Properties

Label 729.2.g.c.676.6
Level $729$
Weight $2$
Character 729.676
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 676.6
Character \(\chi\) \(=\) 729.676
Dual form 729.2.g.c.55.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.311913 + 0.723096i) q^{2} +(0.946905 - 1.00366i) q^{4} +(0.161980 - 2.78108i) q^{5} +(4.84803 - 1.14900i) q^{7} +(2.50111 + 0.910331i) q^{8} +O(q^{10})\) \(q+(0.311913 + 0.723096i) q^{2} +(0.946905 - 1.00366i) q^{4} +(0.161980 - 2.78108i) q^{5} +(4.84803 - 1.14900i) q^{7} +(2.50111 + 0.910331i) q^{8} +(2.06152 - 0.750330i) q^{10} +(-1.45131 + 0.954539i) q^{11} +(-2.15633 + 0.252038i) q^{13} +(2.34301 + 3.14720i) q^{14} +(-0.0385876 - 0.662524i) q^{16} +(-3.39468 - 2.84848i) q^{17} +(-1.63306 + 1.37030i) q^{19} +(-2.63789 - 2.79600i) q^{20} +(-1.14291 - 0.751701i) q^{22} +(-0.659824 - 0.156381i) q^{23} +(-2.74200 - 0.320494i) q^{25} +(-0.854835 - 1.48062i) q^{26} +(3.43741 - 5.95378i) q^{28} +(-3.43613 + 4.61552i) q^{29} +(1.68658 + 5.63358i) q^{31} +(5.22407 - 2.62363i) q^{32} +(1.00088 - 3.34316i) q^{34} +(-2.41020 - 13.6689i) q^{35} +(0.131814 - 0.747552i) q^{37} +(-1.50023 - 0.753445i) q^{38} +(2.93684 - 6.80835i) q^{40} +(0.0489024 - 0.113369i) q^{41} +(2.27552 + 1.14281i) q^{43} +(-0.416216 + 2.36048i) q^{44} +(-0.0927292 - 0.525894i) q^{46} +(-0.487133 + 1.62714i) q^{47} +(15.9278 - 7.99922i) q^{49} +(-0.623519 - 2.08270i) q^{50} +(-1.78887 + 2.40288i) q^{52} +(-5.02192 + 8.69822i) q^{53} +(2.41957 + 4.19082i) q^{55} +(13.1715 + 1.53952i) q^{56} +(-4.40924 - 1.04501i) q^{58} +(9.71683 + 6.39086i) q^{59} +(-5.43508 - 5.76085i) q^{61} +(-3.54755 + 2.97675i) q^{62} +(2.50983 + 2.10599i) q^{64} +(0.351659 + 6.03775i) q^{65} +(-0.277935 - 0.373331i) q^{67} +(-6.07334 + 0.709872i) q^{68} +(9.13216 - 6.00632i) q^{70} +(11.4588 - 4.17067i) q^{71} +(-2.01159 - 0.732160i) q^{73} +(0.581667 - 0.137858i) q^{74} +(-0.171036 + 2.93658i) q^{76} +(-5.93921 + 6.29519i) q^{77} +(2.77777 + 6.43960i) q^{79} -1.84879 q^{80} +0.0972297 q^{82} +(-1.31099 - 3.03921i) q^{83} +(-8.47172 + 8.97950i) q^{85} +(-0.116596 + 2.00188i) q^{86} +(-4.49883 + 1.06624i) q^{88} +(-4.72182 - 1.71860i) q^{89} +(-10.1643 + 3.69952i) q^{91} +(-0.781744 + 0.514161i) q^{92} +(-1.32852 + 0.155282i) q^{94} +(3.54640 + 4.76364i) q^{95} +(0.436507 + 7.49453i) q^{97} +(10.7523 + 9.02224i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{10}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.311913 + 0.723096i 0.220556 + 0.511306i 0.992186 0.124765i \(-0.0398177\pi\)
−0.771630 + 0.636071i \(0.780558\pi\)
\(3\) 0 0
\(4\) 0.946905 1.00366i 0.473452 0.501830i
\(5\) 0.161980 2.78108i 0.0724395 1.24374i −0.744740 0.667355i \(-0.767426\pi\)
0.817179 0.576384i \(-0.195537\pi\)
\(6\) 0 0
\(7\) 4.84803 1.14900i 1.83238 0.434283i 0.838518 0.544875i \(-0.183423\pi\)
0.993866 + 0.110592i \(0.0352746\pi\)
\(8\) 2.50111 + 0.910331i 0.884277 + 0.321851i
\(9\) 0 0
\(10\) 2.06152 0.750330i 0.651909 0.237275i
\(11\) −1.45131 + 0.954539i −0.437585 + 0.287804i −0.749125 0.662429i \(-0.769526\pi\)
0.311540 + 0.950233i \(0.399155\pi\)
\(12\) 0 0
\(13\) −2.15633 + 0.252038i −0.598057 + 0.0699029i −0.409735 0.912205i \(-0.634379\pi\)
−0.188322 + 0.982107i \(0.560305\pi\)
\(14\) 2.34301 + 3.14720i 0.626195 + 0.841126i
\(15\) 0 0
\(16\) −0.0385876 0.662524i −0.00964691 0.165631i
\(17\) −3.39468 2.84848i −0.823331 0.690857i 0.130419 0.991459i \(-0.458368\pi\)
−0.953750 + 0.300602i \(0.902812\pi\)
\(18\) 0 0
\(19\) −1.63306 + 1.37030i −0.374650 + 0.314369i −0.810598 0.585603i \(-0.800858\pi\)
0.435948 + 0.899972i \(0.356413\pi\)
\(20\) −2.63789 2.79600i −0.589849 0.625204i
\(21\) 0 0
\(22\) −1.14291 0.751701i −0.243668 0.160263i
\(23\) −0.659824 0.156381i −0.137583 0.0326077i 0.161247 0.986914i \(-0.448448\pi\)
−0.298830 + 0.954306i \(0.596596\pi\)
\(24\) 0 0
\(25\) −2.74200 0.320494i −0.548401 0.0640989i
\(26\) −0.854835 1.48062i −0.167647 0.290373i
\(27\) 0 0
\(28\) 3.43741 5.95378i 0.649610 1.12516i
\(29\) −3.43613 + 4.61552i −0.638073 + 0.857080i −0.997089 0.0762510i \(-0.975705\pi\)
0.359016 + 0.933331i \(0.383112\pi\)
\(30\) 0 0
\(31\) 1.68658 + 5.63358i 0.302919 + 1.01182i 0.964970 + 0.262362i \(0.0845013\pi\)
−0.662050 + 0.749459i \(0.730313\pi\)
\(32\) 5.22407 2.62363i 0.923494 0.463796i
\(33\) 0 0
\(34\) 1.00088 3.34316i 0.171649 0.573347i
\(35\) −2.41020 13.6689i −0.407397 2.31047i
\(36\) 0 0
\(37\) 0.131814 0.747552i 0.0216700 0.122897i −0.972054 0.234758i \(-0.924570\pi\)
0.993724 + 0.111861i \(0.0356813\pi\)
\(38\) −1.50023 0.753445i −0.243370 0.122225i
\(39\) 0 0
\(40\) 2.93684 6.80835i 0.464355 1.07650i
\(41\) 0.0489024 0.113369i 0.00763727 0.0177052i −0.914355 0.404914i \(-0.867301\pi\)
0.921992 + 0.387209i \(0.126561\pi\)
\(42\) 0 0
\(43\) 2.27552 + 1.14281i 0.347014 + 0.174277i 0.613766 0.789488i \(-0.289654\pi\)
−0.266751 + 0.963765i \(0.585950\pi\)
\(44\) −0.416216 + 2.36048i −0.0627469 + 0.355855i
\(45\) 0 0
\(46\) −0.0927292 0.525894i −0.0136722 0.0775388i
\(47\) −0.487133 + 1.62714i −0.0710556 + 0.237342i −0.986139 0.165923i \(-0.946940\pi\)
