Properties

Label 7225.2.a.x.1.3
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1,-1,11,0,-3,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.1893456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.96189\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.150980 q^{2} +1.96189 q^{3} -1.97720 q^{4} +0.296207 q^{6} +1.54475 q^{7} -0.600480 q^{8} +0.849020 q^{9} -4.56006 q^{11} -3.87906 q^{12} -1.09756 q^{13} +0.233227 q^{14} +3.86375 q^{16} +0.128185 q^{18} +4.67524 q^{19} +3.03063 q^{21} -0.688480 q^{22} -0.529434 q^{23} -1.17808 q^{24} -0.165710 q^{26} -4.21999 q^{27} -3.05428 q^{28} -8.06670 q^{29} +4.78005 q^{31} +1.78431 q^{32} -8.94634 q^{33} -1.67869 q^{36} +5.27917 q^{37} +0.705870 q^{38} -2.15329 q^{39} +0.751460 q^{41} +0.457565 q^{42} +9.49340 q^{43} +9.01617 q^{44} -0.0799341 q^{46} +10.7419 q^{47} +7.58026 q^{48} -4.61376 q^{49} +2.17010 q^{52} +0.0227951 q^{53} -0.637136 q^{54} -0.927590 q^{56} +9.17232 q^{57} -1.21791 q^{58} -3.56962 q^{59} -3.92378 q^{61} +0.721694 q^{62} +1.31152 q^{63} -7.45810 q^{64} -1.35072 q^{66} -9.75929 q^{67} -1.03869 q^{69} -1.21216 q^{71} -0.509819 q^{72} -10.1135 q^{73} +0.797051 q^{74} -9.24392 q^{76} -7.04414 q^{77} -0.325105 q^{78} -14.4151 q^{79} -10.8262 q^{81} +0.113456 q^{82} -5.08949 q^{83} -5.99217 q^{84} +1.43332 q^{86} -15.8260 q^{87} +2.73822 q^{88} -17.6123 q^{89} -1.69545 q^{91} +1.04680 q^{92} +9.37794 q^{93} +1.62182 q^{94} +3.50062 q^{96} +6.78753 q^{97} -0.696587 q^{98} -3.87158 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - q^{3} + 11 q^{4} - 3 q^{6} - q^{7} - 9 q^{8} + 6 q^{9} - 4 q^{11} - 17 q^{12} - 3 q^{13} + 7 q^{14} + 27 q^{16} - 22 q^{18} + 6 q^{19} - 5 q^{21} - 18 q^{22} - 4 q^{23} + 19 q^{24} - 5 q^{26}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.150980 0.106759 0.0533796 0.998574i \(-0.483001\pi\)
0.0533796 + 0.998574i \(0.483001\pi\)
\(3\) 1.96189 1.13270 0.566349 0.824165i \(-0.308355\pi\)
0.566349 + 0.824165i \(0.308355\pi\)
\(4\) −1.97720 −0.988602
\(5\) 0 0
\(6\) 0.296207 0.120926
\(7\) 1.54475 0.583859 0.291930 0.956440i \(-0.405703\pi\)
0.291930 + 0.956440i \(0.405703\pi\)
\(8\) −0.600480 −0.212302
\(9\) 0.849020 0.283007
\(10\) 0 0
\(11\) −4.56006 −1.37491 −0.687455 0.726227i \(-0.741272\pi\)
−0.687455 + 0.726227i \(0.741272\pi\)
\(12\) −3.87906 −1.11979
\(13\) −1.09756 −0.304408 −0.152204 0.988349i \(-0.548637\pi\)
−0.152204 + 0.988349i \(0.548637\pi\)
\(14\) 0.233227 0.0623324
\(15\) 0 0
\(16\) 3.86375 0.965937
\(17\) 0 0
\(18\) 0.128185 0.0302136
\(19\) 4.67524 1.07257 0.536287 0.844036i \(-0.319826\pi\)
0.536287 + 0.844036i \(0.319826\pi\)
\(20\) 0 0
\(21\) 3.03063 0.661337
\(22\) −0.688480 −0.146784
\(23\) −0.529434 −0.110395 −0.0551973 0.998475i \(-0.517579\pi\)
−0.0551973 + 0.998475i \(0.517579\pi\)
\(24\) −1.17808 −0.240474
\(25\) 0 0
\(26\) −0.165710 −0.0324984
\(27\) −4.21999 −0.812138
\(28\) −3.05428 −0.577205
\(29\) −8.06670 −1.49795 −0.748974 0.662599i \(-0.769453\pi\)
−0.748974 + 0.662599i \(0.769453\pi\)
\(30\) 0 0
\(31\) 4.78005 0.858522 0.429261 0.903180i \(-0.358774\pi\)
0.429261 + 0.903180i \(0.358774\pi\)
\(32\) 1.78431 0.315425
\(33\) −8.94634 −1.55736
\(34\) 0 0
\(35\) 0 0
\(36\) −1.67869 −0.279781
\(37\) 5.27917 0.867889 0.433945 0.900939i \(-0.357121\pi\)
0.433945 + 0.900939i \(0.357121\pi\)
\(38\) 0.705870 0.114507
\(39\) −2.15329 −0.344803
\(40\) 0 0
\(41\) 0.751460 0.117358 0.0586792 0.998277i \(-0.481311\pi\)
0.0586792 + 0.998277i \(0.481311\pi\)
\(42\) 0.457565 0.0706038
\(43\) 9.49340 1.44773 0.723865 0.689941i \(-0.242364\pi\)
0.723865 + 0.689941i \(0.242364\pi\)
\(44\) 9.01617 1.35924
\(45\) 0 0
\(46\) −0.0799341 −0.0117856
\(47\) 10.7419 1.56687 0.783437 0.621472i \(-0.213465\pi\)
0.783437 + 0.621472i \(0.213465\pi\)
\(48\) 7.58026 1.09412
\(49\) −4.61376 −0.659108
\(50\) 0 0
\(51\) 0 0
\(52\) 2.17010 0.300939
\(53\) 0.0227951 0.00313115 0.00156557 0.999999i \(-0.499502\pi\)
0.00156557 + 0.999999i \(0.499502\pi\)
\(54\) −0.637136 −0.0867032
\(55\) 0 0
\(56\) −0.927590 −0.123954
\(57\) 9.17232 1.21490
\(58\) −1.21791 −0.159920
\(59\) −3.56962 −0.464725 −0.232362 0.972629i \(-0.574646\pi\)
−0.232362 + 0.972629i \(0.574646\pi\)
\(60\) 0 0
\(61\) −3.92378 −0.502389 −0.251195 0.967937i \(-0.580823\pi\)
−0.251195 + 0.967937i \(0.580823\pi\)
\(62\) 0.721694 0.0916552
\(63\) 1.31152 0.165236
\(64\) −7.45810 −0.932263
\(65\) 0 0
\(66\) −1.35072 −0.166262
\(67\) −9.75929 −1.19229 −0.596144 0.802878i \(-0.703301\pi\)
−0.596144 + 0.802878i \(0.703301\pi\)
\(68\) 0 0
\(69\) −1.03869 −0.125044
\(70\) 0 0
\(71\) −1.21216 −0.143857 −0.0719285 0.997410i \(-0.522915\pi\)
