Properties

Label 81.2.g.a.7.6
Level $81$
Weight $2$
Character 81.7
Analytic conductor $0.647$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,2,Mod(4,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.646788256372\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 7.6
Character \(\chi\) \(=\) 81.7
Dual form 81.2.g.a.58.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.470263 + 0.631673i) q^{2} +(-1.10956 - 1.32999i) q^{3} +(0.395743 - 1.32187i) q^{4} +(2.32750 - 1.53082i) q^{5} +(0.318331 - 1.32633i) q^{6} +(-3.41908 + 3.62402i) q^{7} +(2.50111 - 0.910331i) q^{8} +(-0.537739 + 2.95141i) q^{9} +O(q^{10})\) \(q+(0.470263 + 0.631673i) q^{2} +(-1.10956 - 1.32999i) q^{3} +(0.395743 - 1.32187i) q^{4} +(2.32750 - 1.53082i) q^{5} +(0.318331 - 1.32633i) q^{6} +(-3.41908 + 3.62402i) q^{7} +(2.50111 - 0.910331i) q^{8} +(-0.537739 + 2.95141i) q^{9} +(2.06152 + 0.750330i) q^{10} +(1.55231 - 0.779598i) q^{11} +(-2.19718 + 0.940369i) q^{12} +(0.859891 + 1.99345i) q^{13} +(-3.89706 - 0.455501i) q^{14} +(-4.61848 - 1.39701i) q^{15} +(-0.554469 - 0.364680i) q^{16} +(-3.39468 + 2.84848i) q^{17} +(-2.11721 + 1.04827i) q^{18} +(-1.63306 - 1.37030i) q^{19} +(-1.10246 - 3.68247i) q^{20} +(8.61359 + 0.526266i) q^{21} +(1.22244 + 0.613935i) q^{22} +(0.465342 + 0.493234i) q^{23} +(-3.98587 - 2.31638i) q^{24} +(1.09345 - 2.53489i) q^{25} +(-0.854835 + 1.48062i) q^{26} +(4.52200 - 2.55959i) q^{27} +(3.43741 + 5.95378i) q^{28} +(5.71522 - 0.668013i) q^{29} +(-1.28945 - 3.57433i) q^{30} +(-5.72212 + 1.35617i) q^{31} +(-0.339908 - 5.83599i) q^{32} +(-2.75924 - 1.19954i) q^{33} +(-3.39570 - 0.804795i) q^{34} +(-2.41020 + 13.6689i) q^{35} +(3.68859 + 1.87882i) q^{36} +(0.131814 + 0.747552i) q^{37} +(0.0976137 - 1.67596i) q^{38} +(1.69716 - 3.35551i) q^{39} +(4.42779 - 5.94755i) q^{40} +(0.0737288 - 0.0990350i) q^{41} +(3.71823 + 5.68845i) q^{42} +(-0.148059 + 2.54207i) q^{43} +(-0.416216 - 2.36048i) q^{44} +(3.26650 + 7.69260i) q^{45} +(-0.0927292 + 0.525894i) q^{46} +(1.65271 + 0.391699i) q^{47} +(0.130198 + 1.14207i) q^{48} +(-1.03635 - 17.7935i) q^{49} +(2.11543 - 0.501366i) q^{50} +(7.55505 + 1.35432i) q^{51} +(2.97539 - 0.347773i) q^{52} +(-5.02192 - 8.69822i) q^{53} +(3.74336 + 1.65274i) q^{54} +(2.41957 - 4.19082i) q^{55} +(-5.25246 + 12.1766i) q^{56} +(-0.0104999 + 3.69239i) q^{57} +(3.10962 + 3.29601i) q^{58} +(-10.3931 - 5.21959i) q^{59} +(-3.67440 + 5.55220i) q^{60} +(-2.27150 - 7.58734i) q^{61} +(-3.54755 - 2.97675i) q^{62} +(-8.85739 - 12.0399i) q^{63} +(2.50983 - 2.10599i) q^{64} +(5.05301 + 3.32342i) q^{65} +(-0.539853 - 2.30704i) q^{66} +(0.462282 + 0.0540330i) q^{67} +(2.42190 + 5.61460i) q^{68} +(0.139669 - 1.16617i) q^{69} +(-9.76770 + 4.90552i) q^{70} +(11.4588 + 4.17067i) q^{71} +(1.34182 + 7.87134i) q^{72} +(-2.01159 + 0.732160i) q^{73} +(-0.410222 + 0.434809i) q^{74} +(-4.58462 + 1.35835i) q^{75} +(-2.45764 + 1.61641i) q^{76} +(-2.48219 + 8.29110i) q^{77} +(2.91770 - 0.505918i) q^{78} +(4.18797 + 5.62542i) q^{79} -1.84879 q^{80} +(-8.42167 - 3.17418i) q^{81} +0.0972297 q^{82} +(-1.97654 - 2.65495i) q^{83} +(4.10442 - 11.1778i) q^{84} +(-3.54061 + 11.8265i) q^{85} +(-1.67538 + 1.10192i) q^{86} +(-7.22985 - 6.85997i) q^{87} +(3.17281 - 3.36298i) q^{88} +(-4.72182 + 1.71860i) q^{89} +(-3.32309 + 5.68090i) q^{90} +(-10.1643 - 3.69952i) q^{91} +(0.836149 - 0.419930i) q^{92} +(8.15274 + 6.10560i) q^{93} +(0.529782 + 1.22817i) q^{94} +(-5.89863 - 0.689452i) q^{95} +(-7.38465 + 6.92748i) q^{96} +(6.27220 + 4.12529i) q^{97} +(10.7523 - 9.02224i) q^{98} +(1.46618 + 5.00072i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9} - 18 q^{10} - 18 q^{11} - 18 q^{12} - 18 q^{13} - 18 q^{14} - 18 q^{15} - 18 q^{16} - 18 q^{17} - 9 q^{18} - 18 q^{19} + 18 q^{20} + 9 q^{21} - 18 q^{22} + 9 q^{23} + 36 q^{24} - 18 q^{25} + 45 q^{26} + 9 q^{27} - 9 q^{28} + 9 q^{29} + 36 q^{30} - 18 q^{31} + 36 q^{32} + 9 q^{33} - 18 q^{34} + 9 q^{35} + 18 q^{36} - 18 q^{37} - 9 q^{38} - 18 q^{39} - 18 q^{40} + 27 q^{42} - 18 q^{43} + 54 q^{44} + 36 q^{45} - 18 q^{46} + 36 q^{47} + 81 q^{48} - 18 q^{49} + 99 q^{50} + 45 q^{51} + 45 q^{53} + 108 q^{54} - 9 q^{55} + 126 q^{56} + 36 q^{57} - 18 q^{58} + 45 q^{59} + 99 q^{60} - 18 q^{61} + 81 q^{62} + 36 q^{63} - 18 q^{64} - 18 q^{66} + 9 q^{67} - 99 q^{68} - 72 q^{69} + 36 q^{70} - 90 q^{71} - 234 q^{72} - 18 q^{73} - 162 q^{74} - 108 q^{75} + 63 q^{76} - 162 q^{77} - 135 q^{78} + 36 q^{79} - 288 q^{80} - 90 q^{81} - 36 q^{82} - 90 q^{83} - 243 q^{84} + 36 q^{85} - 162 q^{86} - 162 q^{87} + 63 q^{88} - 81 q^{89} - 99 q^{90} - 18 q^{91} - 144 q^{92} + 36 q^{94} + 18 q^{95} - 27 q^{96} + 9 q^{97} + 81 q^{98} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.470263 + 0.631673i 0.332526 + 0.446660i 0.936669 0.350216i \(-0.113892\pi\)
−0.604143 + 0.796876i \(0.706484\pi\)
\(3\) −1.10956 1.32999i −0.640607 0.767869i
\(4\) 0.395743 1.32187i 0.197872 0.660937i
\(5\) 2.32750 1.53082i 1.04089 0.684604i 0.0905734 0.995890i \(-0.471130\pi\)
0.950316 + 0.311286i \(0.100760\pi\)
\(6\) 0.318331 1.32633i 0.129958 0.541470i
\(7\) −3.41908 + 3.62402i −1.29229 + 1.36975i −0.401158 + 0.916009i \(0.631392\pi\)
−0.891134 + 0.453740i \(0.850089\pi\)
\(8\) 2.50111 0.910331i 0.884277 0.321851i
\(9\) −0.537739 + 2.95141i −0.179246 + 0.983804i
\(10\) 2.06152 + 0.750330i 0.651909 + 0.237275i
\(11\) 1.55231 0.779598i 0.468038 0.235058i −0.199118 0.979976i \(-0.563808\pi\)
0.667156 + 0.744918i \(0.267511\pi\)
\(12\) −2.19718 + 0.940369i −0.634271 + 0.271461i
\(13\) 0.859891 + 1.99345i 0.238491 + 0.552884i 0.994860 0.101261i \(-0.0322878\pi\)
−0.756369 + 0.654145i \(0.773029\pi\)
\(14\) −3.89706 0.455501i −1.04153 0.121738i
\(15\) −4.61848 1.39701i −1.19249 0.360705i
\(16\) −0.554469 0.364680i −0.138617 0.0911700i
\(17\) −3.39468 + 2.84848i −0.823331 + 0.690857i −0.953750 0.300602i \(-0.902812\pi\)
0.130419 + 0.991459i \(0.458368\pi\)
\(18\) −2.11721 + 1.04827i −0.499030 + 0.247079i
\(19\) −1.63306 1.37030i −0.374650 0.314369i 0.435948 0.899972i \(-0.356413\pi\)
−0.810598 + 0.585603i \(0.800858\pi\)
\(20\) −1.10246 3.68247i −0.246518 0.823426i
\(21\) 8.61359 + 0.526266i 1.87964 + 0.114841i
\(22\) 1.22244 + 0.613935i 0.260626 + 0.130891i
\(23\) 0.465342 + 0.493234i 0.0970305 + 0.102846i 0.774069 0.633101i \(-0.218218\pi\)
−0.677038 + 0.735948i \(0.736737\pi\)
\(24\) −3.98587 2.31638i −0.813613 0.472830i