0.915083 + 0.403265i \(0.132125\pi\)
\(48\) 0 0
\(49\) 15.9278 7.99922i 2.27539 1.14275i
\(50\) −0.623519 2.08270i −0.0881789 0.294538i
\(51\) 0 0
\(52\) −1.78887 + 2.40288i −0.248072 + 0.333219i
\(53\) −5.02192 + 8.69822i −0.689814 + 1.19479i 0.282084 + 0.959390i \(0.408974\pi\)
−0.971898 + 0.235403i \(0.924359\pi\)
\(54\) 0 0
\(55\) 2.41957 + 4.19082i 0.326255 + 0.565090i
\(56\) 13.1715 + 1.53952i 1.76011 + 0.205727i
\(57\) 0 0
\(58\) −4.40924 1.04501i −0.578961 0.137216i
\(59\) 9.71683 + 6.39086i 1.26502 + 0.832019i 0.991533 0.129855i \(-0.0414512\pi\)
0.273491 + 0.961875i \(0.411822\pi\)
\(60\) 0 0
\(61\) −5.43508 5.76085i −0.695891 0.737601i 0.278998 0.960292i \(-0.409998\pi\)
−0.974889 + 0.222690i \(0.928516\pi\)
\(62\) −3.54755 + 2.97675i −0.450540 + 0.378048i
\(63\) 0 0
\(64\) 2.50983 + 2.10599i 0.313728 + 0.263249i
\(65\) 0.351659 + 6.03775i 0.0436179 + 0.748891i
\(66\) 0 0
\(67\) −0.277935 0.373331i −0.0339551 0.0456097i 0.784821 0.619722i \(-0.212755\pi\)
−0.818777 + 0.574112i \(0.805347\pi\)
\(68\) −6.07334 + 0.709872i −0.736501 + 0.0860846i
\(69\) 0 0
\(70\) 9.13216 6.00632i 1.09150 0.717892i
\(71\) 11.4588 4.17067i 1.35991 0.494968i 0.443885 0.896084i \(-0.353600\pi\)
0.916027 + 0.401116i \(0.131378\pi\)
\(72\) 0 0
\(73\) −2.01159 0.732160i −0.235439 0.0856928i 0.221606 0.975136i \(-0.428870\pi\)
−0.457045 + 0.889443i \(0.651092\pi\)
\(74\) 0.581667 0.137858i 0.0676174 0.0160256i
\(75\) 0 0
\(76\) −0.171036 + 2.93658i −0.0196192 + 0.336849i
\(77\) −5.93921 + 6.29519i −0.676835 + 0.717404i
\(78\) 0 0
\(79\) 2.77777 + 6.43960i 0.312524 + 0.724512i 0.999999 0.00169654i \(-0.000540027\pi\)
−0.687475 + 0.726208i \(0.741281\pi\)
\(80\) −1.84879 −0.206701
\(81\) 0 0
\(82\) 0.0972297 0.0107372
\(83\) −1.31099 3.03921i −0.143899 0.333596i 0.830989 0.556288i \(-0.187775\pi\)
−0.974889 + 0.222692i \(0.928516\pi\)
\(84\) 0 0
\(85\) −8.47172 + 8.97950i −0.918887 + 0.973963i
\(86\) −0.116596 + 2.00188i −0.0125729 + 0.215868i
\(87\) 0 0
\(88\) −4.49883 + 1.06624i −0.479577 + 0.113662i
\(89\) −4.72182 1.71860i −0.500512 0.182171i 0.0794124 0.996842i \(-0.474696\pi\)
−0.579924 + 0.814670i \(0.696918\pi\)
\(90\) 0 0
\(91\) −10.1643 + 3.69952i −1.06551 + 0.387815i
\(92\) −0.781744 + 0.514161i −0.0815024 + 0.0536050i
\(93\) 0 0
\(94\) −1.32852 + 0.155282i −0.137026 + 0.0160161i
\(95\) 3.54640 + 4.76364i 0.363853 + 0.488739i
\(96\) 0 0
\(97\) 0.436507 + 7.49453i 0.0443206 + 0.760955i 0.945121 + 0.326721i \(0.105944\pi\)
−0.900800 + 0.434234i \(0.857019\pi\)
\(98\) 10.7523 + 9.02224i 1.08615 + 0.911384i
\(99\) 0 0
\(100\) −2.91808 + 2.44856i −0.291808 + 0.244856i
\(101\) −1.55076 1.64371i −0.154307 0.163555i 0.645609 0.763668i \(-0.276604\pi\)
−0.799915 + 0.600113i \(0.795122\pi\)
\(102\) 0 0
\(103\) 0.223770 + 0.147176i 0.0220487 + 0.0145017i 0.560485 0.828164i \(-0.310615\pi\)
−0.538437 + 0.842666i \(0.680985\pi\)
\(104\) −5.62265 1.33259i −0.551347 0.130672i
\(105\) 0 0
\(106\) −7.85606 0.918241i −0.763048 0.0891875i
\(107\) 4.97987 + 8.62539i 0.481423 + 0.833848i 0.999773 0.0213201i \(-0.00678691\pi\)
−0.518350 + 0.855169i \(0.673454\pi\)
\(108\) 0 0
\(109\) 6.70725 11.6173i 0.642438 1.11273i −0.342449 0.939536i \(-0.611256\pi\)
0.984887 0.173198i \(-0.0554102\pi\)
\(110\) −2.27567 + 3.05676i −0.216977 + 0.291450i
\(111\) 0 0
\(112\) −0.948317 3.16760i −0.0896075 0.299310i
\(113\) 0.358445 0.180018i 0.0337196 0.0169346i −0.431859 0.901941i \(-0.642142\pi\)
0.465579 + 0.885006i \(0.345846\pi\)
\(114\) 0 0
\(115\) −0.541787 + 1.80970i −0.0505219 + 0.168755i
\(116\) 1.37873 + 7.81916i 0.128012 + 0.725991i
\(117\) 0 0
\(118\) −1.59040 + 9.01960i −0.146408 + 0.830322i
\(119\) −19.7304 9.90899i −1.80869 0.908356i
\(120\) 0 0
\(121\) −3.16173 + 7.32972i −0.287430 + 0.666338i
\(122\) 2.47037 5.72697i 0.223657 0.518496i
\(123\) 0 0
\(124\) 7.25124 + 3.64171i 0.651180 + 0.327035i
\(125\) 1.08327 6.14355i 0.0968909 0.549495i
\(126\) 0 0
\(127\) −1.81470 10.2917i −0.161029 0.913239i −0.953065 0.302765i \(-0.902090\pi\)
0.792037 0.610474i \(-0.209021\pi\)
\(128\) 2.61325 8.72885i 0.230981 0.771529i
\(129\) 0 0
\(130\) −4.25619 + 2.13754i −0.373292 + 0.187474i
\(131\) −3.85774 12.8857i −0.337052 1.12583i −0.943684 0.330849i \(-0.892665\pi\)
0.606632 0.794983i \(-0.292520\pi\)
\(132\) 0 0
\(133\) −6.34265 + 8.51965i −0.549977 + 0.738748i
\(134\) 0.183263 0.317421i 0.0158315 0.0274210i
\(135\) 0 0
\(136\) −5.89743 10.2146i −0.505700 0.875898i
\(137\) 14.2020 + 1.65997i 1.21335 + 0.141821i 0.698597 0.715515i \(-0.253808\pi\)
0.514757 + 0.857336i \(0.327882\pi\)
\(138\) 0 0
\(139\) −0.315089 0.0746776i −0.0267255 0.00633407i 0.217231 0.976120i \(-0.430297\pi\)
−0.243957 + 0.969786i \(0.578446\pi\)
\(140\) −16.0012 10.5241i −1.35235 0.889451i
\(141\) 0 0
\(142\) 6.58996 + 6.98495i 0.553017 + 0.586164i
\(143\) 2.88891 2.42408i 0.241583 0.202712i
\(144\) 0 0
\(145\) 12.2796 + 10.3038i 1.01976 + 0.855682i
\(146\) −0.0980204 1.68295i −0.00811223 0.139282i
\(147\) 0 0
\(148\) −0.625474 0.840157i −0.0514136 0.0690605i