−0.0719285 + 0.997410i \(0.522915\pi\)
\(72\) −0.509819 −0.0600828
\(73\) −10.1135 −1.18369 −0.591845 0.806052i \(-0.701600\pi\)
−0.591845 + 0.806052i \(0.701600\pi\)
\(74\) 0.797051 0.0926552
\(75\) 0 0
\(76\) −9.24392 −1.06035
\(77\) −7.04414 −0.802754
\(78\) −0.325105 −0.0368109
\(79\) −14.4151 −1.62183 −0.810913 0.585166i \(-0.801029\pi\)
−0.810913 + 0.585166i \(0.801029\pi\)
\(80\) 0 0
\(81\) −10.8262 −1.20291
\(82\) 0.113456 0.0125291
\(83\) −5.08949 −0.558644 −0.279322 0.960197i \(-0.590110\pi\)
−0.279322 + 0.960197i \(0.590110\pi\)
\(84\) −5.99217 −0.653799
\(85\) 0 0
\(86\) 1.43332 0.154559
\(87\) −15.8260 −1.69672
\(88\) 2.73822 0.291896
\(89\) −17.6123 −1.86690 −0.933450 0.358707i \(-0.883218\pi\)
−0.933450 + 0.358707i \(0.883218\pi\)
\(90\) 0 0
\(91\) −1.69545 −0.177732
\(92\) 1.04680 0.109136
\(93\) 9.37794 0.972447
\(94\) 1.62182 0.167278
\(95\) 0 0
\(96\) 3.50062 0.357281
\(97\) 6.78753 0.689170 0.344585 0.938755i \(-0.388020\pi\)
0.344585 + 0.938755i \(0.388020\pi\)
\(98\) −0.696587 −0.0703659
\(99\) −3.87158 −0.389108
\(100\) 0 0
\(101\) −8.21768 −0.817690 −0.408845 0.912604i \(-0.634068\pi\)
−0.408845 + 0.912604i \(0.634068\pi\)
\(102\) 0 0
\(103\) 17.2696 1.70163 0.850814 0.525466i \(-0.176109\pi\)
0.850814 + 0.525466i \(0.176109\pi\)
\(104\) 0.659062 0.0646264
\(105\) 0 0
\(106\) 0.00344161 0.000334279 0
\(107\) −15.3869 −1.48750 −0.743752 0.668455i \(-0.766956\pi\)
−0.743752 + 0.668455i \(0.766956\pi\)
\(108\) 8.34379 0.802881
\(109\) −17.2221 −1.64957 −0.824787 0.565443i \(-0.808705\pi\)
−0.824787 + 0.565443i \(0.808705\pi\)
\(110\) 0 0
\(111\) 10.3572 0.983057
\(112\) 5.96851 0.563972
\(113\) −18.9562 −1.78325 −0.891624 0.452777i \(-0.850433\pi\)
−0.891624 + 0.452777i \(0.850433\pi\)
\(114\) 1.38484 0.129702
\(115\) 0 0
\(116\) 15.9495 1.48088
\(117\) −0.931849 −0.0861495
\(118\) −0.538943 −0.0496137
\(119\) 0 0
\(120\) 0 0
\(121\) 9.79415 0.890377
\(122\) −0.592414 −0.0536347
\(123\) 1.47428 0.132932
\(124\) −9.45114 −0.848737
\(125\) 0 0
\(126\) 0.198014 0.0176405
\(127\) 15.6123 1.38537 0.692684 0.721241i \(-0.256428\pi\)
0.692684 + 0.721241i \(0.256428\pi\)
\(128\) −4.69465 −0.414952
\(129\) 18.6250 1.63984
\(130\) 0 0
\(131\) 4.79329 0.418791 0.209396 0.977831i \(-0.432850\pi\)
0.209396 + 0.977831i \(0.432850\pi\)
\(132\) 17.6888 1.53961
\(133\) 7.22207 0.626233
\(134\) −1.47346 −0.127288
\(135\) 0 0
\(136\) 0 0
\(137\) −15.6750 −1.33921 −0.669603 0.742719i \(-0.733536\pi\)
−0.669603 + 0.742719i \(0.733536\pi\)
\(138\) −0.156822 −0.0133496
\(139\) −8.33055 −0.706588 −0.353294 0.935512i \(-0.614938\pi\)
−0.353294 + 0.935512i \(0.614938\pi\)
\(140\) 0 0
\(141\) 21.0745 1.77480
\(142\) −0.183012 −0.0153581
\(143\) 5.00494 0.418534
\(144\) 3.28040 0.273367
\(145\) 0 0
\(146\) −1.52693 −0.126370
\(147\) −9.05169 −0.746571
\(148\) −10.4380 −0.857998
\(149\) −3.10739 −0.254568 −0.127284 0.991866i \(-0.540626\pi\)
−0.127284 + 0.991866i \(0.540626\pi\)
\(150\) 0 0
\(151\) 10.4088 0.847056 0.423528 0.905883i \(-0.360791\pi\)
0.423528 + 0.905883i \(0.360791\pi\)
\(152\) −2.80739 −0.227709
\(153\) 0 0
\(154\) −1.06353 −0.0857014
\(155\) 0 0
\(156\) 4.25750 0.340873
\(157\) −0.661967 −0.0528307 −0.0264154 0.999651i \(-0.508409\pi\)
−0.0264154 + 0.999651i \(0.508409\pi\)
\(158\) −2.17640 −0.173145
\(159\) 0.0447215 0.00354664
\(160\) 0 0
\(161\) −0.817841 −0.0644549
\(162\) −1.63455 −0.128422
\(163\) 16.2543 1.27314 0.636569 0.771220i \(-0.280353\pi\)
0.636569 + 0.771220i \(0.280353\pi\)
\(164\) −1.48579 −0.116021
\(165\) 0 0
\(166\) −0.768414 −0.0596405
\(167\) −19.9527 −1.54398 −0.771992 0.635632i \(-0.780740\pi\)
−0.771992 + 0.635632i \(0.780740\pi\)
\(168\) −1.81983 −0.140403
\(169\) −11.7954 −0.907336
\(170\) 0 0
\(171\) 3.96937 0.303546
\(172\) −18.7704 −1.43123
\(173\) −3.91717 −0.297817 −0.148908 0.988851i \(-0.547576\pi\)
−0.148908 + 0.988851i \(0.547576\pi\)
\(174\) −2.38941 −0.181141
\(175\) 0 0
\(176\) −17.6189 −1.32808
\(177\) −7.00321 −0.526393
\(178\) −2.65911 −0.199309
\(179\) 3.14170 0.234821 0.117411 0.993083i \(-0.462541\pi\)
0.117411 + 0.993083i \(0.462541\pi\)
\(180\) 0 0
\(181\) −0.782087 −0.0581320 −0.0290660 0.999577i \(-0.509253\pi\)
−0.0290660 + 0.999577i \(0.509253\pi\)
\(182\) −0.255980 −0.0189745
\(183\) −7.69804 −0.569055
\(184\) 0.317914 0.0234370
\(185\) 0 0
\(186\) 1.41589 0.103818
\(187\) 0 0
\(188\) −21.2390 −1.54901
\(189\) −6.51882 −0.474174
\(190\) 0 0
\(191\) 12.4154 0.898348 0.449174 0.893444i \(-0.351718\pi\)
0.449174 + 0.893444i \(0.351718\pi\)
\(192\) −14.6320 −1.05597
\(193\) −1.70465 −0.122704 −0.0613518 0.998116i \(-0.519541\pi\)