\(25\) 1.09345 2.53489i 0.218689 0.506978i
\(26\) −0.854835 + 1.48062i −0.167647 + 0.290373i
\(27\) 4.52200 2.55959i 0.870259 0.492594i
\(28\) 3.43741 + 5.95378i 0.649610 + 1.12516i
\(29\) 5.71522 0.668013i 1.06129 0.124047i 0.432509 0.901630i \(-0.357628\pi\)
0.628781 + 0.777583i \(0.283554\pi\)
\(30\) −1.28945 3.57433i −0.235421 0.652581i
\(31\) −5.72212 + 1.35617i −1.02772 + 0.243575i −0.709697 0.704507i \(-0.751168\pi\)
−0.318026 + 0.948082i \(0.603020\pi\)
\(32\) −0.339908 5.83599i −0.0600878 1.03167i
\(33\) −2.75924 1.19954i −0.480322 0.208813i
\(34\) −3.39570 0.804795i −0.582357 0.138021i
\(35\) −2.41020 + 13.6689i −0.407397 + 2.31047i
\(36\) 3.68859 + 1.87882i 0.614765 + 0.313137i
\(37\) 0.131814 + 0.747552i 0.0216700 + 0.122897i 0.993724 0.111861i \(-0.0356813\pi\)
−0.972054 + 0.234758i \(0.924570\pi\)
\(38\) 0.0976137 1.67596i 0.0158350 0.271877i
\(39\) 1.69716 3.35551i 0.271764 0.537311i
\(40\) 4.42779 5.94755i 0.700095 0.940391i
\(41\) 0.0737288 0.0990350i 0.0115145 0.0154667i −0.796329 0.604864i \(-0.793227\pi\)
0.807843 + 0.589398i \(0.200635\pi\)
\(42\) 3.71823 + 5.68845i 0.573735 + 0.877748i
\(43\) −0.148059 + 2.54207i −0.0225787 + 0.387662i 0.968021 + 0.250869i \(0.0807164\pi\)
−0.990600 + 0.136792i \(0.956321\pi\)
\(44\) −0.416216 2.36048i −0.0627469 0.355855i
\(45\) 3.26650 + 7.69260i 0.486941 + 1.14674i
\(46\) −0.0927292 + 0.525894i −0.0136722 + 0.0775388i
\(47\) 1.65271 + 0.391699i 0.241072 + 0.0571351i 0.349376 0.936983i \(-0.386394\pi\)
−0.108304 + 0.994118i \(0.534542\pi\)
\(48\) 0.130198 + 1.14207i 0.0187925 + 0.164844i
\(49\) −1.03635 17.7935i −0.148050 2.54192i
\(50\) 2.11543 0.501366i 0.299167 0.0709039i
\(51\) 7.55505 + 1.35432i 1.05792 + 0.189643i
\(52\) 2.97539 0.347773i 0.412612 0.0482274i
\(53\) −5.02192 8.69822i −0.689814 1.19479i −0.971898 0.235403i \(-0.924359\pi\)
0.282084 0.959390i \(-0.408974\pi\)
\(54\) 3.74336 + 1.65274i 0.509406 + 0.224910i
\(55\) 2.41957 4.19082i 0.326255 0.565090i
\(56\) −5.25246 + 12.1766i −0.701890 + 1.62716i
\(57\) −0.0104999 + 3.69239i −0.00139074 + 0.489069i
\(58\) 3.10962 + 3.29601i 0.408314 + 0.432787i
\(59\) −10.3931 5.21959i −1.35306 0.679533i −0.383309 0.923620i \(-0.625215\pi\)
−0.969753 + 0.244087i \(0.921512\pi\)
\(60\) −3.67440 + 5.55220i −0.474363 + 0.716786i
\(61\) −2.27150 7.58734i −0.290836 0.971460i −0.971136 0.238526i \(-0.923336\pi\)
0.680300 0.732934i \(-0.261849\pi\)
\(62\) −3.54755 2.97675i −0.450540 0.378048i
\(63\) −8.85739 12.0399i −1.11593 1.51688i
\(64\) 2.50983 2.10599i 0.313728 0.263249i
\(65\) 5.05301 + 3.32342i 0.626749 + 0.412220i
\(66\) −0.539853 2.30704i −0.0664514 0.283977i
\(67\) 0.462282 + 0.0540330i 0.0564767 + 0.00660118i 0.144284 0.989536i \(-0.453912\pi\)
−0.0878076 + 0.996137i \(0.527986\pi\)
\(68\) 2.42190 + 5.61460i 0.293699 + 0.680871i
\(69\) 0.139669 1.16617i 0.0168141 0.140391i
\(70\) −9.76770 + 4.90552i −1.16746 + 0.586322i
\(71\) 11.4588 + 4.17067i 1.35991 + 0.494968i 0.916027 0.401116i \(-0.131378\pi\)
0.443885 + 0.896084i \(0.353600\pi\)
\(72\) 1.34182 + 7.87134i 0.158135 + 0.927646i
\(73\) −2.01159 + 0.732160i −0.235439 + 0.0856928i −0.457045 0.889443i \(-0.651092\pi\)
0.221606 + 0.975136i \(0.428870\pi\)
\(74\) −0.410222 + 0.434809i −0.0476873 + 0.0505456i
\(75\) −4.58462 + 1.35835i −0.529387 + 0.156849i
\(76\) −2.45764 + 1.61641i −0.281910 + 0.185415i
\(77\) −2.48219 + 8.29110i −0.282872 + 0.944858i
\(78\) 2.91770 0.505918i 0.330364 0.0572839i
\(79\) 4.18797 + 5.62542i 0.471184 + 0.632910i 0.972652 0.232266i \(-0.0746141\pi\)
−0.501469 + 0.865176i \(0.667207\pi\)
\(80\) −1.84879 −0.206701
\(81\) −8.42167 3.17418i −0.935742 0.352686i
\(82\) 0.0972297 0.0107372
\(83\) −1.97654 2.65495i −0.216953 0.291419i 0.680301 0.732933i \(-0.261849\pi\)
−0.897254 + 0.441514i \(0.854442\pi\)
\(84\) 4.10442 11.1778i 0.447829 1.21960i
\(85\) −3.54061 + 11.8265i −0.384034 + 1.28276i
\(86\) −1.67538 + 1.10192i −0.180661 + 0.118823i
\(87\) −7.22985 6.85997i −0.775121 0.735466i
\(88\) 3.17281 3.36298i 0.338222 0.358495i
\(89\) −4.72182 + 1.71860i −0.500512 + 0.182171i −0.579924 0.814670i \(-0.696918\pi\)
0.0794124 + 0.996842i \(0.474696\pi\)
\(90\) −3.32309 + 5.68090i −0.350285 + 0.598820i
\(91\) −10.1643 3.69952i −1.06551 0.387815i
\(92\) 0.836149 0.419930i 0.0871745 0.0437807i
\(93\) 8.15274 + 6.10560i 0.845399 + 0.633121i
\(94\) 0.529782 + 1.22817i 0.0546428 + 0.126676i
\(95\) −5.89863 0.689452i −0.605187 0.0707362i
\(96\) −7.38465 + 6.92748i −0.753693 + 0.707033i
\(97\) 6.27220 + 4.12529i 0.636846 + 0.418860i 0.826457 0.562999i \(-0.190353\pi\)
−0.189612 + 0.981859i \(0.560723\pi\)
\(98\) 10.7523 9.02224i 1.08615 0.911384i
\(99\) 1.46618 + 5.00072i 0.147357 + 0.502591i
\(100\) −2.91808 2.44856i −0.291808 0.244856i
\(101\) −0.648115 2.16486i −0.0644899 0.215411i 0.919671 0.392690i \(-0.128456\pi\)
−0.984161 + 0.177279i \(0.943270\pi\)
\(102\) 2.69737 + 5.40921i 0.267080 + 0.535592i
\(103\) −0.239343 0.120203i −0.0235832 0.0118439i 0.436969 0.899477i \(-0.356052\pi\)
−0.460552 + 0.887633i \(0.652348\pi\)
\(104\) 3.96539 + 4.20306i 0.388838 + 0.412144i
\(105\) 20.8537 11.9610i 2.03512 1.16727i
\(106\) 3.13281 7.26267i 0.304285 0.705412i
\(107\) 4.97987 8.62539i 0.481423 0.833848i −0.518350 0.855169i \(-0.673454\pi\)
0.999773 + 0.0213201i \(0.00678691\pi\)
\(108\) −1.59391 6.99046i −0.153374 0.672657i
\(109\) 6.70725 + 11.6173i 0.642438 + 1.11273i 0.984887 + 0.173198i \(0.0554102\pi\)
−0.342449 + 0.939536i \(0.611256\pi\)
\(110\) 3.78506 0.442411i 0.360892 0.0421822i
\(111\) 0.847980 1.00477i 0.0804867 0.0953683i
\(112\) 3.21738 0.762533i 0.304014 0.0720526i
\(113\) −0.0233225 0.400431i −0.00219399 0.0376694i 0.997033 0.0769692i \(-0.0245243\pi\)
−0.999227 + 0.0392998i \(0.987487\pi\)
\(114\) −2.33732 + 1.72976i −0.218910 + 0.162007i
\(115\) 1.83814 + 0.435646i 0.171407 + 0.0406242i
\(116\) 1.37873 7.81916i 0.128012 0.725991i
\(117\) −6.34590 + 1.46594i −0.586678 + 0.135526i
\(118\) −1.59040 9.01960i −0.146408 0.830322i
\(119\) 1.28377 22.0415i 0.117683 2.02055i
\(120\) −12.8231 + 0.710278i −1.17058 + 0.0648392i
\(121\) −4.76686 + 6.40300i −0.433351 + 0.582091i
\(122\) 3.72452 5.00289i 0.337202 0.452941i
\(123\) −0.213522 + 0.0118271i −0.0192527 + 0.00106641i
\(124\) −0.471807 + 8.10061i −0.0423695 + 0.727456i
\(125\) 1.08327 + 6.14355i 0.0968909 + 0.549495i
\(126\) 3.43997 11.2569i 0.306457 1.00284i