\(149\) 3.05716 0.357331i 0.250452 0.0292737i 0.0100596 0.999949i \(-0.496798\pi\)
0.240393 + 0.970676i \(0.422724\pi\)
\(150\) 0 0
\(151\) −10.4653 + 6.88317i −0.851658 + 0.560144i −0.898608 0.438753i \(-0.855420\pi\)
0.0469497 + 0.998897i \(0.485050\pi\)
\(152\) −5.33190 + 1.94065i −0.432474 + 0.157408i
\(153\) 0 0
\(154\) −6.40455 2.33106i −0.516093 0.187843i
\(155\) 15.9407 3.77801i 1.28038 0.303457i
\(156\) 0 0
\(157\) −0.338473 + 5.81136i −0.0270131 + 0.463797i 0.957494 + 0.288453i \(0.0931408\pi\)
−0.984507 + 0.175344i \(0.943896\pi\)
\(158\) −3.79003 + 4.01720i −0.301518 + 0.319591i
\(159\) 0 0
\(160\) −6.45034 14.9536i −0.509944 1.18218i
\(161\) −3.37853 −0.266265
\(162\) 0 0
\(163\) −6.75084 −0.528767 −0.264383 0.964418i \(-0.585168\pi\)
−0.264383 + 0.964418i \(0.585168\pi\)
\(164\) −0.0674776 0.156431i −0.00526912 0.0122152i
\(165\) 0 0
\(166\) 1.78873 1.89594i 0.138832 0.147153i
\(167\) 1.01103 17.3588i 0.0782362 1.34326i −0.699482 0.714651i \(-0.746586\pi\)
0.777718 0.628614i \(-0.216377\pi\)
\(168\) 0 0
\(169\) −8.06337 + 1.91105i −0.620259 + 0.147004i
\(170\) −9.13549 3.32504i −0.700660 0.255019i
\(171\) 0 0
\(172\) 3.30170 1.20172i 0.251752 0.0916303i
\(173\) 11.4838 7.55304i 0.873100 0.574247i −0.0319801 0.999489i \(-0.510181\pi\)
0.905080 + 0.425242i \(0.139811\pi\)
\(174\) 0 0
\(175\) −13.6616 + 1.59681i −1.03272 + 0.120707i
\(176\) 0.688407 + 0.924691i 0.0518907 + 0.0697012i
\(177\) 0 0
\(178\) −0.230084 3.95038i −0.0172455 0.296094i
\(179\) 1.66053 + 1.39335i 0.124114 + 0.104144i 0.702732 0.711455i \(-0.251963\pi\)
−0.578618 + 0.815599i \(0.696408\pi\)
\(180\) 0 0
\(181\) −17.7173 + 14.8665i −1.31691 + 1.10502i −0.329963 + 0.943994i \(0.607036\pi\)
−0.986950 + 0.161028i \(0.948519\pi\)
\(182\) −5.84550 6.19587i −0.433297 0.459268i
\(183\) 0 0
\(184\) −1.50794 0.991785i −0.111167 0.0731154i
\(185\) −2.05766 0.487673i −0.151282 0.0358544i
\(186\) 0 0
\(187\) 7.64570 + 0.893654i 0.559109 + 0.0653505i
\(188\) 1.17182 + 2.02966i 0.0854640 + 0.148028i
\(189\) 0 0
\(190\) −2.33840 + 4.05023i −0.169646 + 0.293835i
\(191\) −13.0701 + 17.5562i −0.945719 + 1.27032i 0.0170111 + 0.999855i \(0.494585\pi\)
−0.962730 + 0.270465i \(0.912822\pi\)
\(192\) 0 0
\(193\) 2.06918 + 6.91153i 0.148943 + 0.497503i 0.999602 0.0282144i \(-0.00898211\pi\)
−0.850659 + 0.525717i \(0.823797\pi\)
\(194\) −5.28312 + 2.65328i −0.379306 + 0.190494i
\(195\) 0 0
\(196\) 7.05357 23.5606i 0.503827 1.68290i
\(197\) 2.84835 + 16.1538i 0.202936 + 1.15091i 0.900654 + 0.434537i \(0.143088\pi\)
−0.697718 + 0.716373i \(0.745801\pi\)
\(198\) 0 0
\(199\) −1.40107 + 7.94587i −0.0993193 + 0.563268i 0.894019 + 0.448030i \(0.147874\pi\)
−0.993338 + 0.115238i \(0.963237\pi\)
\(200\) −6.56631 3.29772i −0.464308 0.233184i
\(201\) 0 0
\(202\) 0.704859 1.63405i 0.0495937 0.114971i
\(203\) −11.3552 + 26.3243i −0.796979 + 1.84760i
\(204\) 0 0
\(205\) −0.307366 0.154365i −0.0214674 0.0107813i
\(206\) −0.0366255 + 0.207713i −0.00255182 + 0.0144721i
\(207\) 0 0
\(208\) 0.250189 + 1.41889i 0.0173475 + 0.0983824i
\(209\) 1.06207 3.54755i 0.0734646 0.245389i
\(210\) 0 0
\(211\) −21.3780 + 10.7364i −1.47172 + 0.739125i −0.990505 0.137477i \(-0.956101\pi\)
−0.481215 + 0.876603i \(0.659804\pi\)
\(212\) 3.97478 + 13.2767i 0.272989 + 0.911847i
\(213\) 0 0
\(214\) −4.68370 + 6.29130i −0.320171 + 0.430065i
\(215\) 3.54684 6.14331i 0.241893 0.418970i
\(216\) 0 0
\(217\) 14.6496 + 25.3739i 0.994481 + 1.72249i
\(218\) 10.4925 + 1.22640i 0.710642 + 0.0830621i
\(219\) 0 0
\(220\) 6.49727 + 1.53988i 0.438046 + 0.103819i
\(221\) 8.03796 + 5.28665i 0.540692 + 0.355619i
\(222\) 0 0
\(223\) −8.21140 8.70358i −0.549876 0.582835i 0.391507 0.920175i \(-0.371954\pi\)
−0.941383 + 0.337341i \(0.890473\pi\)
\(224\) 22.3119 18.7219i 1.49078 1.25091i
\(225\) 0 0
\(226\) 0.241974 + 0.203040i 0.0160959 + 0.0135060i
\(227\) 1.46018 + 25.0704i 0.0969158 + 1.66398i 0.600194 + 0.799855i \(0.295090\pi\)
−0.503278 + 0.864125i \(0.667873\pi\)
\(228\) 0 0
\(229\) −15.3910 20.6737i −1.01706 1.36615i −0.929016 0.370038i \(-0.879344\pi\)
−0.0880481 0.996116i \(-0.528063\pi\)
\(230\) −1.47757 + 0.172704i −0.0974284 + 0.0113877i
\(231\) 0 0
\(232\) −12.7958 + 8.41593i −0.840085 + 0.552533i
\(233\) −8.58260 + 3.12381i −0.562265 + 0.204648i −0.607488 0.794329i \(-0.707823\pi\)
0.0452226 + 0.998977i \(0.485600\pi\)
\(234\) 0 0
\(235\) 4.44630 + 1.61832i 0.290044 + 0.105568i
\(236\) 15.6152 3.70086i 1.01646 0.240906i
\(237\) 0 0
\(238\) 1.01097 17.3577i 0.0655317 1.12514i
\(239\) 14.9323 15.8273i 0.965890 1.02378i −0.0338130 0.999428i \(-0.510765\pi\)
0.999703 0.0243558i \(-0.00775345\pi\)
\(240\) 0 0
\(241\) 5.49154 + 12.7308i 0.353741 + 0.820064i 0.998451 + 0.0556368i \(0.0177189\pi\)
−0.644710 + 0.764427i \(0.723022\pi\)
\(242\) −6.28628 −0.404097
\(243\) 0 0
\(244\) −10.9284 −0.699622
\(245\) −19.6665 45.5922i −1.25645 2.91278i
\(246\) 0 0
\(247\) 3.17604 3.36641i 0.202087 0.214199i
\(248\) −0.910086 + 15.6256i −0.0577905 + 0.992225i
\(249\) 0 0
\(250\) 4.78026 1.13294i 0.302330 0.0716536i