−0.0613518 + 0.998116i \(0.519541\pi\)
\(194\) 1.02478 0.0735752
\(195\) 0 0
\(196\) 9.12234 0.651596
\(197\) 16.2755 1.15958 0.579790 0.814766i \(-0.303134\pi\)
0.579790 + 0.814766i \(0.303134\pi\)
\(198\) −0.584533 −0.0415409
\(199\) −17.1946 −1.21889 −0.609447 0.792827i \(-0.708608\pi\)
−0.609447 + 0.792827i \(0.708608\pi\)
\(200\) 0 0
\(201\) −19.1467 −1.35050
\(202\) −1.24071 −0.0872959
\(203\) −12.4610 −0.874591
\(204\) 0 0
\(205\) 0 0
\(206\) 2.60738 0.181665
\(207\) −0.449500 −0.0312424
\(208\) −4.24069 −0.294039
\(209\) −21.3194 −1.47469
\(210\) 0 0
\(211\) −2.01038 −0.138400 −0.0692000 0.997603i \(-0.522045\pi\)
−0.0692000 + 0.997603i \(0.522045\pi\)
\(212\) −0.0450706 −0.00309546
\(213\) −2.37813 −0.162947
\(214\) −2.32312 −0.158805
\(215\) 0 0
\(216\) 2.53402 0.172418
\(217\) 7.38397 0.501256
\(218\) −2.60019 −0.176107
\(219\) −19.8415 −1.34076
\(220\) 0 0
\(221\) 0 0
\(222\) 1.56373 0.104950
\(223\) −14.1074 −0.944701 −0.472351 0.881411i \(-0.656594\pi\)
−0.472351 + 0.881411i \(0.656594\pi\)
\(224\) 2.75631 0.184164
\(225\) 0 0
\(226\) −2.86201 −0.190378
\(227\) 15.7117 1.04282 0.521410 0.853306i \(-0.325406\pi\)
0.521410 + 0.853306i \(0.325406\pi\)
\(228\) −18.1356 −1.20106
\(229\) 16.5921 1.09644 0.548219 0.836335i \(-0.315306\pi\)
0.548219 + 0.836335i \(0.315306\pi\)
\(230\) 0 0
\(231\) −13.8198 −0.909279
\(232\) 4.84389 0.318017
\(233\) −6.56378 −0.430007 −0.215004 0.976613i \(-0.568976\pi\)
−0.215004 + 0.976613i \(0.568976\pi\)
\(234\) −0.140691 −0.00919726
\(235\) 0 0
\(236\) 7.05787 0.459428
\(237\) −28.2809 −1.83704
\(238\) 0 0
\(239\) −7.62182 −0.493015 −0.246507 0.969141i \(-0.579283\pi\)
−0.246507 + 0.969141i \(0.579283\pi\)
\(240\) 0 0
\(241\) −6.89554 −0.444181 −0.222090 0.975026i \(-0.571288\pi\)
−0.222090 + 0.975026i \(0.571288\pi\)
\(242\) 1.47872 0.0950560
\(243\) −8.57991 −0.550401
\(244\) 7.75812 0.496663
\(245\) 0 0
\(246\) 0.222588 0.0141917
\(247\) −5.13136 −0.326500
\(248\) −2.87032 −0.182266
\(249\) −9.98504 −0.632776
\(250\) 0 0
\(251\) −25.8326 −1.63054 −0.815270 0.579081i \(-0.803411\pi\)
−0.815270 + 0.579081i \(0.803411\pi\)
\(252\) −2.59314 −0.163353
\(253\) 2.41425 0.151783
\(254\) 2.35715 0.147901
\(255\) 0 0
\(256\) 14.2074 0.887963
\(257\) 17.8491 1.11340 0.556698 0.830715i \(-0.312068\pi\)
0.556698 + 0.830715i \(0.312068\pi\)
\(258\) 2.81201 0.175068
\(259\) 8.15497 0.506725
\(260\) 0 0
\(261\) −6.84879 −0.423929
\(262\) 0.723692 0.0447099
\(263\) −14.3446 −0.884529 −0.442264 0.896885i \(-0.645825\pi\)
−0.442264 + 0.896885i \(0.645825\pi\)
\(264\) 5.37210 0.330630
\(265\) 0 0
\(266\) 1.09039 0.0668562
\(267\) −34.5534 −2.11464
\(268\) 19.2961 1.17870
\(269\) 3.91172 0.238502 0.119251 0.992864i \(-0.461951\pi\)
0.119251 + 0.992864i \(0.461951\pi\)
\(270\) 0 0
\(271\) 28.4490 1.72816 0.864078 0.503358i \(-0.167902\pi\)
0.864078 + 0.503358i \(0.167902\pi\)
\(272\) 0 0
\(273\) −3.32629 −0.201316
\(274\) −2.36662 −0.142973
\(275\) 0 0
\(276\) 2.05371 0.123619
\(277\) −25.6839 −1.54320 −0.771598 0.636111i \(-0.780542\pi\)
−0.771598 + 0.636111i \(0.780542\pi\)
\(278\) −1.25775 −0.0754348
\(279\) 4.05836 0.242967
\(280\) 0 0
\(281\) −20.7667 −1.23884 −0.619420 0.785060i \(-0.712632\pi\)
−0.619420 + 0.785060i \(0.712632\pi\)
\(282\) 3.18184 0.189476
\(283\) 24.4689 1.45452 0.727262 0.686360i \(-0.240793\pi\)
0.727262 + 0.686360i \(0.240793\pi\)
\(284\) 2.39669 0.142217
\(285\) 0 0
\(286\) 0.755647 0.0446824
\(287\) 1.16082 0.0685208
\(288\) 1.51491 0.0892672
\(289\) 0 0
\(290\) 0 0
\(291\) 13.3164 0.780621
\(292\) 19.9964 1.17020
\(293\) −28.1952 −1.64718 −0.823591 0.567185i \(-0.808033\pi\)
−0.823591 + 0.567185i \(0.808033\pi\)
\(294\) −1.36663 −0.0797034
\(295\) 0 0
\(296\) −3.17003 −0.184254
\(297\) 19.2434 1.11662
\(298\) −0.469156 −0.0271775
\(299\) 0.581085 0.0336050
\(300\) 0 0
\(301\) 14.6649 0.845271
\(302\) 1.57153 0.0904311
\(303\) −16.1222 −0.926196
\(304\) 18.0640 1.03604
\(305\) 0 0
\(306\) 0 0
\(307\) −0.0120595 −0.000688275 0 −0.000344137 1.00000i \(-0.500110\pi\)
−0.000344137 1.00000i \(0.500110\pi\)
\(308\) 13.9277 0.793605
\(309\) 33.8812 1.92743
\(310\) 0 0
\(311\) 28.5605 1.61951 0.809757 0.586765i \(-0.199599\pi\)
0.809757 + 0.586765i \(0.199599\pi\)
\(312\) 1.29301 0.0732022
\(313\) 4.11691 0.232702 0.116351 0.993208i \(-0.462880\pi\)
0.116351 + 0.993208i \(0.462880\pi\)
\(314\) −0.0999440 −0.00564017
\(315\) 0 0
\(316\) 28.5016 1.60334
\(317\) −20.6297 −1.15868 −0.579338 0.815087i \(-0.696689\pi\)
−0.579338 + 0.815087i \(0.696689\pi\)
\(318\) 0.00675207 0.000378637 0
\(319\) 36.7846 2.05954
\(320\) 0 0
\(321\) −30.1874 −1.68489