\(127\) −1.81470 + 10.2917i −0.161029 + 0.913239i 0.792037 + 0.610474i \(0.209021\pi\)
−0.953065 + 0.302765i \(0.902090\pi\)
\(128\) −8.86603 2.10129i −0.783654 0.185729i
\(129\) 3.54520 2.62367i 0.312137 0.231001i
\(130\) 0.276932 + 4.75474i 0.0242885 + 0.417018i
\(131\) 13.0882 3.10197i 1.14353 0.271021i 0.385160 0.922850i \(-0.374146\pi\)
0.758366 + 0.651829i \(0.225998\pi\)
\(132\) −2.67759 + 3.17266i −0.233054 + 0.276145i
\(133\) 10.5496 1.23307i 0.914763 0.106920i
\(134\) 0.183263 + 0.317421i 0.0158315 + 0.0274210i
\(135\) 6.60668 12.8798i 0.568612 1.10852i
\(136\) −5.89743 + 10.2146i −0.505700 + 0.875898i
\(137\) −5.66340 + 13.1292i −0.483857 + 1.12171i 0.485096 + 0.874461i \(0.338785\pi\)
−0.968953 + 0.247246i \(0.920475\pi\)
\(138\) 0.802321 0.460183i 0.0682981 0.0391734i
\(139\) 0.222217 + 0.235537i 0.0188482 + 0.0199780i 0.736729 0.676188i \(-0.236369\pi\)
−0.717881 + 0.696166i \(0.754888\pi\)
\(140\) 17.1147 + 8.59535i 1.44646 + 0.726439i
\(141\) −1.31283 2.63270i −0.110560 0.221713i
\(142\) 2.75416 + 9.19954i 0.231124 + 0.772009i
\(143\) 2.88891 + 2.42408i 0.241583 + 0.202712i
\(144\) 1.37448 1.44036i 0.114540 0.120030i
\(145\) 12.2796 10.3038i 1.01976 0.855682i
\(146\) −1.40846 0.926361i −0.116565 0.0766662i
\(147\) −22.5152 + 21.1213i −1.85702 + 1.74206i
\(148\) 1.04033 + 0.121598i 0.0855149 + 0.00999526i
\(149\) −1.21912 2.82624i −0.0998744 0.231535i 0.860952 0.508687i \(-0.169869\pi\)
−0.960826 + 0.277152i \(0.910610\pi\)
\(150\) −3.01401 2.25720i −0.246093 0.184300i
\(151\) 11.1937 5.62167i 0.910928 0.457485i 0.0693326 0.997594i \(-0.477913\pi\)
0.841596 + 0.540108i \(0.181617\pi\)
\(152\) −5.33190 1.94065i −0.432474 0.157408i
\(153\) −6.58157 11.5508i −0.532089 0.933830i
\(154\) −6.40455 + 2.33106i −0.516093 + 0.187843i
\(155\) −11.2422 + 11.9160i −0.902993 + 0.957117i
\(156\) −3.76392 3.57136i −0.301354 0.285937i
\(157\) −4.86355 + 3.19881i −0.388153 + 0.255292i −0.728554 0.684988i \(-0.759807\pi\)
0.340401 + 0.940280i \(0.389437\pi\)
\(158\) −1.58398 + 5.29086i −0.126015 + 0.420918i
\(159\) −5.99640 + 16.3303i −0.475545 + 1.29508i
\(160\) −9.72499 13.0629i −0.768828 1.03272i
\(161\) −3.37853 −0.266265
\(162\) −1.95536 6.81244i −0.153628 0.535236i
\(163\) −6.75084 −0.528767 −0.264383 0.964418i \(-0.585168\pi\)
−0.264383 + 0.964418i \(0.585168\pi\)
\(164\) −0.101734 0.136653i −0.00794410 0.0106708i
\(165\) −8.25841 + 1.43198i −0.642916 + 0.111479i
\(166\) 0.747568 2.49705i 0.0580226 0.193809i
\(167\) 14.5276 9.55498i 1.12418 0.739387i 0.155536 0.987830i \(-0.450289\pi\)
0.968646 + 0.248444i \(0.0799191\pi\)
\(168\) 22.0226 6.52497i 1.69908 0.503412i
\(169\) 5.68670 6.02755i 0.437439 0.463658i
\(170\) −9.13549 + 3.32504i −0.700660 + 0.255019i
\(171\) 4.92248 4.08297i 0.376432 0.312233i
\(172\) 3.30170 + 1.20172i 0.251752 + 0.0916303i
\(173\) −12.2830 + 6.16877i −0.933862 + 0.469003i −0.849592 0.527440i \(-0.823152\pi\)
−0.0842696 + 0.996443i \(0.526856\pi\)
\(174\) 0.933329 7.79289i 0.0707555 0.590778i
\(175\) 5.44791 + 12.6297i 0.411823 + 0.954713i
\(176\) −1.14501 0.133832i −0.0863084 0.0100880i
\(177\) 4.58976 + 19.6141i 0.344988 + 1.47429i
\(178\) −3.30609 2.17445i −0.247802 0.162982i
\(179\) 1.66053 1.39335i 0.124114 0.104144i −0.578618 0.815599i \(-0.696408\pi\)
0.702732 + 0.711455i \(0.251963\pi\)
\(180\) 11.4613 1.27361i 0.854277 0.0949290i
\(181\) −17.7173 14.8665i −1.31691 1.10502i −0.986950 0.161028i \(-0.948519\pi\)
−0.329963 0.943994i \(-0.607036\pi\)
\(182\) −2.44303 8.16029i −0.181089 0.604881i
\(183\) −7.57070 + 11.4397i −0.559643 + 0.845647i
\(184\) 1.61288 + 0.810018i 0.118903 + 0.0597153i
\(185\) 1.45116 + 1.53814i 0.106692 + 0.113087i
\(186\) −0.0228092 + 8.02110i −0.00167245 + 0.588136i
\(187\) −3.04892 + 7.06820i −0.222959 + 0.516878i
\(188\) 1.17182 2.02966i 0.0854640 0.148028i
\(189\) −6.18509 + 25.1393i −0.449899 + 1.82861i
\(190\) −2.33840 4.05023i −0.169646 0.293835i
\(191\) 21.7391 2.54094i 1.57299 0.183856i 0.715595 0.698516i \(-0.246156\pi\)
0.857395 + 0.514660i \(0.172082\pi\)
\(192\) −5.58576 1.00131i −0.403118 0.0722631i
\(193\) −7.02015 + 1.66381i −0.505322 + 0.119763i −0.475367 0.879788i \(-0.657685\pi\)
−0.0299550 + 0.999551i \(0.509536\pi\)
\(194\) 0.343750 + 5.90195i 0.0246798 + 0.423736i
\(195\) −1.18653 10.4080i −0.0849691 0.745332i
\(196\) −23.9308 5.67171i −1.70935 0.405122i
\(197\) 2.84835 16.1538i 0.202936 1.15091i −0.697718 0.716373i \(-0.745801\pi\)
0.900654 0.434537i \(-0.143088\pi\)
\(198\) −2.46933 + 3.27780i −0.175488 + 0.232943i
\(199\) −1.40107 7.94587i −0.0993193 0.563268i −0.993338 0.115238i \(-0.963237\pi\)
0.894019 0.448030i \(-0.147874\pi\)
\(200\) 0.427241 7.33545i 0.0302105 0.518695i
\(201\) −0.441067 0.674782i −0.0311105 0.0475955i
\(202\) 1.06270 1.42745i 0.0747710 0.100435i
\(203\) −17.1199 + 22.9960i −1.20158 + 1.61401i
\(204\) 4.78010 9.45086i 0.334674 0.661693i
\(205\) 0.0199990 0.343370i 0.00139679 0.0239820i
\(206\) −0.0366255 0.207713i −0.00255182 0.0144721i
\(207\) −1.70597 + 1.10819i −0.118573 + 0.0770242i
\(208\) 0.250189 1.41889i 0.0173475 0.0983824i
\(209\) −3.60330 0.853997i −0.249245 0.0590722i
\(210\) 17.3622 + 7.54794i 1.19810 + 0.520857i
\(211\) 1.39097 + 23.8821i 0.0957585 + 1.64411i 0.614311 + 0.789064i \(0.289434\pi\)
−0.518553 + 0.855046i \(0.673529\pi\)
\(212\) −13.4853 + 3.19609i −0.926177 + 0.219508i
\(213\) −7.16735 19.8677i −0.491098 1.36131i
\(214\) 7.79028 0.910553i 0.532533 0.0622441i
\(215\) 3.54684 + 6.14331i 0.241893 + 0.418970i
\(216\) 8.97996 10.5183i 0.611009 0.715683i
\(217\) 14.6496 25.3739i 0.994481 1.72249i
\(218\) −4.18416 + 9.69997i −0.283387 + 0.656965i
\(219\) 3.20575 + 1.86302i 0.216625 + 0.125891i
\(220\) −4.58221 4.85686i −0.308932 0.327449i
\(221\) −8.59735 4.31775i −0.578321 0.290444i
\(222\) 1.03346 + 0.0631413i 0.0693612 + 0.00423777i
\(223\) −3.43182 11.4631i −0.229812 0.767624i −0.992648 0.121033i \(-0.961379\pi\)
0.762837 0.646591i \(-0.223806\pi\)
\(224\) 22.3119 + 18.7219i 1.49078 + 1.25091i
\(225\) 6.89352 + 4.59032i 0.459568 + 0.306021i
\(226\) 0.241974 0.203040i 0.0160959 0.0135060i
\(227\) 20.9815 + 13.7997i 1.39259 + 0.915921i 0.999993 0.00378925i \(-0.00120616\pi\)
0.392598 + 0.919710i \(0.371577\pi\)
\(228\) 4.87672 + 1.47512i 0.322968 + 0.0976920i
\(229\) 25.5994 + 2.99214i 1.69166 + 0.197726i 0.906686 0.421806i \(-0.138604\pi\)
0.784971 + 0.619533i \(0.212678\pi\)