\(251\) −10.0143 3.64492i −0.632099 0.230065i 0.00604584 0.999982i \(-0.498076\pi\)
−0.638144 + 0.769917i \(0.720298\pi\)
\(252\) 0 0
\(253\) 1.10688 0.402871i 0.0695888 0.0253283i
\(254\) 6.87585 4.52232i 0.431429 0.283755i
\(255\) 0 0
\(256\) 13.6353 1.59374i 0.852206 0.0996086i
\(257\) −0.701983 0.942927i −0.0437885 0.0588181i 0.779690 0.626166i \(-0.215377\pi\)
−0.823478 + 0.567348i \(0.807969\pi\)
\(258\) 0 0
\(259\) −0.219904 3.77561i −0.0136642 0.234605i
\(260\) 6.39284 + 5.36423i 0.396467 + 0.332675i
\(261\) 0 0
\(262\) 8.11435 6.80875i 0.501306 0.420646i
\(263\) −6.40456 6.78844i −0.394922 0.418593i 0.499150 0.866515i \(-0.333646\pi\)
−0.894072 + 0.447922i \(0.852164\pi\)
\(264\) 0 0
\(265\) 23.3770 + 15.3753i 1.43604 + 0.944499i
\(266\) −8.13889 1.92895i −0.499027 0.118272i
\(267\) 0 0
\(268\) −0.637875 0.0745569i −0.0389644 0.00455429i
\(269\) −1.25116 2.16707i −0.0762845 0.132129i 0.825360 0.564607i \(-0.190972\pi\)
−0.901644 + 0.432479i \(0.857639\pi\)
\(270\) 0 0
\(271\) −2.76243 + 4.78467i −0.167806 + 0.290648i −0.937648 0.347586i \(-0.887002\pi\)
0.769842 + 0.638234i \(0.220335\pi\)
\(272\) −1.75619 + 2.35897i −0.106485 + 0.143034i
\(273\) 0 0
\(274\) 3.22946 + 10.7871i 0.195099 + 0.651675i
\(275\) 4.28541 2.15221i 0.258420 0.129783i
\(276\) 0 0
\(277\) −7.66146 + 25.5911i −0.460333 + 1.53762i 0.341390 + 0.939922i \(0.389102\pi\)
−0.801722 + 0.597696i \(0.796083\pi\)
\(278\) −0.0442815 0.251133i −0.00265583 0.0150620i
\(279\) 0 0
\(280\) 6.41505 36.3816i 0.383373 2.17421i
\(281\) 28.1325 + 14.1287i 1.67824 + 0.842846i 0.993470 + 0.114090i \(0.0363952\pi\)
0.684774 + 0.728756i \(0.259901\pi\)
\(282\) 0 0
\(283\) 2.65029 6.14405i 0.157543 0.365226i −0.821102 0.570781i \(-0.806641\pi\)
0.978646 + 0.205555i \(0.0658999\pi\)
\(284\) 6.66448 15.4500i 0.395464 0.916789i
\(285\) 0 0
\(286\) 2.65393 + 1.33286i 0.156930 + 0.0788134i
\(287\) 0.106819 0.605803i 0.00630535 0.0357594i
\(288\) 0 0
\(289\) 0.458026 + 2.59759i 0.0269427 + 0.152800i
\(290\) −3.62047 + 12.0932i −0.212601 + 0.710137i
\(291\) 0 0
\(292\) −2.63963 + 1.32567i −0.154472 + 0.0775790i
\(293\) −1.07661 3.59613i −0.0628962 0.210088i 0.920765 0.390118i \(-0.127566\pi\)
−0.983661 + 0.180030i \(0.942381\pi\)
\(294\) 0 0
\(295\) 19.3475 25.9882i 1.12645 1.51309i
\(296\) 1.01020 1.74972i 0.0587167 0.101700i
\(297\) 0 0
\(298\) 1.21195 + 2.09916i 0.0702066 + 0.121601i
\(299\) 1.46221 + 0.170908i 0.0845617 + 0.00988385i
\(300\) 0 0
\(301\) 12.3449 + 2.92580i 0.711549 + 0.168640i
\(302\) −8.24148 5.42050i −0.474244 0.311915i
\(303\) 0 0
\(304\) 0.970873 + 1.02907i 0.0556834 + 0.0590209i
\(305\) −16.9018 + 14.1823i −0.967793 + 0.812075i
\(306\) 0 0
\(307\) −22.9491 19.2566i −1.30977 1.09903i −0.988367 0.152088i \(-0.951400\pi\)
−0.321406 0.946942i \(-0.604155\pi\)
\(308\) 0.694371 + 11.9219i 0.0395655 + 0.679313i
\(309\) 0 0
\(310\) 7.70397 + 10.3482i 0.437556 + 0.587740i
\(311\) −4.41818 + 0.516411i −0.250532 + 0.0292830i −0.240432 0.970666i \(-0.577289\pi\)
−0.0101001 + 0.999949i \(0.503215\pi\)
\(312\) 0 0
\(313\) 26.0864 17.1573i 1.47449 0.969789i 0.478717 0.877969i \(-0.341102\pi\)
0.995776 0.0918201i \(-0.0292685\pi\)
\(314\) −4.30775 + 1.56789i −0.243100 + 0.0884812i
\(315\) 0 0
\(316\) 9.09346 + 3.30975i 0.511547 + 0.186188i
\(317\) −27.0789 + 6.41782i −1.52090 + 0.360461i −0.904329 0.426836i \(-0.859628\pi\)
−0.616575 + 0.787297i \(0.711480\pi\)
\(318\) 0 0
\(319\) 0.581178 9.97845i 0.0325397 0.558686i
\(320\) 6.26349 6.63891i 0.350140 0.371126i
\(321\) 0 0
\(322\) −1.05381 2.44300i −0.0587264 0.136143i
\(323\) 9.44699 0.525644
\(324\) 0 0
\(325\) 5.99343 0.332456
\(326\) −2.10568 4.88151i −0.116623 0.270362i
\(327\) 0 0
\(328\) 0.225513 0.239030i 0.0124519 0.0131982i
\(329\) −0.492047 + 8.44812i −0.0271274 + 0.465760i
\(330\) 0 0
\(331\) 0.191772 0.0454508i 0.0105408 0.00249820i −0.225342 0.974280i \(-0.572350\pi\)
0.235883 + 0.971781i \(0.424202\pi\)
\(332\) −4.29171 1.56206i −0.235538 0.0857289i
\(333\) 0 0
\(334\) 12.8674 4.68336i 0.704075 0.256262i
\(335\) −1.08329 + 0.712488i −0.0591862 + 0.0389274i
\(336\) 0 0
\(337\) 17.7835 2.07859i 0.968730 0.113228i 0.383012 0.923743i \(-0.374887\pi\)
0.585718 + 0.810515i \(0.300813\pi\)
\(338\) −3.89695 5.23451i −0.211966 0.284720i
\(339\) 0 0
\(340\) 0.990455 + 17.0055i 0.0537150 + 0.922251i
\(341\) −7.82522 6.56614i −0.423759 0.355576i
\(342\) 0 0
\(343\) 41.3103 34.6635i 2.23055 1.87165i
\(344\) 4.65101 + 4.92978i 0.250766 + 0.265796i
\(345\) 0 0
\(346\) 9.04353 + 5.94803i 0.486183 + 0.319768i
\(347\) 21.9243 + 5.19616i 1.17696 + 0.278944i 0.772140 0.635453i \(-0.219186\pi\)
0.404819 + 0.914397i \(0.367335\pi\)
\(348\) 0 0
\(349\) 11.7759 + 1.37641i 0.630349 + 0.0736773i 0.425268 0.905068i \(-0.360180\pi\)
0.205082 + 0.978745i \(0.434254\pi\)
\(350\) −5.41587 9.38056i −0.289490 0.501412i
\(351\) 0 0
\(352\) −5.07737 + 8.79426i −0.270625 + 0.468736i
\(353\) −11.2290 + 15.0832i −0.597661 + 0.802798i −0.993295 0.115610i \(-0.963118\pi\)
0.395634 + 0.918408i \(0.370525\pi\)
\(354\) 0 0
\(355\) −9.74289 32.5435i −0.517099 1.72723i