\(322\) −0.123478 −0.00688116
\(323\) 0 0
\(324\) 21.4057 1.18920
\(325\) 0 0
\(326\) 2.45409 0.135919
\(327\) −33.7878 −1.86847
\(328\) −0.451237 −0.0249154
\(329\) 16.5936 0.914834
\(330\) 0 0
\(331\) −0.971759 −0.0534127 −0.0267063 0.999643i \(-0.508502\pi\)
−0.0267063 + 0.999643i \(0.508502\pi\)
\(332\) 10.0630 0.552277
\(333\) 4.48212 0.245618
\(334\) −3.01246 −0.164835
\(335\) 0 0
\(336\) 11.7096 0.638810
\(337\) 6.01450 0.327630 0.163815 0.986491i \(-0.447620\pi\)
0.163815 + 0.986491i \(0.447620\pi\)
\(338\) −1.78087 −0.0968665
\(339\) −37.1900 −2.01988
\(340\) 0 0
\(341\) −21.7973 −1.18039
\(342\) 0.599298 0.0324063
\(343\) −17.9403 −0.968686
\(344\) −5.70060 −0.307356
\(345\) 0 0
\(346\) −0.591416 −0.0317947
\(347\) 5.33466 0.286380 0.143190 0.989695i \(-0.454264\pi\)
0.143190 + 0.989695i \(0.454264\pi\)
\(348\) 31.2912 1.67739
\(349\) −20.7601 −1.11126 −0.555632 0.831429i \(-0.687524\pi\)
−0.555632 + 0.831429i \(0.687524\pi\)
\(350\) 0 0
\(351\) 4.63169 0.247221
\(352\) −8.13656 −0.433680
\(353\) 15.0618 0.801659 0.400829 0.916153i \(-0.368722\pi\)
0.400829 + 0.916153i \(0.368722\pi\)
\(354\) −1.05735 −0.0561974
\(355\) 0 0
\(356\) 34.8231 1.84562
\(357\) 0 0
\(358\) 0.474335 0.0250694
\(359\) −9.72949 −0.513503 −0.256751 0.966477i \(-0.582652\pi\)
−0.256751 + 0.966477i \(0.582652\pi\)
\(360\) 0 0
\(361\) 2.85791 0.150416
\(362\) −0.118080 −0.00620613
\(363\) 19.2151 1.00853
\(364\) 3.35225 0.175706
\(365\) 0 0
\(366\) −1.16225 −0.0607519
\(367\) 8.62563 0.450254 0.225127 0.974329i \(-0.427720\pi\)
0.225127 + 0.974329i \(0.427720\pi\)
\(368\) −2.04560 −0.106634
\(369\) 0.638005 0.0332132
\(370\) 0 0
\(371\) 0.0352126 0.00182815
\(372\) −18.5421 −0.961364
\(373\) 15.0922 0.781444 0.390722 0.920509i \(-0.372225\pi\)
0.390722 + 0.920509i \(0.372225\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.45032 −0.332650
\(377\) 8.85368 0.455988
\(378\) −0.984214 −0.0506225
\(379\) 10.7124 0.550261 0.275131 0.961407i \(-0.411279\pi\)
0.275131 + 0.961407i \(0.411279\pi\)
\(380\) 0 0
\(381\) 30.6297 1.56920
\(382\) 1.87448 0.0959070
\(383\) −15.8670 −0.810764 −0.405382 0.914147i \(-0.632861\pi\)
−0.405382 + 0.914147i \(0.632861\pi\)
\(384\) −9.21039 −0.470016
\(385\) 0 0
\(386\) −0.257369 −0.0130997
\(387\) 8.06009 0.409717
\(388\) −13.4203 −0.681315
\(389\) 22.3496 1.13317 0.566585 0.824003i \(-0.308264\pi\)
0.566585 + 0.824003i \(0.308264\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 2.77047 0.139930
\(393\) 9.40391 0.474364
\(394\) 2.45728 0.123796
\(395\) 0 0
\(396\) 7.65491 0.384674
\(397\) 31.3003 1.57092 0.785458 0.618915i \(-0.212428\pi\)
0.785458 + 0.618915i \(0.212428\pi\)
\(398\) −2.59605 −0.130128
\(399\) 14.1689 0.709333
\(400\) 0 0
\(401\) −32.0373 −1.59987 −0.799934 0.600088i \(-0.795132\pi\)
−0.799934 + 0.600088i \(0.795132\pi\)
\(402\) −2.89077 −0.144179
\(403\) −5.24639 −0.261341
\(404\) 16.2480 0.808370
\(405\) 0 0
\(406\) −1.88137 −0.0933707
\(407\) −24.0733 −1.19327
\(408\) 0 0
\(409\) −21.5037 −1.06329 −0.531645 0.846968i \(-0.678426\pi\)
−0.531645 + 0.846968i \(0.678426\pi\)
\(410\) 0 0
\(411\) −30.7527 −1.51692
\(412\) −34.1456 −1.68223
\(413\) −5.51416 −0.271334
\(414\) −0.0678656 −0.00333541
\(415\) 0 0
\(416\) −1.95839 −0.0960178
\(417\) −16.3436 −0.800352
\(418\) −3.21881 −0.157437
\(419\) 16.7246 0.817048 0.408524 0.912748i \(-0.366044\pi\)
0.408524 + 0.912748i \(0.366044\pi\)
\(420\) 0 0
\(421\) −16.9873 −0.827908 −0.413954 0.910298i \(-0.635853\pi\)
−0.413954 + 0.910298i \(0.635853\pi\)
\(422\) −0.303528 −0.0147755
\(423\) 9.12012 0.443435
\(424\) −0.0136880 −0.000664748 0
\(425\) 0 0
\(426\) −0.359051 −0.0173961
\(427\) −6.06125 −0.293325
\(428\) 30.4230 1.47055
\(429\) 9.81914 0.474073
\(430\) 0 0
\(431\) 17.0941 0.823392 0.411696 0.911321i \(-0.364936\pi\)
0.411696 + 0.911321i \(0.364936\pi\)
\(432\) −16.3050 −0.784474
\(433\) −9.95242 −0.478283 −0.239141 0.970985i \(-0.576866\pi\)
−0.239141 + 0.970985i \(0.576866\pi\)
\(434\) 1.11483 0.0535138
\(435\) 0 0
\(436\) 34.0516 1.63077
\(437\) −2.47523 −0.118406
\(438\) −2.99568 −0.143139
\(439\) −2.92877 −0.139782 −0.0698912 0.997555i \(-0.522265\pi\)
−0.0698912 + 0.997555i \(0.522265\pi\)
\(440\) 0 0
\(441\) −3.91717 −0.186532
\(442\) 0 0
\(443\) 0.778484 0.0369869 0.0184934 0.999829i \(-0.494113\pi\)
0.0184934 + 0.999829i \(0.494113\pi\)
\(444\) −20.4782 −0.971853
\(445\) 0 0
\(446\) −2.12994 −0.100856
\(447\) −6.09637 −0.288349
\(448\) −11.5209 −0.544310
\(449\) 31.2804 1.47621 0.738107 0.674684i \(-0.235720\pi\)
0.738107 + 0.674684i \(0.235720\pi\)
\(450\) 0 0
\(451\) −3.42670 −0.161357
\(452\) 37.4803 1.76292