\(230\) 0.589222 + 1.36597i 0.0388521 + 0.0900694i
\(231\) 13.7812 5.89821i 0.906737 0.388074i
\(232\) 13.6863 6.87352i 0.898550 0.451269i
\(233\) −8.58260 3.12381i −0.562265 0.204648i 0.0452226 0.998977i \(-0.485600\pi\)
−0.607488 + 0.794329i \(0.707823\pi\)
\(234\) −3.91023 3.31915i −0.255620 0.216980i
\(235\) 4.44630 1.61832i 0.290044 0.105568i
\(236\) −11.0126 + 11.6727i −0.716861 + 0.759828i
\(237\) 2.83493 11.8117i 0.184148 0.767254i
\(238\) 14.5268 9.55440i 0.941630 0.619320i
\(239\) 6.24071 20.8454i 0.403678 1.34838i −0.478759 0.877946i \(-0.658913\pi\)
0.882437 0.470431i \(-0.155902\pi\)
\(240\) 2.05134 + 2.45886i 0.132414 + 0.158719i
\(241\) 8.27944 + 11.1212i 0.533326 + 0.716381i 0.984368 0.176122i \(-0.0563552\pi\)
−0.451043 + 0.892502i \(0.648948\pi\)
\(242\) −6.28628 −0.404097
\(243\) 5.12276 + 14.7227i 0.328625 + 0.944460i
\(244\) −10.9284 −0.699622
\(245\) −29.6507 39.8278i −1.89431 2.54451i
\(246\) −0.107883 0.129314i −0.00687834 0.00824478i
\(247\) 1.32737 4.43374i 0.0844588 0.282112i
\(248\) −13.0771 + 8.60095i −0.830397 + 0.546161i
\(249\) −1.33796 + 5.57461i −0.0847898 + 0.353277i
\(250\) −3.37129 + 3.57336i −0.213219 + 0.225999i
\(251\) −10.0143 + 3.64492i −0.632099 + 0.230065i −0.638144 0.769917i \(-0.720298\pi\)
0.00604584 + 0.999982i \(0.498076\pi\)
\(252\) −19.4205 + 6.94365i −1.22338 + 0.437409i
\(253\) 1.10688 + 0.402871i 0.0695888 + 0.0253283i
\(254\) −7.35436 + 3.69350i −0.461454 + 0.231751i
\(255\) 19.6576 8.41325i 1.23101 0.526858i
\(256\) −5.43743 12.6054i −0.339839 0.787836i
\(257\) 1.16759 + 0.136472i 0.0728323 + 0.00851287i 0.152431 0.988314i \(-0.451290\pi\)
−0.0795987 + 0.996827i \(0.525364\pi\)
\(258\) 3.32448 + 1.00559i 0.206973 + 0.0626055i
\(259\) −3.15982 2.07825i −0.196342 0.129136i
\(260\) 6.39284 5.36423i 0.396467 0.332675i
\(261\) −1.10171 + 17.2272i −0.0681942 + 1.06634i
\(262\) 8.11435 + 6.80875i 0.501306 + 0.420646i
\(263\) −2.67668 8.94073i −0.165051 0.551309i −1.00000 0.000980948i \(-0.999688\pi\)
0.834948 0.550328i \(-0.185497\pi\)
\(264\) −7.99315 0.488359i −0.491944 0.0300564i
\(265\) −25.0039 12.5575i −1.53598 0.771398i
\(266\) 5.73996 + 6.08401i 0.351940 + 0.373034i
\(267\) 7.52488 + 4.37307i 0.460515 + 0.267627i
\(268\) 0.254369 0.589695i 0.0155381 0.0360213i
\(269\) −1.25116 + 2.16707i −0.0762845 + 0.132129i −0.901644 0.432479i \(-0.857639\pi\)
0.825360 + 0.564607i \(0.190972\pi\)
\(270\) 11.2427 1.88365i 0.684210 0.114635i
\(271\) −2.76243 4.78467i −0.167806 0.290648i 0.769842 0.638234i \(-0.220335\pi\)
−0.937648 + 0.347586i \(0.887002\pi\)
\(272\) 2.92103 0.341419i 0.177113 0.0207016i
\(273\) 6.35766 + 17.6233i 0.384783 + 1.06661i
\(274\) −10.9567 + 2.59678i −0.661917 + 0.156877i
\(275\) −0.278833 4.78738i −0.0168143 0.288690i
\(276\) −1.48626 0.646130i −0.0894624 0.0388924i
\(277\) 25.9932 + 6.16051i 1.56178 + 0.370149i 0.918482 0.395464i \(-0.129416\pi\)
0.643301 + 0.765613i \(0.277564\pi\)
\(278\) −0.0442815 + 0.251133i −0.00265583 + 0.0150620i
\(279\) −0.925604 17.6176i −0.0554144 1.05474i
\(280\) 6.41505 + 36.3816i 0.383373 + 2.17421i
\(281\) −1.83046 + 31.4278i −0.109196 + 1.87482i 0.288734 + 0.957409i \(0.406766\pi\)
−0.397930 + 0.917416i \(0.630271\pi\)
\(282\) 1.04563 2.06734i 0.0622663 0.123108i
\(283\) 3.99576 5.36724i 0.237523 0.319049i −0.667338 0.744755i \(-0.732567\pi\)
0.904862 + 0.425705i \(0.139974\pi\)
\(284\) 10.0479 13.4966i 0.596230 0.800876i
\(285\) 5.62795 + 8.61011i 0.333371 + 0.510019i
\(286\) −0.172680 + 2.96480i −0.0102108 + 0.175312i
\(287\) 0.106819 + 0.605803i 0.00630535 + 0.0357594i
\(288\) 17.4072 + 2.13503i 1.02573 + 0.125808i
\(289\) 0.458026 2.59759i 0.0269427 0.152800i
\(290\) 12.2832 + 2.91118i 0.721297 + 0.170951i
\(291\) −1.47281 12.9192i −0.0863379 0.757339i
\(292\) 0.171749 + 2.94882i 0.0100509 + 0.172567i
\(293\) 3.65264 0.865692i 0.213390 0.0505743i −0.122530 0.992465i \(-0.539101\pi\)
0.335920 + 0.941890i \(0.390953\pi\)
\(294\) −23.9298 4.28967i −1.39562 0.250179i
\(295\) −32.1801 + 3.76132i −1.87360 + 0.218992i
\(296\) 1.01020 + 1.74972i 0.0587167 + 0.101700i
\(297\) 5.02408 7.49862i 0.291527 0.435114i
\(298\) 1.21195 2.09916i 0.0702066 0.121601i
\(299\) −0.583094 + 1.35176i −0.0337212 + 0.0781745i
\(300\) −0.0187620 + 6.59785i −0.00108323 + 0.380927i
\(301\) −8.70627 9.22810i −0.501821 0.531899i
\(302\) 8.81503 + 4.42708i 0.507248 + 0.254750i
\(303\) −2.16011 + 3.26403i −0.124095 + 0.187514i
\(304\) 0.405760 + 1.35533i 0.0232719 + 0.0777337i
\(305\) −16.9018 14.1823i −0.967793 0.812075i
\(306\) 4.20128 9.58934i 0.240171 0.548186i
\(307\) −22.9491 + 19.2566i −1.30977 + 1.09903i −0.321406 + 0.946942i \(0.604155\pi\)
−0.988367 + 0.152088i \(0.951400\pi\)
\(308\) 9.97748 + 6.56229i 0.568520 + 0.373921i
\(309\) 0.105698 + 0.451696i 0.00601296 + 0.0256961i
\(310\) −12.8138 1.49772i −0.727775 0.0850647i
\(311\) 1.76187 + 4.08446i 0.0999062 + 0.231609i 0.960837 0.277113i \(-0.0893776\pi\)
−0.860931 + 0.508721i \(0.830118\pi\)
\(312\) 1.19018 9.93748i 0.0673807 0.562599i
\(313\) −27.9019 + 14.0129i −1.57711 + 0.792054i −0.999702 0.0244032i \(-0.992231\pi\)
−0.577406 + 0.816457i \(0.695935\pi\)
\(314\) −4.30775 1.56789i −0.243100 0.0884812i
\(315\) −39.0465 14.4638i −2.20002 0.814942i
\(316\) 9.09346 3.30975i 0.511547 0.186188i
\(317\) 19.0975 20.2421i 1.07262 1.13691i 0.0825140 0.996590i \(-0.473705\pi\)
0.990106 0.140321i \(-0.0448135\pi\)
\(318\) −13.1353 + 3.89179i −0.736592 + 0.218241i
\(319\) 8.35100 5.49254i 0.467566 0.307523i
\(320\) 2.61772 8.74380i 0.146335 0.488793i
\(321\) −16.9972 + 2.94725i −0.948689 + 0.164499i
\(322\) −1.58880 2.13413i −0.0885402 0.118930i
\(323\) 9.44699 0.525644
\(324\) −7.52868 + 9.87623i −0.418260 + 0.548680i
\(325\) 5.99343 0.332456
\(326\) −3.17467 4.26433i −0.175829 0.236179i
\(327\) 8.00875 21.8107i 0.442885 1.20613i
\(328\) 0.0942496 0.314815i 0.00520406 0.0173828i
\(329\) −7.07027 + 4.65019i −0.389796 + 0.256373i
\(330\) −4.78817 4.54321i −0.263580 0.250095i
\(331\) −0.135248 + 0.143354i −0.00743388 + 0.00787946i −0.731080 0.682292i \(-0.760983\pi\)
0.723646 + 0.690171i \(0.242465\pi\)
\(332\) −4.29171 + 1.56206i −0.235538 + 0.0857289i
\(333\) −2.27722 0.0129513i −0.124791 0.000709729i
\(334\) 12.8674 + 4.68336i 0.704075 + 0.256262i
\(335\) 1.15868 0.581909i 0.0633052 0.0317931i
\(336\) −4.58405 3.43300i −0.250080 0.187285i
\(337\) −7.09164 16.4403i −0.386306 0.895559i −0.994786 0.101989i \(-0.967479\pi\)