\(356\) −6.19601 + 3.11175i −0.328388 + 0.164922i
\(357\) 0 0
\(358\) −0.489585 + 1.63533i −0.0258754 + 0.0864297i
\(359\) −1.61227 9.14366i −0.0850926 0.482584i −0.997337 0.0729368i \(-0.976763\pi\)
0.912244 0.409647i \(-0.134348\pi\)
\(360\) 0 0
\(361\) −2.51015 + 14.2358i −0.132113 + 0.749251i
\(362\) −16.2762 8.17421i −0.855458 0.429627i
\(363\) 0 0
\(364\) −5.91160 + 13.7046i −0.309852 + 0.718318i
\(365\) −2.36204 + 5.47581i −0.123635 + 0.286617i
\(366\) 0 0
\(367\) −26.1118 13.1138i −1.36302 0.684536i −0.391213 0.920300i \(-0.627945\pi\)
−0.971810 + 0.235764i \(0.924241\pi\)
\(368\) −0.0781452 + 0.443183i −0.00407360 + 0.0231025i
\(369\) 0 0
\(370\) −0.289175 1.63999i −0.0150335 0.0852593i
\(371\) −14.3521 + 47.9395i −0.745126 + 2.48889i
\(372\) 0 0
\(373\) 4.97275 2.49741i 0.257479 0.129311i −0.315378 0.948966i \(-0.602131\pi\)
0.572857 + 0.819655i \(0.305835\pi\)
\(374\) 1.73860 + 5.80732i 0.0899007 + 0.300289i
\(375\) 0 0
\(376\) −2.69961 + 3.62620i −0.139222 + 0.187007i
\(377\) 6.24612 10.8186i 0.321692 0.557186i
\(378\) 0 0
\(379\) −14.7919 25.6203i −0.759808 1.31603i −0.942948 0.332940i \(-0.891959\pi\)
0.183140 0.983087i \(-0.441374\pi\)
\(380\) 8.13918 + 0.951334i 0.417531 + 0.0488024i
\(381\) 0 0
\(382\) −16.7715 3.97493i −0.858107 0.203375i
\(383\) 10.3490 + 6.80665i 0.528810 + 0.347804i 0.785671 0.618645i \(-0.212318\pi\)
−0.256861 + 0.966448i \(0.582688\pi\)
\(384\) 0 0
\(385\) 16.5454 + 17.5371i 0.843233 + 0.893775i
\(386\) −4.35230 + 3.65201i −0.221526 + 0.185883i
\(387\) 0 0
\(388\) 7.93530 + 6.65850i 0.402854 + 0.338034i
\(389\) −1.08026 18.5473i −0.0547712 0.940386i −0.908032 0.418901i \(-0.862415\pi\)
0.853261 0.521485i \(-0.174622\pi\)
\(390\) 0 0
\(391\) 1.79444 + 2.41036i 0.0907489 + 0.121897i
\(392\) 47.1191 5.50743i 2.37987 0.278167i
\(393\) 0 0
\(394\) −10.7923 + 7.09821i −0.543708 + 0.357603i
\(395\) 18.3590 6.68214i 0.923743 0.336215i
\(396\) 0 0
\(397\) 9.59694 + 3.49300i 0.481657 + 0.175309i 0.571426 0.820654i \(-0.306391\pi\)
−0.0897688 + 0.995963i \(0.528613\pi\)
\(398\) −6.18264 + 1.46531i −0.309908 + 0.0734495i
\(399\) 0 0
\(400\) −0.106528 + 1.82901i −0.00532639 + 0.0914505i
\(401\) −1.38543 + 1.46847i −0.0691851 + 0.0733319i −0.761041 0.648703i \(-0.775312\pi\)
0.691856 + 0.722035i \(0.256793\pi\)
\(402\) 0 0
\(403\) −5.05670 11.7228i −0.251892 0.583952i
\(404\) −3.11815 −0.155134
\(405\) 0 0
\(406\) −22.5768 −1.12047
\(407\) 0.522266 + 1.21075i 0.0258878 + 0.0600146i
\(408\) 0 0
\(409\) 0.596821 0.632593i 0.0295109 0.0312797i −0.712450 0.701723i \(-0.752414\pi\)
0.741961 + 0.670443i \(0.233896\pi\)
\(410\) 0.0157492 0.270404i 0.000777800 0.0133543i
\(411\) 0 0
\(412\) 0.359603 0.0852276i 0.0177164 0.00419886i
\(413\) 54.4506 + 19.8184i 2.67934 + 0.975200i
\(414\) 0 0
\(415\) −8.66465 + 3.15367i −0.425331 + 0.154808i
\(416\) −10.6035 + 6.97406i −0.519881 + 0.341931i
\(417\) 0 0
\(418\) 2.89649 0.338551i 0.141672 0.0165591i
\(419\) −15.0749 20.2492i −0.736459 0.989236i −0.999700 0.0245058i \(-0.992199\pi\)
0.263241 0.964730i \(-0.415209\pi\)
\(420\) 0 0
\(421\) −0.974084 16.7244i −0.0474740 0.815096i −0.935068 0.354469i \(-0.884662\pi\)
0.887594 0.460627i \(-0.152375\pi\)
\(422\) −14.4315 12.1095i −0.702516 0.589481i
\(423\) 0 0
\(424\) −20.4787 + 17.1836i −0.994532 + 0.834511i
\(425\) 8.39531 + 8.89850i 0.407232 + 0.431641i
\(426\) 0 0
\(427\) −32.9687 21.6838i −1.59547 1.04935i
\(428\) 13.3724 + 3.16933i 0.646381 + 0.153195i
\(429\) 0 0
\(430\) 5.54851 + 0.648528i 0.267573 + 0.0312748i
\(431\) −13.1811 22.8303i −0.634911 1.09970i −0.986534 0.163556i \(-0.947703\pi\)
0.351623 0.936142i \(-0.385630\pi\)
\(432\) 0 0
\(433\) 6.29345 10.9006i 0.302444 0.523848i −0.674245 0.738508i \(-0.735531\pi\)
0.976689 + 0.214660i \(0.0688642\pi\)
\(434\) −13.7784 + 18.5075i −0.661382 + 0.888390i
\(435\) 0 0
\(436\) −5.30869 17.7323i −0.254240 0.849222i
\(437\) 1.29182 0.648777i 0.0617962 0.0310352i
\(438\) 0 0
\(439\) −2.52350 + 8.42909i −0.120440 + 0.402299i −0.996854 0.0792605i \(-0.974744\pi\)
0.876414 + 0.481559i \(0.159929\pi\)
\(440\) 2.23659 + 12.6843i 0.106625 + 0.604702i
\(441\) 0 0
\(442\) −1.31561 + 7.46120i −0.0625772 + 0.354893i
\(443\) −13.6033 6.83182i −0.646311 0.324590i 0.0952714 0.995451i \(-0.469628\pi\)
−0.741582 + 0.670862i \(0.765924\pi\)
\(444\) 0 0
\(445\) −5.54442 + 12.8534i −0.262831 + 0.609310i
\(446\) 3.73228 8.65240i 0.176729 0.409703i
\(447\) 0 0
\(448\) 14.5875 + 7.32613i 0.689195 + 0.346127i
\(449\) −0.214786 + 1.21811i −0.0101364 + 0.0574862i −0.989456 0.144831i \(-0.953736\pi\)
0.979320 + 0.202317i \(0.0648472\pi\)
\(450\) 0 0
\(451\) 0.0372423 + 0.211212i 0.00175367 + 0.00994557i
\(452\) 0.158736 0.530217i 0.00746633 0.0249393i
\(453\) 0 0
\(454\) −17.6728 + 8.87564i −0.829428 + 0.416554i
\(455\) 8.64225 + 28.8671i 0.405155 + 1.35331i
\(456\) 0 0
\(457\) 18.5032 24.8541i 0.865542 1.16263i −0.119929 0.992782i \(-0.538267\pi\)
0.985471 0.169843i \(-0.0543259\pi\)
\(458\) 10.1484 17.5776i 0.474204 0.821345i
\(459\) 0 0
\(460\) 1.30330 + 2.25738i 0.0607666 + 0.105251i
