) −16.0966 + 5.85868i −0.513662 + 0.186958i
\(983\) 35.2278 23.1697i 1.12359 0.738999i 0.155065 0.987904i \(-0.450441\pi\)
0.968528 + 0.248906i \(0.0800709\pi\)
\(984\) 0 0
\(985\) 45.3864 5.30491i 1.44613 0.169029i
\(986\) −11.9913 16.1071i −0.381880 0.512954i
\(987\) 0 0
\(988\) −0.371321 6.37534i −0.0118133 0.202826i
\(989\) 1.32273 + 1.10990i 0.0420604 + 0.0352929i
\(990\) 0 0
\(991\) −1.19365 + 1.00159i −0.0379176 + 0.0318167i −0.661550 0.749901i \(-0.730101\pi\)
0.623632 + 0.781718i \(0.285656\pi\)
\(992\) −23.5912 25.0053i −0.749023 0.793918i
\(993\) 0 0
\(994\) 39.9740 + 26.2913i 1.26790 + 0.833911i
\(995\) −21.8712 5.18357i −0.693364 0.164330i
\(996\) 0 0
\(997\) 51.9826 + 6.07590i 1.64631 + 0.192426i 0.888120 0.459612i \(-0.152011\pi\)
0.758187 + 0.652037i \(0.226085\pi\)
\(998\) −1.17509 2.03532i −0.0371970 0.0644270i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.b.676.3 144
3.2 odd 2 729.2.g.c.676.6 144
9.2 odd 6 81.2.g.a.58.6 yes 144
9.4 even 3 729.2.g.a.433.6 144
9.5 odd 6 729.2.g.d.433.3 144
9.7 even 3 243.2.g.a.226.3 144
81.7 even 27 729.2.g.a.298.6 144
81.14 odd 54 6561.2.a.c.1.48 72
81.20 odd 54 81.2.g.a.7.6 144
81.34 even 27 inner 729.2.g.b.55.3 144
81.47 odd 54 729.2.g.c.55.6 144
81.61 even 27 243.2.g.a.100.3 144
81.67 even 27 6561.2.a.d.1.25 72
81.74 odd 54 729.2.g.d.298.3 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.7.6 144 81.20 odd 54
81.2.g.a.58.6 yes 144 9.2 odd 6
243.2.g.a.100.3 144 81.61 even 27
243.2.g.a.226.3 144 9.7 even 3
729.2.g.a.298.6 144 81.7 even 27
729.2.g.a.433.6 144 9.4 even 3
729.2.g.b.55.3 144 81.34 even 27 inner
729.2.g.b.676.3 144 1.1 even 1 trivial
729.2.g.c.55.6 144 81.47 odd 54
729.2.g.c.676.6 144 3.2 odd 2
729.2.g.d.298.3 144 81.74 odd 54
729.2.g.d.433.3 144 9.5 odd 6
6561.2.a.c.1.48 72 81.14 odd 54
6561.2.a.d.1.25 72 81.67 even 27