0.608479 0.793570i \(-0.291780\pi\)
\(338\) 6.48169 + 0.757601i 0.352557 + 0.0412081i
\(339\) −0.506691 + 0.475322i −0.0275197 + 0.0258160i
\(340\) 14.2319 + 9.36049i 0.771835 + 0.507644i
\(341\) −7.82522 + 6.56614i −0.423759 + 0.355576i
\(342\) 4.89397 + 1.18933i 0.264635 + 0.0643115i
\(343\) 41.3103 + 34.6635i 2.23055 + 1.87165i
\(344\) 1.94381 + 6.49278i 0.104803 + 0.350067i
\(345\) −1.46012 2.92808i −0.0786104 0.157642i
\(346\) −9.67291 4.85792i −0.520019 0.261163i
\(347\) −15.4622 16.3889i −0.830052 0.879804i 0.164248 0.986419i \(-0.447480\pi\)
−0.994300 + 0.106615i \(0.965999\pi\)
\(348\) −11.9292 + 6.84216i −0.639471 + 0.366778i
\(349\) −4.69595 + 10.8864i −0.251368 + 0.582737i −0.996445 0.0842411i \(-0.973153\pi\)
0.745077 + 0.666978i \(0.232413\pi\)
\(350\) −5.41587 + 9.38056i −0.289490 + 0.501412i
\(351\) 8.99085 + 6.81342i 0.479896 + 0.363673i
\(352\) −5.07737 8.79426i −0.270625 0.468736i
\(353\) 18.6770 2.18302i 0.994074 0.116191i 0.396526 0.918024i \(-0.370216\pi\)
0.597548 + 0.801833i \(0.296142\pi\)
\(354\) −10.2313 + 12.1230i −0.543788 + 0.644332i
\(355\) 33.0550 7.83417i 1.75438 0.415795i
\(356\) 0.403147 + 6.92177i 0.0213668 + 0.366853i
\(357\) −30.7394 + 22.7491i −1.62690 + 1.20401i
\(358\) 1.66103 + 0.393671i 0.0877880 + 0.0208061i
\(359\) −1.61227 + 9.14366i −0.0850926 + 0.482584i 0.912244 + 0.409647i \(0.134348\pi\)
−0.997337 + 0.0729368i \(0.976763\pi\)
\(360\) 15.1727 + 16.2665i 0.799671 + 0.857318i
\(361\) −2.51015 14.2358i −0.132113 0.749251i
\(362\) 1.05902 18.1827i 0.0556609 0.955661i
\(363\) 13.8050 0.764669i 0.724577 0.0401347i
\(364\) −8.91276 + 11.9719i −0.467156 + 0.627499i
\(365\) −3.56118 + 4.78349i −0.186401 + 0.250379i
\(366\) −10.7864 + 0.597463i −0.563813 + 0.0312299i
\(367\) 1.69898 29.1704i 0.0886861 1.52268i −0.601396 0.798951i \(-0.705389\pi\)
0.690083 0.723731i \(-0.257574\pi\)
\(368\) −0.0781452 0.443183i −0.00407360 0.0231025i
\(369\) 0.252646 + 0.270859i 0.0131522 + 0.0141004i
\(370\) −0.289175 + 1.63999i −0.0150335 + 0.0852593i
\(371\) 48.6929 + 11.5404i 2.52801 + 0.599149i
\(372\) 11.2972 8.36064i 0.585733 0.433479i
\(373\) −0.323556 5.55523i −0.0167531 0.287639i −0.996271 0.0862813i \(-0.972502\pi\)
0.979518 0.201358i \(-0.0645354\pi\)
\(374\) −5.89859 + 1.39799i −0.305009 + 0.0722884i
\(375\) 6.96889 8.25739i 0.359872 0.426410i
\(376\) 4.49018 0.524827i 0.231564 0.0270659i
\(377\) 6.24612 + 10.8186i 0.321692 + 0.557186i
\(378\) −18.7884 + 7.91511i −0.966372 + 0.407110i
\(379\) −14.7919 + 25.6203i −0.759808 + 1.31603i 0.183140 + 0.983087i \(0.441374\pi\)
−0.942948 + 0.332940i \(0.891959\pi\)
\(380\) −3.24571 + 7.52441i −0.166501 + 0.385994i
\(381\) 15.7013 9.00574i 0.804404 0.461378i
\(382\) 11.8282 + 12.5371i 0.605181 + 0.641455i
\(383\) −11.0692 5.55918i −0.565612 0.284061i 0.142926 0.989733i \(-0.454349\pi\)
−0.708538 + 0.705672i \(0.750645\pi\)
\(384\) 7.04273 + 14.1232i 0.359398 + 0.720723i
\(385\) 6.91489 + 23.0973i 0.352415 + 1.17715i
\(386\) −4.35230 3.65201i −0.221526 0.185883i
\(387\) −7.42307 1.80395i −0.377336 0.0916999i
\(388\) 7.93530 6.65850i 0.402854 0.338034i
\(389\) −15.5223 10.2092i −0.787012 0.517626i 0.0912370 0.995829i \(-0.470918\pi\)
−0.878249 + 0.478203i \(0.841288\pi\)
\(390\) 6.01647 5.64400i 0.304656 0.285795i
\(391\) −2.98465 0.348856i −0.150940 0.0176424i
\(392\) −18.7900 43.5600i −0.949037 2.20011i
\(393\) −18.6478 13.9654i −0.940658 0.704460i
\(394\) 11.5434 5.79730i 0.581547 0.292064i
\(395\) 18.3590 + 6.68214i 0.923743 + 0.336215i
\(396\) 7.19055 + 0.0408952i 0.361339 + 0.00205506i
\(397\) 9.59694 3.49300i 0.481657 0.175309i −0.0897688 0.995963i \(-0.528613\pi\)
0.571426 + 0.820654i \(0.306391\pi\)
\(398\) 4.36032 4.62167i 0.218563 0.231663i
\(399\) −13.3454 12.6626i −0.668104 0.633924i
\(400\) −1.53071 + 1.00676i −0.0765353 + 0.0503380i
\(401\) −0.579017 + 1.93405i −0.0289148 + 0.0965820i −0.971229 0.238148i \(-0.923460\pi\)
0.942314 + 0.334730i \(0.108645\pi\)
\(402\) 0.218824 0.595936i 0.0109139 0.0297226i
\(403\) −7.62385 10.2406i −0.379771 0.510121i
\(404\) −3.11815 −0.155134
\(405\) −24.4605 + 5.50418i −1.21545 + 0.273505i
\(406\) −22.5768 −1.12047
\(407\) 0.787406 + 1.05767i 0.0390303 + 0.0524267i
\(408\) 20.1289 3.49028i 0.996530 0.172795i
\(409\) 0.249431 0.833158i 0.0123336 0.0411970i −0.951601 0.307335i \(-0.900563\pi\)
0.963935 + 0.266138i \(0.0857478\pi\)
\(410\) 0.226302 0.148841i 0.0111763 0.00735075i
\(411\) 23.7456 7.03546i 1.17129 0.347034i
\(412\) −0.253611 + 0.268812i −0.0124945 + 0.0132434i
\(413\) 54.4506 19.8184i 2.67934 0.975200i
\(414\) −1.50226 0.556476i −0.0738323 0.0273493i
\(415\) −8.66465 3.15367i −0.425331 0.154808i
\(416\) 11.3415 5.69591i 0.556062 0.279265i
\(417\) 0.0666968 0.556889i 0.00326616 0.0272710i
\(418\) −1.15505 2.67771i −0.0564954 0.130971i
\(419\) 25.0738 + 2.93070i 1.22493 + 0.143174i 0.703860 0.710338i \(-0.251458\pi\)
0.521072 + 0.853512i \(0.325532\pi\)
\(420\) −7.55818 32.2995i −0.368801 1.57605i
\(421\) −13.9967 9.20577i −0.682157 0.448662i 0.160554 0.987027i \(-0.448672\pi\)
−0.842712 + 0.538365i \(0.819042\pi\)
\(422\) −14.4315 + 12.1095i −0.702516 + 0.589481i
\(423\) −2.04479 + 4.66719i −0.0994211 + 0.226927i
\(424\) −20.4787 17.1836i −0.994532 0.834511i
\(425\) 3.50868 + 11.7198i 0.170196 + 0.568494i
\(426\) 9.17937 13.8705i 0.444742 0.672027i
\(427\) 35.2631 + 17.7098i 1.70650 + 0.857037i
\(428\) −9.43093 9.99621i −0.455861 0.483185i
\(429\) 0.0185744 6.53189i 0.000896782 0.315362i
\(430\) −2.21262 + 5.12942i −0.106702 + 0.247363i
\(431\) −13.1811 + 22.8303i −0.634911 + 1.09970i 0.351623 + 0.936142i \(0.385630\pi\)
−0.986534 + 0.163556i \(0.947703\pi\)
\(432\) −3.44074 0.229868i −0.165543 0.0110595i
\(433\) 6.29345 + 10.9006i 0.302444 + 0.523848i 0.976689 0.214660i \(-0.0688642\pi\)
−0.674245 + 0.738508i \(0.735531\pi\)
\(434\) 22.9172 2.67863i 1.10006 0.128579i
\(435\) −27.3289 4.89899i −1.31032 0.234888i
\(436\) 18.0109 4.26867i 0.862568 0.204432i
\(437\) −0.0840533 1.44314i −0.00402081 0.0690347i
\(438\) 0.330730 + 2.90110i 0.0158029 + 0.138620i
\(439\) 8.56156 + 2.02913i 0.408621 + 0.0968449i 0.429785 0.902931i \(-0.358589\pi\)
−0.0211645 + 0.999776i \(0.506737\pi\)
\(440\) 2.23659 12.6843i 0.106625 0.604702i
\(441\) 53.0731 + 6.50953i 2.52729 + 0.309978i
\(442\) −1.31561 7.46120i −0.0625772 0.354893i