\(461\) 16.8270 + 1.96679i 0.783710 + 0.0916026i 0.498531 0.866872i \(-0.333873\pi\)
0.285179 + 0.958474i \(0.407947\pi\)
\(462\) 0 0
\(463\) 34.7253 + 8.23005i 1.61382 + 0.382483i 0.935792 0.352551i \(-0.114686\pi\)
0.678030 + 0.735034i \(0.262834\pi\)
\(464\) 3.19048 + 2.09841i 0.148114 + 0.0974164i
\(465\) 0 0
\(466\) −4.93584 5.23169i −0.228649 0.242353i
\(467\) −32.1894 + 27.0101i −1.48955 + 1.24988i −0.594353 + 0.804204i \(0.702592\pi\)
−0.895195 + 0.445675i \(0.852964\pi\)
\(468\) 0 0
\(469\) −1.77640 1.49057i −0.0820263 0.0688282i
\(470\) 0.216658 + 3.71988i 0.00999370 + 0.171585i
\(471\) 0 0
\(472\) 18.4851 + 24.8298i 0.850846 + 1.14288i
\(473\) −4.39334 + 0.513508i −0.202006 + 0.0236111i
\(474\) 0 0
\(475\) 4.91703 3.23398i 0.225609 0.148385i
\(476\) −28.6281 + 10.4198i −1.31217 + 0.477590i
\(477\) 0 0
\(478\) 16.1023 + 5.86074i 0.736500 + 0.268064i
\(479\) 35.1181 8.32315i 1.60459 0.380295i 0.671804 0.740729i \(-0.265520\pi\)
0.932785 + 0.360434i \(0.117371\pi\)
\(480\) 0 0
\(481\) −0.0958213 + 1.64519i −0.00436908 + 0.0750141i
\(482\) −7.49272 + 7.94182i −0.341284 + 0.361740i
\(483\) 0 0
\(484\) 4.36269 + 10.1139i 0.198304 + 0.459721i
\(485\) 20.9136 0.949639
\(486\) 0 0
\(487\) 27.8890 1.26377 0.631885 0.775062i \(-0.282282\pi\)
0.631885 + 0.775062i \(0.282282\pi\)
\(488\) −8.34948 19.3563i −0.377963 0.876217i
\(489\) 0 0
\(490\) 26.8333 28.4416i 1.21220 1.28486i
\(491\) −1.26476 + 21.7151i −0.0570777 + 0.979987i 0.841246 + 0.540653i \(0.181823\pi\)
−0.898324 + 0.439334i \(0.855214\pi\)
\(492\) 0 0
\(493\) 24.8117 5.88049i 1.11746 0.264844i
\(494\) 3.42489 + 1.24656i 0.154093 + 0.0560853i
\(495\) 0 0
\(496\) 3.66730 1.33479i 0.164667 0.0599338i
\(497\) 50.7606 33.3858i 2.27692 1.49756i
\(498\) 0 0
\(499\) 2.96418 0.346463i 0.132695 0.0155098i −0.0494861 0.998775i \(-0.515758\pi\)
0.182181 + 0.983265i \(0.441684\pi\)
\(500\) −5.14028 6.90459i −0.229880 0.308783i
\(501\) 0 0
\(502\) −0.487976 8.37822i −0.0217794 0.373938i
\(503\) −30.5223 25.6113i −1.36092 1.14195i −0.975696 0.219128i \(-0.929679\pi\)
−0.385227 0.922822i \(-0.625877\pi\)
\(504\) 0 0
\(505\) −4.82249 + 4.04655i −0.214598 + 0.180069i
\(506\) 0.636564 + 0.674719i 0.0282987 + 0.0299949i
\(507\) 0 0
\(508\) −12.0477 7.92390i −0.534530 0.351566i
\(509\) −19.3907 4.59567i −0.859476 0.203700i −0.222832 0.974857i \(-0.571530\pi\)
−0.636645 + 0.771157i \(0.719678\pi\)
\(510\) 0 0
\(511\) −10.5935 1.23820i −0.468630 0.0547750i
\(512\) −3.70618 6.41930i −0.163792 0.283695i
\(513\) 0 0
\(514\) 0.462869 0.801713i 0.0204163 0.0353620i
\(515\) 0.445555 0.598484i 0.0196335 0.0263723i
\(516\) 0 0
\(517\) −0.846186 2.82646i −0.0372152 0.124308i
\(518\) 2.66154 1.33668i 0.116941 0.0587301i
\(519\) 0 0
\(520\) −4.61681 + 15.4212i −0.202461 + 0.676265i
\(521\) −6.17183 35.0022i −0.270393 1.53347i −0.753226 0.657762i \(-0.771503\pi\)
0.482833 0.875713i \(-0.339608\pi\)
\(522\) 0 0
\(523\) 4.17875 23.6989i 0.182724 1.03628i −0.746121 0.665810i \(-0.768086\pi\)
0.928845 0.370469i \(-0.120803\pi\)
\(524\) −16.5858 8.32971i −0.724555 0.363885i
\(525\) 0 0
\(526\) 2.91103 6.74852i 0.126927 0.294249i
\(527\) 10.3217 23.9284i 0.449620 1.04234i
\(528\) 0 0
\(529\) −20.1426 10.1160i −0.875767 0.439827i
\(530\) −3.82623 + 21.6996i −0.166201 + 0.942571i
\(531\) 0 0
\(532\) 2.54496 + 14.4332i 0.110338 + 0.625757i
\(533\) −0.0768763 + 0.256785i −0.00332988 + 0.0111226i
\(534\) 0 0
\(535\) 24.7946 12.4523i 1.07196 0.538360i
\(536\) −0.355291 1.18676i −0.0153463 0.0512601i
\(537\) 0 0
\(538\) 1.17675 1.58065i 0.0507332 0.0681466i
\(539\) −15.4805 + 26.8130i −0.666792 + 1.15492i
\(540\) 0 0
\(541\) 5.32644 + 9.22567i 0.229002 + 0.396642i 0.957512 0.288392i \(-0.0931206\pi\)
−0.728511 + 0.685034i \(0.759787\pi\)
\(542\) −4.32142 0.505102i −0.185621 0.0216960i
\(543\) 0 0
\(544\) −25.2074 5.97426i −1.08076 0.256144i
\(545\) −31.2222 20.5352i −1.33741 0.879631i
\(546\) 0 0
\(547\) −9.33306 9.89247i −0.399053 0.422971i 0.496423 0.868081i \(-0.334646\pi\)
−0.895476 + 0.445109i \(0.853165\pi\)
\(548\) 15.1139 12.6821i 0.645636 0.541753i
\(549\) 0 0
\(550\) 2.89293 + 2.42746i 0.123355 + 0.103507i
\(551\) −0.713245 12.2460i −0.0303853 0.521695i
\(552\) 0 0
\(553\) 20.8659 + 28.0277i 0.887307 + 1.19186i
\(554\) −20.8945 + 2.44222i −0.887723 + 0.103760i
\(555\) 0 0
\(556\) −0.373311 + 0.245530i −0.0158319 + 0.0104128i
\(557\) 4.31357 1.57001i 0.182772 0.0665235i −0.249013 0.968500i \(-0.580106\pi\)
0.431785 + 0.901977i \(0.357884\pi\)
\(558\) 0 0
\(559\) −5.19480 1.89075i −0.219717 0.0799704i
\(560\) −8.96297 + 2.12426i −0.378755 + 0.0897665i
\(561\) 0 0
\(562\) −1.44149 + 24.7494i −0.0608056 + 1.04399i
\(563\) −0.680134 + 0.720900i −0.0286642 + 0.0303823i −0.741547 0.670901i \(-0.765908\pi\)
0.712883 + 0.701283i \(0.247389\pi\)
\(564\) 0 0
\(565\) −0.442584 1.02602i −0.0186196 0.0431652i
\(566\) 5.26940 0.221489
\(567\) 0 0
\(568\) 32.4565 1.36185
\(569\) −3.07723 7.13381i −0.129004 0.299065i 0.841457 0.540325i \(-0.181699\pi\)
−0.970461 + 0.241260i \(0.922439\pi\)
\(570\) 0 0