\(453\) 20.4209 0.959460
\(454\) 2.37215 0.111331
\(455\) 0 0
\(456\) −5.50780 −0.257926
\(457\) 3.59265 0.168057 0.0840285 0.996463i \(-0.473221\pi\)
0.0840285 + 0.996463i \(0.473221\pi\)
\(458\) 2.50509 0.117055
\(459\) 0 0
\(460\) 0 0
\(461\) −6.60392 −0.307575 −0.153788 0.988104i \(-0.549147\pi\)
−0.153788 + 0.988104i \(0.549147\pi\)
\(462\) −2.08652 −0.0970739
\(463\) −10.9502 −0.508898 −0.254449 0.967086i \(-0.581894\pi\)
−0.254449 + 0.967086i \(0.581894\pi\)
\(464\) −31.1677 −1.44692
\(465\) 0 0
\(466\) −0.991002 −0.0459073
\(467\) −10.1288 −0.468704 −0.234352 0.972152i \(-0.575297\pi\)
−0.234352 + 0.972152i \(0.575297\pi\)
\(468\) 1.84246 0.0851676
\(469\) −15.0756 −0.696128
\(470\) 0 0
\(471\) −1.29871 −0.0598413
\(472\) 2.14349 0.0986619
\(473\) −43.2905 −1.99050
\(474\) −4.26986 −0.196121
\(475\) 0 0
\(476\) 0 0
\(477\) 0.0193535 0.000886135 0
\(478\) −1.15075 −0.0526339
\(479\) 7.73039 0.353211 0.176605 0.984282i \(-0.443488\pi\)
0.176605 + 0.984282i \(0.443488\pi\)
\(480\) 0 0
\(481\) −5.79420 −0.264193
\(482\) −1.04109 −0.0474204
\(483\) −1.60452 −0.0730080
\(484\) −19.3650 −0.880229
\(485\) 0 0
\(486\) −1.29540 −0.0587605
\(487\) −13.5925 −0.615933 −0.307966 0.951397i \(-0.599648\pi\)
−0.307966 + 0.951397i \(0.599648\pi\)
\(488\) 2.35615 0.106658
\(489\) 31.8892 1.44208
\(490\) 0 0
\(491\) 38.8592 1.75369 0.876846 0.480772i \(-0.159643\pi\)
0.876846 + 0.480772i \(0.159643\pi\)
\(492\) −2.91496 −0.131417
\(493\) 0 0
\(494\) −0.774734 −0.0348569
\(495\) 0 0
\(496\) 18.4689 0.829279
\(497\) −1.87248 −0.0839922
\(498\) −1.50754 −0.0675547
\(499\) 26.6894 1.19478 0.597391 0.801950i \(-0.296204\pi\)
0.597391 + 0.801950i \(0.296204\pi\)
\(500\) 0 0
\(501\) −39.1450 −1.74887
\(502\) −3.90022 −0.174075
\(503\) 0.591853 0.0263894 0.0131947 0.999913i \(-0.495800\pi\)
0.0131947 + 0.999913i \(0.495800\pi\)
\(504\) −0.787542 −0.0350799
\(505\) 0 0
\(506\) 0.364504 0.0162042
\(507\) −23.1412 −1.02774
\(508\) −30.8687 −1.36958
\(509\) 11.6397 0.515922 0.257961 0.966155i \(-0.416949\pi\)
0.257961 + 0.966155i \(0.416949\pi\)
\(510\) 0 0
\(511\) −15.6227 −0.691109
\(512\) 11.5343 0.509750
\(513\) −19.7295 −0.871078
\(514\) 2.69486 0.118865
\(515\) 0 0
\(516\) −36.8255 −1.62115
\(517\) −48.9839 −2.15431
\(518\) 1.23124 0.0540976
\(519\) −7.68506 −0.337337
\(520\) 0 0
\(521\) 11.5584 0.506382 0.253191 0.967416i \(-0.418520\pi\)
0.253191 + 0.967416i \(0.418520\pi\)
\(522\) −1.03403 −0.0452584
\(523\) 14.5087 0.634420 0.317210 0.948355i \(-0.397254\pi\)
0.317210 + 0.948355i \(0.397254\pi\)
\(524\) −9.47731 −0.414018
\(525\) 0 0
\(526\) −2.16576 −0.0944316
\(527\) 0 0
\(528\) −34.5664 −1.50431
\(529\) −22.7197 −0.987813
\(530\) 0 0
\(531\) −3.03068 −0.131520
\(532\) −14.2795 −0.619095
\(533\) −0.824772 −0.0357249
\(534\) −5.21689 −0.225757
\(535\) 0 0
\(536\) 5.86026 0.253125
\(537\) 6.16367 0.265982
\(538\) 0.590594 0.0254623
\(539\) 21.0390 0.906214
\(540\) 0 0
\(541\) 3.23241 0.138972 0.0694860 0.997583i \(-0.477864\pi\)
0.0694860 + 0.997583i \(0.477864\pi\)
\(542\) 4.29525 0.184497
\(543\) −1.53437 −0.0658461
\(544\) 0 0
\(545\) 0 0
\(546\) −0.502205 −0.0214924
\(547\) −38.7154 −1.65535 −0.827676 0.561206i \(-0.810338\pi\)
−0.827676 + 0.561206i \(0.810338\pi\)
\(548\) 30.9927 1.32394
\(549\) −3.33137 −0.142179
\(550\) 0 0
\(551\) −37.7138 −1.60666
\(552\) 0.623714 0.0265470
\(553\) −22.2677 −0.946919
\(554\) −3.87777 −0.164750
\(555\) 0 0
\(556\) 16.4712 0.698535
\(557\) 0.669168 0.0283536 0.0141768 0.999900i \(-0.495487\pi\)
0.0141768 + 0.999900i \(0.495487\pi\)
\(558\) 0.612732 0.0259390
\(559\) −10.4196 −0.440701
\(560\) 0 0
\(561\) 0 0
\(562\) −3.13537 −0.132258
\(563\) −42.4772 −1.79020 −0.895101 0.445864i \(-0.852896\pi\)
−0.895101 + 0.445864i \(0.852896\pi\)
\(564\) −41.6687 −1.75457
\(565\) 0 0
\(566\) 3.69432 0.155284
\(567\) −16.7238 −0.702333
\(568\) 0.727878 0.0305411
\(569\) 36.3706 1.52474 0.762368 0.647143i \(-0.224036\pi\)
0.762368 + 0.647143i \(0.224036\pi\)
\(570\) 0 0
\(571\) −26.5970 −1.11305 −0.556525 0.830831i \(-0.687866\pi\)
−0.556525 + 0.830831i \(0.687866\pi\)
\(572\) −9.89578 −0.413763
\(573\) 24.3577 1.01756
\(574\) 0.175260 0.00731523
\(575\) 0 0
\(576\) −6.33207 −0.263836
\(577\) −2.30741 −0.0960586 −0.0480293 0.998846i \(-0.515294\pi\)
−0.0480293 + 0.998846i \(0.515294\pi\)
\(578\) 0 0
\(579\) −3.34434 −0.138986
\(580\) 0 0
\(581\) −7.86198 −0.326170
\(582\) 2.01052 0.0833386
\(583\) −0.103947 −0.00430504
\(584\) 6.07293 0.251300
\(585\) 0 0
\(586\) −4.25692 −0.175852
\(587\) 25.8915 1.06866 0.534329 0.845277i \(-0.320564\pi\)
0.534329 + 0.845277i \(0.320564\pi\)