\(443\) 0.885106 15.1967i 0.0420527 0.722017i −0.909722 0.415218i \(-0.863705\pi\)
0.951775 0.306798i \(-0.0992577\pi\)
\(444\) −0.992593 1.51855i −0.0471064 0.0720673i
\(445\) −8.35916 + 11.2283i −0.396262 + 0.532273i
\(446\) 5.62705 7.55845i 0.266449 0.357903i
\(447\) −2.40618 + 4.75731i −0.113808 + 0.225013i
\(448\) −0.949147 + 16.2962i −0.0448430 + 0.769924i
\(449\) −0.214786 1.21811i −0.0101364 0.0574862i 0.979320 0.202317i \(-0.0648472\pi\)
−0.989456 + 0.144831i \(0.953736\pi\)
\(450\) 0.342190 + 6.51311i 0.0161310 + 0.307031i
\(451\) 0.0372423 0.211212i 0.00175367 0.00994557i
\(452\) −0.538549 0.127639i −0.0253312 0.00600361i
\(453\) −19.8968 8.64985i −0.934836 0.406406i
\(454\) 1.14990 + 19.7430i 0.0539673 + 0.926583i
\(455\) −29.3208 + 6.94916i −1.37458 + 0.325782i
\(456\) 3.33503 + 9.24464i 0.156177 + 0.432920i
\(457\) −30.7759 + 3.59718i −1.43963 + 0.168269i −0.799810 0.600253i \(-0.795067\pi\)
−0.639824 + 0.768522i \(0.720993\pi\)
\(458\) 10.1484 + 17.5776i 0.474204 + 0.821345i
\(459\) −8.05981 + 21.5698i −0.376200 + 1.00679i
\(460\) 1.30330 2.25738i 0.0607666 0.105251i
\(461\) −6.71020 + 15.5560i −0.312525 + 0.724514i −0.999999 0.00169503i \(-0.999460\pi\)
0.687474 + 0.726209i \(0.258720\pi\)
\(462\) 10.2065 + 5.93151i 0.474851 + 0.275959i
\(463\) −24.4901 25.9580i −1.13815 1.20637i −0.975573 0.219674i \(-0.929501\pi\)
−0.162578 0.986696i \(-0.551981\pi\)
\(464\) −3.41252 1.71383i −0.158422 0.0795627i
\(465\) 28.3221 + 1.73040i 1.31340 + 0.0802453i
\(466\) −2.06285 6.89041i −0.0955599 0.319192i
\(467\) −32.1894 27.0101i −1.48955 1.24988i −0.895195 0.445675i \(-0.852964\pi\)
−0.594353 0.804204i \(-0.702592\pi\)
\(468\) −0.573560 + 8.96861i −0.0265128 + 0.414574i
\(469\) −1.77640 + 1.49057i −0.0820263 + 0.0688282i
\(470\) 3.11318 + 2.04757i 0.143600 + 0.0944474i
\(471\) 9.65079 + 2.91918i 0.444685 + 0.134509i
\(472\) −30.7458 3.59367i −1.41519 0.165412i
\(473\) 1.75196 + 4.06150i 0.0805552 + 0.186748i
\(474\) 8.79431 3.76387i 0.403936 0.172880i
\(475\) −5.25923 + 2.64128i −0.241310 + 0.121190i
\(476\) −28.6281 10.4198i −1.31217 0.477590i
\(477\) 28.3725 10.1444i 1.29909 0.464480i
\(478\) 16.1023 5.86074i 0.736500 0.268064i
\(479\) −24.7671 + 26.2516i −1.13164 + 1.19947i −0.154247 + 0.988032i \(0.549295\pi\)
−0.977392 + 0.211435i \(0.932186\pi\)
\(480\) −6.58306 + 27.4283i −0.300474 + 1.25192i
\(481\) −1.37686 + 0.905578i −0.0627796 + 0.0412908i
\(482\) −3.13146 + 10.4598i −0.142634 + 0.476431i
\(483\) 3.74869 + 4.49340i 0.170571 + 0.204457i
\(484\) 6.57751 + 8.83513i 0.298978 + 0.401597i
\(485\) 20.9136 0.949639
\(486\) −6.89087 + 10.1594i −0.312576 + 0.460842i
\(487\) 27.8890 1.26377 0.631885 0.775062i \(-0.282282\pi\)
0.631885 + 0.775062i \(0.282282\pi\)
\(488\) −12.5883 16.9090i −0.569844 0.765434i
\(489\) 7.49049 + 8.97855i 0.338732 + 0.406024i
\(490\) 11.2145 37.4591i 0.506620 1.69223i
\(491\) −18.1734 + 11.9528i −0.820155 + 0.539424i −0.888842 0.458214i \(-0.848489\pi\)
0.0686871 + 0.997638i \(0.478119\pi\)
\(492\) −0.0688660 + 0.286930i −0.00310472 + 0.0129358i
\(493\) −17.4985 + 18.5474i −0.788094 + 0.835331i
\(494\) 3.42489 1.24656i 0.154093 0.0560853i
\(495\) 11.0677 + 9.39472i 0.497458 + 0.422261i
\(496\) 3.66730 + 1.33479i 0.164667 + 0.0599338i
\(497\) −54.2932 + 27.2671i −2.43538 + 1.22310i
\(498\) −4.15052 + 1.77638i −0.185989 + 0.0796015i
\(499\) −1.18204 2.74029i −0.0529156 0.122672i 0.889707 0.456531i \(-0.150908\pi\)
−0.942623 + 0.333859i \(0.891649\pi\)
\(500\) 8.54969 + 0.999316i 0.382354 + 0.0446908i
\(501\) −28.8274 8.71974i −1.28791 0.389569i
\(502\) −7.01176 4.61171i −0.312950 0.205831i
\(503\) −30.5223 + 25.6113i −1.36092 + 1.14195i −0.385227 + 0.922822i \(0.625877\pi\)
−0.975696 + 0.219128i \(0.929679\pi\)
\(504\) −33.1136 22.0500i −1.47500 0.982185i
\(505\) −4.82249 4.04655i −0.214598 0.180069i
\(506\) 0.266041 + 0.888640i 0.0118270 + 0.0395049i
\(507\) −14.3263 0.875298i −0.636255 0.0388734i
\(508\) 12.8861 + 6.47167i 0.571730 + 0.287134i
\(509\) 13.6753 + 14.4950i 0.606147 + 0.642479i 0.955667 0.294451i \(-0.0951366\pi\)
−0.349519 + 0.936929i \(0.613655\pi\)
\(510\) 14.5587 + 8.46074i 0.644669 + 0.374648i
\(511\) 4.22444 9.79336i 0.186878 0.433233i
\(512\) −3.70618 + 6.41930i −0.163792 + 0.283695i
\(513\) −10.8921 2.01653i −0.480899 0.0890319i
\(514\) 0.462869 + 0.801713i 0.0204163 + 0.0353620i
\(515\) −0.741079 + 0.0866197i −0.0326559 + 0.00381692i
\(516\) −2.06517 5.72461i −0.0909140 0.252012i
\(517\) 2.87088 0.680411i 0.126261 0.0299244i
\(518\) −0.173175 2.97330i −0.00760887 0.130639i
\(519\) 21.8332 + 9.49165i 0.958371 + 0.416637i
\(520\) 15.6636 + 3.71234i 0.686893 + 0.162797i
\(521\) −6.17183 + 35.0022i −0.270393 + 1.53347i 0.482833 + 0.875713i \(0.339608\pi\)
−0.753226 + 0.657762i \(0.771503\pi\)
\(522\) −11.4000 + 7.40539i −0.498966 + 0.324125i
\(523\) 4.17875 + 23.6989i 0.182724 + 1.03628i 0.928845 + 0.370469i \(0.120803\pi\)
−0.746121 + 0.665810i \(0.768086\pi\)
\(524\) 1.07917 18.5286i 0.0471437 0.809425i
\(525\) 10.7525 21.2591i 0.469278 0.927822i
\(526\) 4.38888 5.89528i 0.191364 0.257047i
\(527\) 15.5617 20.9031i 0.677880 0.910551i
\(528\) 1.09247 + 1.67135i 0.0475435 + 0.0727360i
\(529\) 1.31059 22.5020i 0.0569824 0.978350i
\(530\) −3.82623 21.6996i −0.166201 0.942571i
\(531\) 20.9939 27.8675i 0.911059 1.20934i
\(532\) 2.54496 14.4332i 0.110338 0.625757i
\(533\) 0.260820 + 0.0618155i 0.0112974 + 0.00267753i
\(534\) 0.776324 + 6.80975i 0.0335948 + 0.294687i
\(535\) −1.61328 27.6989i −0.0697481 1.19753i
\(536\) 1.20541 0.285687i 0.0520656 0.0123398i
\(537\) −3.69560 0.662475i −0.159477 0.0285879i
\(538\) −1.95726 + 0.228770i −0.0843833 + 0.00986299i
\(539\) −15.4805 26.8130i −0.666792 1.15492i
\(540\) −14.4110 13.8303i −0.620149 0.595161i
\(541\) 5.32644 9.22567i 0.229002 0.396642i −0.728511 0.685034i \(-0.759787\pi\)
0.957512 + 0.288392i \(0.0931206\pi\)
\(542\) 1.72328 3.99501i 0.0740212 0.171600i
\(543\) −0.113914 + 40.0591i −0.00488853 + 1.71910i
\(544\) 17.7776 + 18.8431i 0.762206 + 0.807892i
\(545\) 33.3951 + 16.7717i 1.43049 + 0.718419i
\(546\) −8.14239 + 12.3036i −0.348462 + 0.526544i
\(547\) −3.90060 13.0289i −0.166777 0.557076i −0.999991 0.00412495i \(-0.998687\pi\)
0.833214 0.552951i \(-0.186498\pi\)
\(548\) 15.1139 + 12.6821i 0.645636 + 0.541753i
\(549\) 23.6149 2.62413i 1.00786 0.111995i
\(550\) 2.89293 2.42746i 0.123355 0.103507i
\(551\) −10.2487 6.74066i −0.436609 0.287162i