\(571\) −14.6837 + 15.5638i −0.614494 + 0.651326i −0.957644 0.287955i \(-0.907025\pi\)
0.343150 + 0.939281i \(0.388506\pi\)
\(572\) 0.302566 5.19486i 0.0126509 0.217208i
\(573\) 0 0
\(574\) 0.471373 0.111717i 0.0196747 0.00466299i
\(575\) 1.75912 + 0.640267i 0.0733604 + 0.0267010i
\(576\) 0 0
\(577\) −8.13925 + 2.96244i −0.338841 + 0.123328i −0.505836 0.862630i \(-0.668816\pi\)
0.166995 + 0.985958i \(0.446594\pi\)
\(578\) −1.73545 + 1.14142i −0.0721851 + 0.0474769i
\(579\) 0 0
\(580\) 21.9691 2.56782i 0.912216 0.106623i
\(581\) −9.84777 13.2278i −0.408554 0.548784i
\(582\) 0 0
\(583\) −1.01445 17.4174i −0.0420141 0.721355i
\(584\) −4.36471 3.66243i −0.180613 0.151552i
\(585\) 0 0
\(586\) 2.26454 1.90017i 0.0935472 0.0784954i
\(587\) −7.21493 7.64738i −0.297792 0.315641i 0.561150 0.827714i \(-0.310359\pi\)
−0.858942 + 0.512073i \(0.828878\pi\)
\(588\) 0 0
\(589\) −10.4740 6.88885i −0.431573 0.283850i
\(590\) 24.8267 + 5.88403i 1.02210 + 0.242242i
\(591\) 0 0
\(592\) −0.500358 0.0584834i −0.0205646 0.00240365i
\(593\) 14.0175 + 24.2790i 0.575630 + 0.997020i 0.995973 + 0.0896551i \(0.0285765\pi\)
−0.420343 + 0.907365i \(0.638090\pi\)
\(594\) 0 0
\(595\) −30.7537 + 53.2669i −1.26078 + 2.18373i
\(596\) 2.53620 3.40671i 0.103887 0.139544i
\(597\) 0 0
\(598\) 0.332500 + 1.11063i 0.0135969 + 0.0454169i
\(599\) −20.7959 + 10.4441i −0.849699 + 0.426735i −0.819685 0.572814i \(-0.805852\pi\)
−0.0300143 + 0.999549i \(0.509555\pi\)
\(600\) 0 0
\(601\) −6.16371 + 20.5882i −0.251423 + 0.839811i 0.735348 + 0.677690i \(0.237019\pi\)
−0.986771 + 0.162121i \(0.948166\pi\)
\(602\) 1.73491 + 9.83915i 0.0707096 + 0.401014i
\(603\) 0 0
\(604\) −3.00133 + 17.0214i −0.122122 + 0.692589i
\(605\) 19.8724 + 9.98031i 0.807930 + 0.405757i
\(606\) 0 0
\(607\) 1.91860 4.44782i 0.0778737 0.180531i −0.874832 0.484427i \(-0.839028\pi\)
0.952705 + 0.303896i \(0.0982874\pi\)
\(608\) −4.93607 + 11.4431i −0.200184 + 0.464079i
\(609\) 0 0
\(610\) −15.5270 7.79798i −0.628672 0.315731i
\(611\) 0.640316 3.63141i 0.0259044 0.146911i
\(612\) 0 0
\(613\) 2.42381 + 13.7461i 0.0978969 + 0.555201i 0.993821 + 0.110994i \(0.0354034\pi\)
−0.895924 + 0.444207i \(0.853485\pi\)
\(614\) 6.76622 22.6008i 0.273063 0.912093i
\(615\) 0 0
\(616\) −20.5853 + 10.3383i −0.829407 + 0.416544i
\(617\) −5.79638 19.3612i −0.233353 0.779454i −0.991809 0.127730i \(-0.959231\pi\)
0.758456 0.651725i \(-0.225954\pi\)
\(618\) 0 0
\(619\) −17.2355 + 23.1513i −0.692753 + 0.930529i −0.999776 0.0211729i \(-0.993260\pi\)
0.307022 + 0.951702i \(0.400667\pi\)
\(620\) 11.3025 19.5764i 0.453917 0.786208i
\(621\) 0 0
\(622\) −1.75151 3.03370i −0.0702290 0.121640i
\(623\) −24.8662 2.90644i −0.996243 0.116444i
\(624\) 0 0
\(625\) −30.3415 7.19108i −1.21366 0.287643i
\(626\) 20.5431 + 13.5114i 0.821068 + 0.540025i
\(627\) 0 0
\(628\) 5.51213 + 5.84252i 0.219958 + 0.233142i
\(629\) −2.57685 + 2.16223i −0.102746 + 0.0862139i
\(630\) 0 0
\(631\) −35.3851 29.6916i −1.40866 1.18200i −0.957099 0.289762i \(-0.906424\pi\)
−0.451558 0.892242i \(-0.649132\pi\)
\(632\) 1.08536 + 18.6349i 0.0431732 + 0.741255i
\(633\) 0 0
\(634\) −13.0870 17.5789i −0.519750 0.698146i
\(635\) −28.9160 + 3.37979i −1.14750 + 0.134123i
\(636\) 0 0
\(637\) −32.3293 + 21.2633i −1.28093 + 0.842484i
\(638\) 7.39666 2.69216i 0.292836 0.106584i
\(639\) 0 0
\(640\) −23.8524 8.68156i −0.942848 0.343169i
\(641\) −24.2211 + 5.74051i −0.956676 + 0.226736i −0.679165 0.733986i \(-0.737658\pi\)
−0.277512 + 0.960722i \(0.589510\pi\)
\(642\) 0 0
\(643\) −0.128744 + 2.21044i −0.00507715 + 0.0871713i −0.999895 0.0145037i \(-0.995383\pi\)
0.994818 + 0.101675i \(0.0324202\pi\)
\(644\) −3.19915 + 3.39090i −0.126064 + 0.133620i
\(645\) 0 0
\(646\) 2.94664 + 6.83108i 0.115934 + 0.268765i
\(647\) 26.5378 1.04331 0.521654 0.853157i \(-0.325315\pi\)
0.521654 + 0.853157i \(0.325315\pi\)
\(648\) 0 0
\(649\) −20.2024 −0.793015
\(650\) 1.86943 + 4.33383i 0.0733251 + 0.169987i
\(651\) 0 0
\(652\) −6.39241 + 6.77556i −0.250346 + 0.265351i
\(653\) −0.0123406 + 0.211880i −0.000482926 + 0.00829152i −0.998541 0.0539986i \(-0.982803\pi\)
0.998058 + 0.0622901i \(0.0198404\pi\)
\(654\) 0 0
\(655\) −36.4612 + 8.64147i −1.42466 + 0.337650i
\(656\) −0.0769964 0.0280244i −0.00300620 0.00109417i
\(657\) 0 0
\(658\) −6.26228 + 2.27928i −0.244129 + 0.0888558i
\(659\) 22.6208 14.8779i 0.881180 0.579561i −0.0263011 0.999654i \(-0.508373\pi\)
0.907481 + 0.420093i \(0.138002\pi\)
\(660\) 0 0
\(661\) −35.5356 + 4.15352i −1.38218 + 0.161553i −0.774471 0.632609i \(-0.781984\pi\)
−0.607705 + 0.794163i \(0.707910\pi\)
\(662\) 0.0926816 + 0.124493i 0.00360217 + 0.00483856i
\(663\) 0 0
\(664\) −0.512241 8.79484i −0.0198788 0.341306i
\(665\) 22.6665 + 19.0195i 0.878969 + 0.737543i
\(666\) 0 0
\(667\) 2.98902 2.50808i 0.115735 0.0971134i
\(668\) −16.4650 17.4519i −0.637049 0.675233i
\(669\) 0 0
\(670\) −0.853088 0.561085i −0.0329577 0.0216766i
\(671\) 13.3869 + 3.17276i 0.516796 + 0.122483i
\(672\) 0 0
\(673\) 28.3593 + 3.31473i 1.09317 + 0.127773i 0.643519 0.765430i \(-0.277474\pi\)
0.449652 + 0.893204i \(0.351548\pi\)