\(588\) 17.8971 0.738062
\(589\) 22.3479 0.920829
\(590\) 0 0
\(591\) 31.9308 1.31346
\(592\) 20.3974 0.838327
\(593\) 42.0620 1.72728 0.863640 0.504109i \(-0.168179\pi\)
0.863640 + 0.504109i \(0.168179\pi\)
\(594\) 2.90538 0.119209
\(595\) 0 0
\(596\) 6.14396 0.251666
\(597\) −33.7340 −1.38064
\(598\) 0.0877324 0.00358765
\(599\) 23.6399 0.965902 0.482951 0.875647i \(-0.339565\pi\)
0.482951 + 0.875647i \(0.339565\pi\)
\(600\) 0 0
\(601\) 9.89731 0.403720 0.201860 0.979414i \(-0.435301\pi\)
0.201860 + 0.979414i \(0.435301\pi\)
\(602\) 2.21411 0.0902405
\(603\) −8.28583 −0.337425
\(604\) −20.5803 −0.837402
\(605\) 0 0
\(606\) −2.43414 −0.0988800
\(607\) −29.5988 −1.20138 −0.600688 0.799483i \(-0.705107\pi\)
−0.600688 + 0.799483i \(0.705107\pi\)
\(608\) 8.34209 0.338316
\(609\) −24.4471 −0.990648
\(610\) 0 0
\(611\) −11.7899 −0.476969
\(612\) 0 0
\(613\) 13.6657 0.551953 0.275977 0.961164i \(-0.410999\pi\)
0.275977 + 0.961164i \(0.410999\pi\)
\(614\) −0.00182076 −7.34797e−5 0
\(615\) 0 0
\(616\) 4.22986 0.170426
\(617\) −41.8255 −1.68383 −0.841916 0.539609i \(-0.818572\pi\)
−0.841916 + 0.539609i \(0.818572\pi\)
\(618\) 5.11539 0.205771
\(619\) −17.8194 −0.716221 −0.358110 0.933679i \(-0.616579\pi\)
−0.358110 + 0.933679i \(0.616579\pi\)
\(620\) 0 0
\(621\) 2.23421 0.0896556
\(622\) 4.31207 0.172898
\(623\) −27.2066 −1.09001
\(624\) −8.31978 −0.333058
\(625\) 0 0
\(626\) 0.621573 0.0248431
\(627\) −41.8263 −1.67038
\(628\) 1.30884 0.0522286
\(629\) 0 0
\(630\) 0 0
\(631\) 32.6557 1.30000 0.650001 0.759934i \(-0.274769\pi\)
0.650001 + 0.759934i \(0.274769\pi\)
\(632\) 8.65599 0.344317
\(633\) −3.94414 −0.156766
\(634\) −3.11467 −0.123699
\(635\) 0 0
\(636\) −0.0884235 −0.00350622
\(637\) 5.06387 0.200638
\(638\) 5.55376 0.219875
\(639\) −1.02915 −0.0407124
\(640\) 0 0
\(641\) −25.0356 −0.988845 −0.494422 0.869222i \(-0.664620\pi\)
−0.494422 + 0.869222i \(0.664620\pi\)
\(642\) −4.55770 −0.179878
\(643\) 12.4048 0.489196 0.244598 0.969625i \(-0.421344\pi\)
0.244598 + 0.969625i \(0.421344\pi\)
\(644\) 1.61704 0.0637203
\(645\) 0 0
\(646\) 0 0
\(647\) −37.9570 −1.49224 −0.746121 0.665811i \(-0.768086\pi\)
−0.746121 + 0.665811i \(0.768086\pi\)
\(648\) 6.50093 0.255381
\(649\) 16.2777 0.638955
\(650\) 0 0
\(651\) 14.4865 0.567773
\(652\) −32.1382 −1.25863
\(653\) 36.9847 1.44732 0.723662 0.690155i \(-0.242457\pi\)
0.723662 + 0.690155i \(0.242457\pi\)
\(654\) −5.10130 −0.199477
\(655\) 0 0
\(656\) 2.90345 0.113361
\(657\) −8.58652 −0.334992
\(658\) 2.50531 0.0976670
\(659\) 29.0956 1.13341 0.566703 0.823922i \(-0.308219\pi\)
0.566703 + 0.823922i \(0.308219\pi\)
\(660\) 0 0
\(661\) 33.6207 1.30769 0.653847 0.756627i \(-0.273154\pi\)
0.653847 + 0.756627i \(0.273154\pi\)
\(662\) −0.146717 −0.00570230
\(663\) 0 0
\(664\) 3.05614 0.118601
\(665\) 0 0
\(666\) 0.676712 0.0262220
\(667\) 4.27078 0.165365
\(668\) 39.4505 1.52639
\(669\) −27.6772 −1.07006
\(670\) 0 0
\(671\) 17.8927 0.690740
\(672\) 5.40758 0.208602
\(673\) −13.1865 −0.508304 −0.254152 0.967164i \(-0.581796\pi\)
−0.254152 + 0.967164i \(0.581796\pi\)
\(674\) 0.908071 0.0349776
\(675\) 0 0
\(676\) 23.3219 0.896994
\(677\) 1.37696 0.0529208 0.0264604 0.999650i \(-0.491576\pi\)
0.0264604 + 0.999650i \(0.491576\pi\)
\(678\) −5.61496 −0.215641
\(679\) 10.4850 0.402378
\(680\) 0 0
\(681\) 30.8246 1.18120
\(682\) −3.29097 −0.126018
\(683\) 10.4181 0.398637 0.199319 0.979935i \(-0.436127\pi\)
0.199319 + 0.979935i \(0.436127\pi\)
\(684\) −7.84827 −0.300086
\(685\) 0 0
\(686\) −2.70864 −0.103416
\(687\) 32.5520 1.24193
\(688\) 36.6801 1.39842
\(689\) −0.0250190 −0.000953146 0
\(690\) 0 0
\(691\) −4.39455 −0.167177 −0.0835883 0.996500i \(-0.526638\pi\)
−0.0835883 + 0.996500i \(0.526638\pi\)
\(692\) 7.74505 0.294423
\(693\) −5.98061 −0.227185
\(694\) 0.805430 0.0305737
\(695\) 0 0
\(696\) 9.50319 0.360218
\(697\) 0 0
\(698\) −3.13437 −0.118638
\(699\) −12.8774 −0.487069
\(700\) 0 0
\(701\) −1.18383 −0.0447127 −0.0223563 0.999750i \(-0.507117\pi\)
−0.0223563 + 0.999750i \(0.507117\pi\)
\(702\) 0.699294 0.0263932
\(703\) 24.6814 0.930876
\(704\) 34.0094 1.28178
\(705\) 0 0
\(706\) 2.27404 0.0855845
\(707\) −12.6942 −0.477416
\(708\) 13.8468 0.520394
\(709\) 13.3650 0.501932 0.250966 0.967996i \(-0.419252\pi\)
0.250966 + 0.967996i \(0.419252\pi\)
\(710\) 0 0
\(711\) −12.2387 −0.458987
\(712\) 10.5758 0.396346
\(713\) −2.53072 −0.0947762
\(714\) 0 0
\(715\) 0 0
\(716\) −6.21178 −0.232145
\(717\) −14.9532 −0.558437
\(718\) −1.46896 −0.0548212
\(719\) −14.1925 −0.529292 −0.264646 0.964346i \(-0.585255\pi\)
−0.264646 + 0.964346i \(0.585255\pi\)
\(720\) 0 0