\(552\) −0.712276 3.04388i −0.0303165 0.129556i
\(553\) −34.7056 4.05651i −1.47583 0.172500i
\(554\) 8.33224 + 19.3163i 0.354003 + 0.820671i
\(555\) 0.435556 3.63670i 0.0184883 0.154369i
\(556\) 0.399291 0.200531i 0.0169337 0.00850443i
\(557\) 4.31357 + 1.57001i 0.182772 + 0.0665235i 0.431785 0.901977i \(-0.357884\pi\)
−0.249013 + 0.968500i \(0.580106\pi\)
\(558\) 10.6933 8.86958i 0.452683 0.375479i
\(559\) −5.19480 + 1.89075i −0.219717 + 0.0799704i
\(560\) 6.32115 6.70003i 0.267117 0.283128i
\(561\) 12.7836 3.78758i 0.539724 0.159912i
\(562\) −20.7129 + 13.6231i −0.873720 + 0.574655i
\(563\) −0.284251 + 0.949463i −0.0119797 + 0.0400151i −0.963770 0.266733i \(-0.914056\pi\)
0.951791 + 0.306748i \(0.0992410\pi\)
\(564\) −3.99964 + 0.693522i −0.168415 + 0.0292026i
\(565\) −0.667271 0.896301i −0.0280723 0.0377077i
\(566\) 5.26940 0.221489
\(567\) 40.2977 19.6675i 1.69234 0.825958i
\(568\) 32.4565 1.36185
\(569\) −4.63945 6.23186i −0.194496 0.261253i 0.694167 0.719814i \(-0.255773\pi\)
−0.888663 + 0.458560i \(0.848365\pi\)
\(570\) −2.79216 + 7.60404i −0.116951 + 0.318498i
\(571\) −6.13681 + 20.4984i −0.256818 + 0.857830i 0.728198 + 0.685367i \(0.240358\pi\)
−0.985016 + 0.172464i \(0.944827\pi\)
\(572\) 4.34760 2.85946i 0.181782 0.119560i
\(573\) −27.5004 26.0935i −1.14884 1.09007i
\(574\) −0.332436 + 0.352362i −0.0138756 + 0.0147073i
\(575\) 1.75912 0.640267i 0.0733604 0.0267010i
\(576\) 4.86603 + 8.54001i 0.202751 + 0.355834i
\(577\) −8.13925 2.96244i −0.338841 0.123328i 0.166995 0.985958i \(-0.446594\pi\)
−0.505836 + 0.862630i \(0.668816\pi\)
\(578\) 1.85622 0.932230i 0.0772087 0.0387757i
\(579\) 10.0021 + 7.49062i 0.415675 + 0.311300i
\(580\) −8.76075 20.3097i −0.363770 0.843314i
\(581\) 16.3795 + 1.91449i 0.679538 + 0.0794266i
\(582\) 7.46812 7.00577i 0.309563 0.290399i
\(583\) −14.5767 9.58724i −0.603705 0.397063i
\(584\) −4.36471 + 3.66243i −0.180613 + 0.151552i
\(585\) −12.5260 + 13.1264i −0.517886 + 0.542710i
\(586\) 2.26454 + 1.90017i 0.0935472 + 0.0784954i
\(587\) −3.01536 10.0720i −0.124457 0.415716i 0.872939 0.487829i \(-0.162211\pi\)
−0.997396 + 0.0721128i \(0.977026\pi\)
\(588\) 19.0095 + 38.1209i 0.783937 + 1.57208i
\(589\) 11.2029 + 5.62632i 0.461608 + 0.231828i
\(590\) −17.5091 18.5585i −0.720836 0.764042i
\(591\) −24.6448 + 14.1354i −1.01375 + 0.581452i
\(592\) 0.199531 0.462564i 0.00820066 0.0190113i
\(593\) 14.0175 24.2790i 0.575630 0.997020i −0.420343 0.907365i \(-0.638090\pi\)
0.995973 0.0896551i \(-0.0285765\pi\)
\(594\) 7.09932 0.352748i 0.291288 0.0144734i
\(595\) −30.7537 53.2669i −1.26078 2.18373i
\(596\) −4.21840 + 0.493060i −0.172792 + 0.0201965i
\(597\) −9.01334 + 10.6799i −0.368891 + 0.437097i
\(598\) −1.12808 + 0.267360i −0.0461306 + 0.0109332i
\(599\) 1.35310 + 23.2319i 0.0552863 + 0.949229i 0.905914 + 0.423461i \(0.139185\pi\)
−0.850628 + 0.525768i \(0.823778\pi\)
\(600\) −10.2301 + 7.57092i −0.417643 + 0.309082i
\(601\) 20.9118 + 4.95618i 0.853009 + 0.202167i 0.633786 0.773508i \(-0.281500\pi\)
0.219222 + 0.975675i \(0.429648\pi\)
\(602\) 1.73491 9.83915i 0.0707096 0.401014i
\(603\) −0.408060 + 1.33533i −0.0166175 + 0.0543788i
\(604\) −3.00133 17.0214i −0.122122 0.692589i
\(605\) −1.29301 + 22.2002i −0.0525685 + 0.902566i
\(606\) −3.07762 + 0.170471i −0.125020 + 0.00692491i
\(607\) 2.89262 3.88547i 0.117408 0.157706i −0.739534 0.673119i \(-0.764954\pi\)
0.856942 + 0.515413i \(0.172361\pi\)
\(608\) −7.44197 + 9.99631i −0.301812 + 0.405404i
\(609\) 49.5801 2.74627i 2.00909 0.111284i
\(610\) 1.01028 17.3458i 0.0409050 0.702311i
\(611\) 0.640316 + 3.63141i 0.0259044 + 0.146911i
\(612\) −17.8734 + 4.12885i −0.722488 + 0.166899i
\(613\) 2.42381 13.7461i 0.0978969 0.555201i −0.895924 0.444207i \(-0.853485\pi\)
0.993821 0.110994i \(-0.0354034\pi\)
\(614\) −22.9559 5.44066i −0.926427 0.219567i
\(615\) −0.478868 + 0.354392i −0.0193098 + 0.0142905i
\(616\) 1.33940 + 22.9966i 0.0539659 + 0.926559i
\(617\) 19.6655 4.66081i 0.791704 0.187637i 0.185182 0.982704i \(-0.440712\pi\)
0.606522 + 0.795067i \(0.292564\pi\)
\(618\) −0.235618 + 0.279182i −0.00947795 + 0.0112304i
\(619\) 28.6674 3.35073i 1.15224 0.134677i 0.481552 0.876418i \(-0.340073\pi\)
0.670687 + 0.741740i \(0.265999\pi\)
\(620\) 11.3025 + 19.5764i 0.453917 + 0.786208i
\(621\) 3.36675 + 1.03932i 0.135103 + 0.0417063i
\(622\) −1.75151 + 3.03370i −0.0702290 + 0.121640i
\(623\) 9.91605 22.9880i 0.397278 0.920994i
\(624\) −2.16471 + 1.24160i −0.0866578 + 0.0497038i
\(625\) 21.3984 + 22.6810i 0.855937 + 0.907240i
\(626\) −21.9728 11.0351i −0.878209 0.441053i
\(627\) 2.86228 + 5.73991i 0.114308 + 0.229230i
\(628\) 2.30370 + 7.69490i 0.0919277 + 0.307060i
\(629\) −2.57685 2.16223i −0.102746 0.0862139i
\(630\) −9.22576 31.4664i −0.367563 1.25365i
\(631\) −35.3851 + 29.6916i −1.40866 + 1.18200i −0.451558 + 0.892242i \(0.649132\pi\)
−0.957099 + 0.289762i \(0.906424\pi\)
\(632\) 15.5956 + 10.2574i 0.620359 + 0.408017i
\(633\) 30.2195 28.3486i 1.20112 1.12676i
\(634\) 21.7672 + 2.54422i 0.864487 + 0.101044i
\(635\) 11.5310 + 26.7319i 0.457594 + 1.06082i
\(636\) 19.2136 + 14.3891i 0.761869 + 0.570565i
\(637\) 34.5793 17.3664i 1.37008 0.688080i
\(638\) 7.39666 + 2.69216i 0.292836 + 0.106584i
\(639\) −18.4712 + 31.5770i −0.730710 + 1.24917i
\(640\) −23.8524 + 8.68156i −0.942848 + 0.343169i
\(641\) 17.0820 18.1058i 0.674698 0.715138i −0.296068 0.955167i \(-0.595675\pi\)
0.970766 + 0.240029i \(0.0771570\pi\)
\(642\) −9.85483 9.35067i −0.388939 0.369041i
\(643\) −1.84993 + 1.21672i −0.0729540 + 0.0479826i −0.585462 0.810700i \(-0.699087\pi\)
0.512508 + 0.858682i \(0.328716\pi\)
\(644\) −1.33703 + 4.46599i −0.0526863 + 0.175985i
\(645\) 4.23509 11.5337i 0.166756 0.454137i
\(646\) 4.44257 + 5.96741i 0.174791 + 0.234784i
\(647\) 26.5378 1.04331 0.521654 0.853157i \(-0.325315\pi\)
0.521654 + 0.853157i \(0.325315\pi\)
\(648\) −23.9531 0.272469i −0.940967 0.0107036i
\(649\) −20.2024 −0.793015
\(650\) 2.81849 + 3.78589i 0.110550 + 0.148495i
\(651\) −50.0017 + 8.67011i −1.95972 + 0.339808i
\(652\) −2.67160 + 8.92377i −0.104628 + 0.349482i
\(653\) −0.177323 + 0.116627i −0.00693920 + 0.00456398i −0.552974 0.833199i \(-0.686507\pi\)
0.546035 + 0.837763i \(0.316137\pi\)
\(654\) 17.5434 5.19785i 0.686003 0.203252i
\(655\) 25.7143 27.2556i 1.00474 1.06496i
\(656\) −0.0769964 + 0.0280244i −0.00300620 + 0.00109417i
\(657\) −1.07919 6.33075i −0.0421034 0.246986i