\(674\) 7.04994 + 12.2109i 0.271554 + 0.470345i
\(675\) 0 0
\(676\) −5.71719 + 9.90247i −0.219892 + 0.380864i
\(677\) 8.79309 11.8112i 0.337946 0.453940i −0.600369 0.799723i \(-0.704979\pi\)
0.938314 + 0.345783i \(0.112387\pi\)
\(678\) 0 0
\(679\) 10.7274 + 35.8322i 0.411682 + 1.37511i
\(680\) −29.3631 + 14.7467i −1.12602 + 0.565509i
\(681\) 0 0
\(682\) 2.30716 7.70646i 0.0883458 0.295095i
\(683\) 0.764140 + 4.33365i 0.0292390 + 0.165823i 0.995931 0.0901204i \(-0.0287252\pi\)
−0.966692 + 0.255943i \(0.917614\pi\)
\(684\) 0 0
\(685\) 6.91695 39.2280i 0.264283 1.49882i
\(686\) 37.9503 + 19.0594i 1.44895 + 0.727690i
\(687\) 0 0
\(688\) 0.669333 1.55169i 0.0255181 0.0591575i
\(689\) 8.63661 20.0219i 0.329029 0.762774i
\(690\) 0 0
\(691\) 2.70634 + 1.35918i 0.102954 + 0.0517055i 0.499531 0.866296i \(-0.333506\pi\)
−0.396577 + 0.918001i \(0.629802\pi\)
\(692\) 3.29341 18.6779i 0.125197 0.710026i
\(693\) 0 0
\(694\) 3.08116 + 17.4741i 0.116959 + 0.663309i
\(695\) −0.258723 + 0.864194i −0.00981391 + 0.0327808i
\(696\) 0 0
\(697\) −0.488936 + 0.245553i −0.0185198 + 0.00930097i
\(698\) 2.67779 + 8.94443i 0.101356 + 0.338552i
\(699\) 0 0
\(700\) −11.3336 + 15.2236i −0.428368 + 0.575398i
\(701\) −21.6147 + 37.4378i −0.816377 + 1.41401i 0.0919585 + 0.995763i \(0.470687\pi\)
−0.908335 + 0.418243i \(0.862646\pi\)
\(702\) 0 0
\(703\) 0.809112 + 1.40142i 0.0305162 + 0.0528557i
\(704\) −5.65278 0.660715i −0.213047 0.0249016i
\(705\) 0 0
\(706\) −14.4091 3.41502i −0.542294 0.128526i
\(707\) −9.40677 6.18693i −0.353778 0.232684i
\(708\) 0 0
\(709\) 22.0808 + 23.4043i 0.829261 + 0.878966i 0.994223 0.107334i \(-0.0342316\pi\)
−0.164962 + 0.986300i \(0.552750\pi\)
\(710\) 20.4932 17.1958i 0.769095 0.645347i
\(711\) 0 0
\(712\) −10.2453 8.59684i −0.383959 0.322180i
\(713\) −0.231862 3.98092i −0.00868331 0.149087i
\(714\) 0 0
\(715\) −6.27363 8.42695i −0.234621 0.315150i
\(716\) 2.97081 0.347238i 0.111024 0.0129769i
\(717\) 0 0
\(718\) 6.10886 4.01786i 0.227981 0.149945i
\(719\) −9.54600 + 3.47446i −0.356006 + 0.129576i −0.513831 0.857892i \(-0.671774\pi\)
0.157825 + 0.987467i \(0.449552\pi\)
\(720\) 0 0
\(721\) 1.25395 + 0.456400i 0.0466995 + 0.0169972i
\(722\) −11.0768 + 2.62525i −0.412235 + 0.0977016i
\(723\) 0 0
\(724\) −1.85559 + 31.8593i −0.0689626 + 1.18404i
\(725\) 10.9011 11.5545i 0.404857 0.429124i
\(726\) 0 0
\(727\) 5.58259 + 12.9419i 0.207047 + 0.479989i 0.989821 0.142317i \(-0.0454553\pi\)
−0.782774 + 0.622306i \(0.786196\pi\)
\(728\) −28.7900 −1.06703
\(729\) 0 0
\(730\) −4.69629 −0.173818
\(731\) −4.46941 10.3613i −0.165307 0.383225i
\(732\) 0 0
\(733\) 10.7728 11.4185i 0.397904 0.421753i −0.497183 0.867646i \(-0.665632\pi\)
0.895086 + 0.445893i \(0.147114\pi\)
\(734\) 1.33795 22.9717i 0.0493846 0.847901i
\(735\) 0 0
\(736\) −3.85725 + 0.914186i −0.142180 + 0.0336973i
\(737\) 0.759727 + 0.276518i 0.0279849 + 0.0101857i
\(738\) 0 0
\(739\) −3.42025 + 1.24487i −0.125816 + 0.0457933i −0.404161 0.914688i \(-0.632436\pi\)
0.278345 + 0.960481i \(0.410214\pi\)
\(740\) −2.43786 + 1.60341i −0.0896176 + 0.0589424i
\(741\) 0 0
\(742\) −39.1415 + 4.57498i −1.43693 + 0.167953i
\(743\) 13.9026 + 18.6745i 0.510039 + 0.685101i 0.980320 0.197416i \(-0.0632549\pi\)
−0.470281 + 0.882517i \(0.655848\pi\)
\(744\) 0 0
\(745\) −0.498569 8.56010i −0.0182662 0.313618i
\(746\) 3.35694 + 2.81680i 0.122906 + 0.103130i
\(747\) 0 0
\(748\) 8.13668 6.82748i 0.297506 0.249637i
\(749\) 34.0532 + 36.0943i 1.24428 + 1.31886i
\(750\) 0 0
\(751\) −6.59964 4.34065i −0.240824 0.158393i 0.423360 0.905962i \(-0.360851\pi\)
−0.664184 + 0.747569i \(0.731221\pi\)
\(752\) 1.09681 + 0.259950i 0.0399967 + 0.00947939i
\(753\) 0 0
\(754\) 9.77114 + 1.14208i 0.355844 + 0.0415922i
\(755\) 17.4475 + 30.2200i 0.634980 + 1.09982i
\(756\) 0 0
\(757\) −2.12074 + 3.67323i −0.0770795 + 0.133506i −0.901989 0.431760i \(-0.857893\pi\)
0.824909 + 0.565265i \(0.191226\pi\)
\(758\) 13.9122 18.6873i 0.505312 0.678752i
\(759\) 0 0
\(760\) 4.53346 + 15.1428i 0.164446 + 0.549287i
\(761\) 36.5389 18.3505i 1.32453 0.665206i 0.360944 0.932588i \(-0.382455\pi\)
0.963591 + 0.267381i \(0.0861583\pi\)
\(762\) 0 0
\(763\) 19.1686 64.0276i 0.693951 2.31796i
\(764\) 5.24431 + 29.7420i 0.189733 + 1.07603i
\(765\) 0 0
\(766\) −1.69387 + 9.60642i −0.0612020 + 0.347094i
\(767\) −22.5634 11.3318i −0.814717 0.409166i
\(768\) 0 0
\(769\) 12.9500 30.0215i 0.466989 1.08260i −0.508202 0.861238i \(-0.669690\pi\)
0.975191 0.221364i \(-0.0710510\pi\)
\(770\) −7.52030 + 17.4340i −0.271013 + 0.628278i
\(771\) 0 0
\(772\) 8.89615 + 4.46781i 0.320179 + 0.160800i
\(773\) −6.74796 + 38.2696i −0.242707 + 1.37646i 0.583050 + 0.812436i \(0.301859\pi\)
−0.825757 + 0.564025i \(0.809252\pi\)
\(774\) 0 0
\(775\) −2.81909 15.9878i −0.101265 0.574300i
\(776\) −5.73075 + 19.1420i −0.205722 + 0.687159i
\(777\) 0 0
\(778\) 13.0745 6.56628i 0.468745 0.235413i
\(779\) 0.0754884 + 0.252149i 0.00270465 + 0.00903417i
\(780\) 0 0
\(781\) −12.6492 + 16.9908i −0.452624 + 0.607979i
\(782\) −1.18321 + 2.04938i −0.0423115 + 0.0732856i
\(783\)