\(721\) 26.6772 0.993512
\(722\) 0.431488 0.0160583
\(723\) −13.5283 −0.503123
\(724\) 1.54635 0.0574695
\(725\) 0 0
\(726\) 2.90110 0.107670
\(727\) −33.0852 −1.22706 −0.613530 0.789671i \(-0.710251\pi\)
−0.613530 + 0.789671i \(0.710251\pi\)
\(728\) 1.01808 0.0377327
\(729\) 15.6458 0.579475
\(730\) 0 0
\(731\) 0 0
\(732\) 15.2206 0.562570
\(733\) −14.0451 −0.518767 −0.259383 0.965774i \(-0.583519\pi\)
−0.259383 + 0.965774i \(0.583519\pi\)
\(734\) 1.30230 0.0480688
\(735\) 0 0
\(736\) −0.944674 −0.0348212
\(737\) 44.5030 1.63929
\(738\) 0.0963262 0.00354582
\(739\) −5.14831 −0.189384 −0.0946918 0.995507i \(-0.530187\pi\)
−0.0946918 + 0.995507i \(0.530187\pi\)
\(740\) 0 0
\(741\) −10.0672 −0.369827
\(742\) 0.00531642 0.000195172 0
\(743\) −26.8978 −0.986784 −0.493392 0.869807i \(-0.664243\pi\)
−0.493392 + 0.869807i \(0.664243\pi\)
\(744\) −5.63127 −0.206452
\(745\) 0 0
\(746\) 2.27863 0.0834264
\(747\) −4.32108 −0.158100
\(748\) 0 0
\(749\) −23.7688 −0.868494
\(750\) 0 0
\(751\) −13.5733 −0.495295 −0.247648 0.968850i \(-0.579657\pi\)
−0.247648 + 0.968850i \(0.579657\pi\)
\(752\) 41.5042 1.51350
\(753\) −50.6808 −1.84691
\(754\) 1.33673 0.0486809
\(755\) 0 0
\(756\) 12.8890 0.468770
\(757\) −9.44665 −0.343344 −0.171672 0.985154i \(-0.554917\pi\)
−0.171672 + 0.985154i \(0.554917\pi\)
\(758\) 1.61737 0.0587455
\(759\) 4.73650 0.171924
\(760\) 0 0
\(761\) −26.6325 −0.965427 −0.482713 0.875778i \(-0.660349\pi\)
−0.482713 + 0.875778i \(0.660349\pi\)
\(762\) 4.62448 0.167527
\(763\) −26.6037 −0.963120
\(764\) −24.5478 −0.888109
\(765\) 0 0
\(766\) −2.39560 −0.0865565
\(767\) 3.91787 0.141466
\(768\) 27.8734 1.00579
\(769\) −17.9587 −0.647609 −0.323805 0.946124i \(-0.604962\pi\)
−0.323805 + 0.946124i \(0.604962\pi\)
\(770\) 0 0
\(771\) 35.0180 1.26114
\(772\) 3.37045 0.121305
\(773\) −17.0705 −0.613984 −0.306992 0.951712i \(-0.599323\pi\)
−0.306992 + 0.951712i \(0.599323\pi\)
\(774\) 1.21691 0.0437411
\(775\) 0 0
\(776\) −4.07578 −0.146312
\(777\) 15.9992 0.573967
\(778\) 3.37436 0.120976
\(779\) 3.51326 0.125876
\(780\) 0 0
\(781\) 5.52752 0.197790
\(782\) 0 0
\(783\) 34.0414 1.21654
\(784\) −17.8264 −0.636657
\(785\) 0 0
\(786\) 1.41981 0.0506428
\(787\) 18.3219 0.653104 0.326552 0.945179i \(-0.394113\pi\)
0.326552 + 0.945179i \(0.394113\pi\)
\(788\) −32.1800 −1.14636
\(789\) −28.1426 −1.00190
\(790\) 0 0
\(791\) −29.2825 −1.04117
\(792\) 2.32481 0.0826084
\(793\) 4.30658 0.152931
\(794\) 4.72573 0.167710
\(795\) 0 0
\(796\) 33.9973 1.20500
\(797\) 16.4573 0.582949 0.291474 0.956579i \(-0.405854\pi\)
0.291474 + 0.956579i \(0.405854\pi\)
\(798\) 2.13923 0.0757279
\(799\) 0 0
\(800\) 0 0
\(801\) −14.9532 −0.528345
\(802\) −4.83701 −0.170801
\(803\) 46.1180 1.62747
\(804\) 37.8569 1.33511
\(805\) 0 0
\(806\) −0.792102 −0.0279006
\(807\) 7.67438 0.270151
\(808\) 4.93455 0.173597
\(809\) −19.3869 −0.681607 −0.340804 0.940134i \(-0.610699\pi\)
−0.340804 + 0.940134i \(0.610699\pi\)
\(810\) 0 0
\(811\) 27.4015 0.962196 0.481098 0.876667i \(-0.340238\pi\)
0.481098 + 0.876667i \(0.340238\pi\)
\(812\) 24.6380 0.864623
\(813\) 55.8139 1.95748
\(814\) −3.63460 −0.127393
\(815\) 0 0
\(816\) 0 0
\(817\) 44.3840 1.55280
\(818\) −3.24664 −0.113516
\(819\) −1.43947 −0.0502992
\(820\) 0 0
\(821\) −20.6646 −0.721198 −0.360599 0.932721i \(-0.617428\pi\)
−0.360599 + 0.932721i \(0.617428\pi\)
\(822\) −4.64305 −0.161945
\(823\) −0.983957 −0.0342986 −0.0171493 0.999853i \(-0.505459\pi\)
−0.0171493 + 0.999853i \(0.505459\pi\)
\(824\) −10.3701 −0.361259
\(825\) 0 0
\(826\) −0.832530 −0.0289674
\(827\) −15.5237 −0.539811 −0.269906 0.962887i \(-0.586992\pi\)
−0.269906 + 0.962887i \(0.586992\pi\)
\(828\) 0.888753 0.0308863
\(829\) −41.6910 −1.44799 −0.723994 0.689806i \(-0.757696\pi\)
−0.723994 + 0.689806i \(0.757696\pi\)
\(830\) 0 0
\(831\) −50.3890 −1.74798
\(832\) 8.18571 0.283788
\(833\) 0 0
\(834\) −2.46757 −0.0854449
\(835\) 0 0
\(836\) 42.1528 1.45789
\(837\) −20.1718 −0.697238
\(838\) 2.52508 0.0872274
\(839\) −11.0633 −0.381949 −0.190974 0.981595i \(-0.561165\pi\)
−0.190974 + 0.981595i \(0.561165\pi\)
\(840\) 0 0
\(841\) 36.0716 1.24385
\(842\) −2.56474 −0.0883869
\(843\) −40.7421 −1.40323
\(844\) 3.97493 0.136823
\(845\) 0 0
\(846\) 1.37696 0.0473408
\(847\) 15.1295 0.519855
\(848\) 0.0880745 0.00302449
\(849\) 48.0053 1.64754
\(850\) 0 0
\(851\) −2.79497 −0.0958103
\(852\) 4.70204 0.161089
\(853\) −16.9575 −0.580615 −0.290307 0.956933i \(-0.593758\pi\)
−0.290307 + 0.956933i \(0.593758\pi\)
\(854\) −0.915130 −0.0313151
\(855\) 0 0
\(856\) 9.23951 0.315800
\(857\) 21.7394 0.742605 0.371302 0.928512i \(-0.378911\pi\)