\(658\) −6.26228 2.27928i −0.244129 0.0888558i
\(659\) −24.1950 + 12.1512i −0.942505 + 0.473344i −0.852575 0.522604i \(-0.824960\pi\)
−0.0899295 + 0.995948i \(0.528664\pi\)
\(660\) −1.37531 + 11.4833i −0.0535340 + 0.446986i
\(661\) 14.1708 + 32.8515i 0.551179 + 1.27778i 0.935091 + 0.354407i \(0.115317\pi\)
−0.383912 + 0.923370i \(0.625423\pi\)
\(662\) −0.154155 0.0180181i −0.00599140 0.000700294i
\(663\) 3.79675 + 16.2252i 0.147453 + 0.630135i
\(664\) −7.36043 4.84103i −0.285640 0.187868i
\(665\) 22.6665 19.0195i 0.878969 0.737543i
\(666\) −1.06271 1.44455i −0.0411792 0.0559751i
\(667\) 2.98902 + 2.50808i 0.115735 + 0.0971134i
\(668\) −6.88127 22.9850i −0.266244 0.889317i
\(669\) −11.4379 + 17.2833i −0.442216 + 0.668210i
\(670\) 0.912458 + 0.458254i 0.0352513 + 0.0177039i
\(671\) −9.44115 10.0070i −0.364471 0.386317i
\(672\) 0.143456 50.4477i 0.00553393 1.94606i
\(673\) −11.3090 + 26.2172i −0.435930 + 1.01060i 0.548711 + 0.836012i \(0.315119\pi\)
−0.984642 + 0.174588i \(0.944141\pi\)
\(674\) 7.04994 12.2109i 0.271554 0.470345i
\(675\) −1.54373 14.2616i −0.0594182 0.548928i
\(676\) −5.71719 9.90247i −0.219892 0.380864i
\(677\) −14.6253 + 1.70945i −0.562097 + 0.0656997i −0.392397 0.919796i \(-0.628354\pi\)
−0.169700 + 0.985496i \(0.554280\pi\)
\(678\) −0.538526 0.0965365i −0.0206820 0.00370746i
\(679\) −36.3953 + 8.62584i −1.39672 + 0.331030i
\(680\) 1.91053 + 32.8025i 0.0732654 + 1.25792i
\(681\) −4.92679 43.2168i −0.188795 1.65607i
\(682\) −7.82757 1.85517i −0.299733 0.0710380i
\(683\) 0.764140 4.33365i 0.0292390 0.165823i −0.966692 0.255943i \(-0.917614\pi\)
0.995931 + 0.0901204i \(0.0287252\pi\)
\(684\) −3.44914 8.12271i −0.131881 0.310580i
\(685\) 6.91695 + 39.2280i 0.264283 + 1.49882i
\(686\) −2.46926 + 42.3956i −0.0942769 + 1.61867i
\(687\) −24.4247 37.3669i −0.931859 1.42564i
\(688\) 1.00913 1.35550i 0.0384729 0.0516781i
\(689\) 13.0212 17.4905i 0.496068 0.666334i
\(690\) 1.16294 2.29929i 0.0442726 0.0875324i
\(691\) −0.176090 + 3.02335i −0.00669878 + 0.115014i −1.00000 0.000541509i \(-0.999828\pi\)
0.993301 + 0.115555i \(0.0368647\pi\)
\(692\) 3.29341 + 18.6779i 0.125197 + 0.710026i
\(693\) −23.1357 11.7844i −0.878852 0.447653i
\(694\) 3.08116 17.4741i 0.116959 0.663309i
\(695\) 0.877776 + 0.208037i 0.0332959 + 0.00789128i
\(696\) −24.3275 10.5760i −0.922132 0.400883i
\(697\) 0.0318129 + 0.546207i 0.00120500 + 0.0206891i
\(698\) −9.08500 + 2.15318i −0.343872 + 0.0814992i
\(699\) 5.36831 + 14.8808i 0.203048 + 0.562845i
\(700\) 18.8508 2.20334i 0.712493 0.0832785i
\(701\) −21.6147 37.4378i −0.816377 1.41401i −0.908335 0.418243i \(-0.862646\pi\)
0.0919585 0.995763i \(-0.470687\pi\)
\(702\) −0.0757854 + 8.88338i −0.00286034 + 0.335282i
\(703\) 0.809112 1.40142i 0.0305162 0.0528557i
\(704\) 2.25419 5.22581i 0.0849581 0.196955i
\(705\) −7.08580 4.11790i −0.266867 0.155089i
\(706\) 10.1620 + 10.7711i 0.382453 + 0.405377i
\(707\) 10.0614 + 5.05304i 0.378399 + 0.190039i
\(708\) 27.7438 + 1.69507i 1.04267 + 0.0637045i
\(709\) 9.22829 + 30.8246i 0.346576 + 1.15764i 0.936642 + 0.350289i \(0.113917\pi\)
−0.590066 + 0.807355i \(0.700898\pi\)
\(710\) 20.4932 + 17.1958i 0.769095 + 0.645347i
\(711\) −18.8550 + 9.33543i −0.707117 + 0.350106i
\(712\) −10.2453 + 8.59684i −0.383959 + 0.322180i
\(713\) −3.33165 2.19126i −0.124771 0.0820633i
\(714\) −28.8256 8.71921i −1.07877 0.326308i
\(715\) 10.4348 + 1.21965i 0.390238 + 0.0456123i
\(716\) −1.18469 2.74642i −0.0442739 0.102638i
\(717\) −34.6486 + 14.8292i −1.29398 + 0.553808i
\(718\) −6.53400 + 3.28150i −0.243847 + 0.122464i
\(719\) −9.54600 3.47446i −0.356006 0.129576i 0.157825 0.987467i \(-0.449552\pi\)
−0.513831 + 0.857892i \(0.671774\pi\)
\(720\) 0.994164 5.45653i 0.0370503 0.203353i
\(721\) 1.25395 0.456400i 0.0466995 0.0169972i
\(722\) 7.81193 8.28016i 0.290730 0.308156i
\(723\) 5.60453 23.3513i 0.208435 0.868443i
\(724\) −26.6632 + 17.5366i −0.990929 + 0.651744i
\(725\) 4.55594 15.2179i 0.169203 0.565179i
\(726\) 6.97503 + 8.36068i 0.258868 + 0.310294i
\(727\) 8.41672 + 11.3056i 0.312159 + 0.419302i 0.930320 0.366749i \(-0.119529\pi\)
−0.618161 + 0.786052i \(0.712122\pi\)
\(728\) −28.7900 −1.06703
\(729\) 13.8970 23.1490i 0.514703 0.857369i
\(730\) −4.69629 −0.173818
\(731\) −6.73840 9.05125i −0.249229 0.334772i
\(732\) 12.1258 + 14.5347i 0.448182 + 0.537218i
\(733\) 4.50233 15.0388i 0.166297 0.555471i −0.833698 0.552221i \(-0.813780\pi\)
0.999995 0.00324994i \(-0.00103449\pi\)
\(734\) 19.2251 12.6446i 0.709612 0.466719i
\(735\) −20.0712 + 83.6266i −0.740337 + 3.08461i
\(736\) 2.72033 2.88339i 0.100273 0.106283i
\(737\) 0.759727 0.276518i 0.0279849 0.0101857i
\(738\) −0.0522842 + 0.286965i −0.00192461 + 0.0105633i
\(739\) −3.42025 1.24487i −0.125816 0.0457933i 0.278345 0.960481i \(-0.410214\pi\)
−0.404161 + 0.914688i \(0.632436\pi\)
\(740\) 2.60752 1.30955i 0.0958544 0.0481399i
\(741\) −7.36963 + 3.15412i −0.270730 + 0.115870i
\(742\) 15.6087 + 36.1850i 0.573013 + 1.32839i
\(743\) −23.1239 2.70280i −0.848334 0.0991560i −0.319193 0.947690i \(-0.603412\pi\)
−0.529141 + 0.848534i \(0.677486\pi\)
\(744\) 25.9490 + 7.84910i 0.951338 + 0.287762i
\(745\) −7.16398 4.71182i −0.262468 0.172628i
\(746\) 3.35694 2.81680i 0.122906 0.103130i
\(747\) 8.89872 4.40591i 0.325587 0.161204i
\(748\) 8.13668 + 6.82748i 0.297506 + 0.249637i
\(749\) 14.2320 + 47.5381i 0.520025 + 1.73700i
\(750\) 8.49318 + 0.518909i 0.310127 + 0.0189479i
\(751\) 7.05894 + 3.54513i 0.257584 + 0.129364i 0.572906 0.819621i \(-0.305816\pi\)
−0.315322 + 0.948985i \(0.602112\pi\)
\(752\) −0.773530 0.819894i −0.0282077 0.0298985i
\(753\) 15.9592 + 9.27467i 0.581586 + 0.337988i
\(754\) −3.89650 + 9.03309i −0.141902 + 0.328966i
\(755\) 17.4475 30.2200i 0.634980 1.09982i
\(756\) 30.7832 + 18.1246i 1.11958 + 0.659185i
\(757\) −2.12074 3.67323i −0.0770795 0.133506i 0.824909 0.565265i \(-0.191226\pi\)
−0.901989 + 0.431760i \(0.857893\pi\)
\(758\) −23.1397 + 2.70465i −0.840473 + 0.0982372i
\(759\) −0.692338 1.91915i −0.0251303 0.0696606i
\(760\) −15.3808 + 3.64531i −0.557920 + 0.132229i
\(761\) −2.37743 40.8189i −0.0861818 1.47968i −0.713354 0.700803i \(-0.752825\pi\)
0.627173 0.778880i \(-0.284212\pi\)
\(762\) 13.0724 + 5.68305i 0.473565 + 0.205875i
\(763\) −65.0339 15.4133i −2.35438 0.557999i
\(764\) 5.24431 29.7420i 0.189733 1.07603i
\(765\) −33.0009 16.8094i −1.19315 0.607744i
\(766\) −1.69387 9.60642i −0.0612020