Properties

Label 729.2.g
Level $729$
Weight $2$
Character orbit 729.g
Rep. character $\chi_{729}(28,\cdot)$
Character field $\Q(\zeta_{27})$
Dimension $576$
Newform subspaces $4$
Sturm bound $162$
Trace bound $20$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 81 \)
Character field: \(\Q(\zeta_{27})\)
Newform subspaces: \( 4 \)
Sturm bound: \(162\)
Trace bound: \(20\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(729, [\chi])\).

Total New Old
Modular forms 1620 720 900
Cusp forms 1296 576 720
Eisenstein series 324 144 180

Trace form

\( 576 q + 36 q^{4} + 36 q^{7} + O(q^{10}) \) \( 576 q + 36 q^{4} + 36 q^{7} - 72 q^{10} + 36 q^{13} + 36 q^{16} - 72 q^{19} + 36 q^{22} + 36 q^{25} - 36 q^{28} + 36 q^{31} + 36 q^{34} - 72 q^{37} + 36 q^{40} + 36 q^{43} - 72 q^{46} + 36 q^{49} - 36 q^{55} + 36 q^{58} + 36 q^{61} - 72 q^{64} - 18 q^{67} - 72 q^{70} - 72 q^{73} - 126 q^{76} - 72 q^{79} - 144 q^{82} - 72 q^{85} - 126 q^{88} - 72 q^{91} - 72 q^{94} - 18 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(729, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
729.2.g.a 729.g 81.g $144$ $5.821$ None 81.2.g.a \(-9\) \(0\) \(-9\) \(9\) $\mathrm{SU}(2)[C_{27}]$
729.2.g.b 729.g 81.g $144$ $5.821$ None 81.2.g.a \(-9\) \(0\) \(-9\) \(9\) $\mathrm{SU}(2)[C_{27}]$
729.2.g.c 729.g 81.g $144$ $5.821$ None 81.2.g.a \(9\) \(0\) \(9\) \(9\) $\mathrm{SU}(2)[C_{27}]$
729.2.g.d 729.g 81.g $144$ $5.821$ None 81.2.g.a \(9\) \(0\) \(9\) \(9\) $\mathrm{SU}(2)[C_{27}]$

Decomposition of \(S_{2}^{\mathrm{old}}(729, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(729, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 2}\)