0.371302 + 0.928512i \(0.378911\pi\)
\(858\) 1.48250 0.0506117
\(859\) 31.5036 1.07489 0.537444 0.843300i \(-0.319390\pi\)
0.537444 + 0.843300i \(0.319390\pi\)
\(860\) 0 0
\(861\) 2.27740 0.0776134
\(862\) 2.58087 0.0879048
\(863\) −12.4798 −0.424817 −0.212408 0.977181i \(-0.568131\pi\)
−0.212408 + 0.977181i \(0.568131\pi\)
\(864\) −7.52977 −0.256168
\(865\) 0 0
\(866\) −1.50262 −0.0510611
\(867\) 0 0
\(868\) −14.5996 −0.495543
\(869\) 65.7338 2.22987
\(870\) 0 0
\(871\) 10.7114 0.362942
\(872\) 10.3415 0.350208
\(873\) 5.76275 0.195039
\(874\) −0.373712 −0.0126410
\(875\) 0 0
\(876\) 39.2307 1.32548
\(877\) −14.5835 −0.492450 −0.246225 0.969213i \(-0.579190\pi\)
−0.246225 + 0.969213i \(0.579190\pi\)
\(878\) −0.442186 −0.0149231
\(879\) −55.3159 −1.86576
\(880\) 0 0
\(881\) 12.4663 0.420001 0.210001 0.977701i \(-0.432653\pi\)
0.210001 + 0.977701i \(0.432653\pi\)
\(882\) −0.591416 −0.0199140
\(883\) −52.0737 −1.75242 −0.876209 0.481931i \(-0.839936\pi\)
−0.876209 + 0.481931i \(0.839936\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.117536 0.00394869
\(887\) 46.1318 1.54895 0.774477 0.632602i \(-0.218013\pi\)
0.774477 + 0.632602i \(0.218013\pi\)
\(888\) −6.21926 −0.208705
\(889\) 24.1171 0.808860
\(890\) 0 0
\(891\) 49.3682 1.65390
\(892\) 27.8932 0.933934
\(893\) 50.2212 1.68059
\(894\) −0.920433 −0.0307839
\(895\) 0 0
\(896\) −7.25204 −0.242274
\(897\) 1.14003 0.0380643
\(898\) 4.72273 0.157600
\(899\) −38.5592 −1.28602
\(900\) 0 0
\(901\) 0 0
\(902\) −0.517365 −0.0172264
\(903\) 28.7710 0.957437
\(904\) 11.3828 0.378587
\(905\) 0 0
\(906\) 3.08316 0.102431
\(907\) −2.91050 −0.0966415 −0.0483207 0.998832i \(-0.515387\pi\)
−0.0483207 + 0.998832i \(0.515387\pi\)
\(908\) −31.0652 −1.03093
\(909\) −6.97697 −0.231412
\(910\) 0 0
\(911\) 41.7029 1.38168 0.690839 0.723009i \(-0.257241\pi\)
0.690839 + 0.723009i \(0.257241\pi\)
\(912\) 35.4396 1.17352
\(913\) 23.2084 0.768086
\(914\) 0.542420 0.0179416
\(915\) 0 0
\(916\) −32.8060 −1.08394
\(917\) 7.40441 0.244515
\(918\) 0 0
\(919\) −2.60146 −0.0858144 −0.0429072 0.999079i \(-0.513662\pi\)
−0.0429072 + 0.999079i \(0.513662\pi\)
\(920\) 0 0
\(921\) −0.0236595 −0.000779608 0
\(922\) −0.997063 −0.0328365
\(923\) 1.33042 0.0437912
\(924\) 27.3246 0.898915
\(925\) 0 0
\(926\) −1.65326 −0.0543296
\(927\) 14.6623 0.481572
\(928\) −14.3935 −0.472490
\(929\) −5.89744 −0.193489 −0.0967443 0.995309i \(-0.530843\pi\)
−0.0967443 + 0.995309i \(0.530843\pi\)
\(930\) 0 0
\(931\) −21.5704 −0.706943
\(932\) 12.9779 0.425106
\(933\) 56.0325 1.83442
\(934\) −1.52925 −0.0500385
\(935\) 0 0
\(936\) 0.559557 0.0182897
\(937\) 58.2446 1.90277 0.951383 0.308010i \(-0.0996629\pi\)
0.951383 + 0.308010i \(0.0996629\pi\)
\(938\) −2.27613 −0.0743181
\(939\) 8.07694 0.263581
\(940\) 0 0
\(941\) −28.2631 −0.921350 −0.460675 0.887569i \(-0.652393\pi\)
−0.460675 + 0.887569i \(0.652393\pi\)
\(942\) −0.196079 −0.00638861
\(943\) −0.397848 −0.0129557
\(944\) −13.7921 −0.448895
\(945\) 0 0
\(946\) −6.53602 −0.212504
\(947\) 31.3759 1.01958 0.509789 0.860299i \(-0.329723\pi\)
0.509789 + 0.860299i \(0.329723\pi\)
\(948\) 55.9171 1.81610
\(949\) 11.1001 0.360325
\(950\) 0 0
\(951\) −40.4731 −1.31243
\(952\) 0 0
\(953\) 27.2735 0.883476 0.441738 0.897144i \(-0.354362\pi\)
0.441738 + 0.897144i \(0.354362\pi\)
\(954\) 0.00292200 9.46031e−5 0
\(955\) 0 0
\(956\) 15.0699 0.487396
\(957\) 72.1675 2.33284
\(958\) 1.16714 0.0377085
\(959\) −24.2139 −0.781908
\(960\) 0 0
\(961\) −8.15111 −0.262939
\(962\) −0.874810 −0.0282050
\(963\) −13.0638 −0.420974
\(964\) 13.6339 0.439118
\(965\) 0 0
\(966\) −0.242250 −0.00779428
\(967\) −1.30807 −0.0420648 −0.0210324 0.999779i \(-0.506695\pi\)
−0.0210324 + 0.999779i \(0.506695\pi\)
\(968\) −5.88119 −0.189029
\(969\) 0 0
\(970\) 0 0
\(971\) −41.0902 −1.31865 −0.659324 0.751859i \(-0.729157\pi\)
−0.659324 + 0.751859i \(0.729157\pi\)
\(972\) 16.9642 0.544128
\(973\) −12.8686 −0.412548
\(974\) −2.05219 −0.0657566
\(975\) 0 0
\(976\) −15.1605 −0.485276
\(977\) −60.7556 −1.94375 −0.971873 0.235507i \(-0.924325\pi\)
−0.971873 + 0.235507i \(0.924325\pi\)
\(978\) 4.81465 0.153956
\(979\) 80.3132 2.56682
\(980\) 0 0
\(981\) −14.6219 −0.466840
\(982\) 5.86698 0.187223
\(983\) −9.13830 −0.291466 −0.145733 0.989324i \(-0.546554\pi\)
−0.145733 + 0.989324i \(0.546554\pi\)
\(984\) −0.885278 −0.0282216
\(985\) 0 0
\(986\) 0 0
\(987\) 32.5548 1.03623
\(988\) 10.1457 0.322779
\(989\) −5.02613 −0.159822
\(990\) 0 0
\(991\) −33.1886 −1.05427 −0.527135 0.849782i \(-0.676734\pi\)
−0.527135 + 0.849782i \(0.676734\pi\)
\(992\) 8.52909 0.270799
\(993\) −1.90649 −0.0605005
\(994\) −0.282708 −0.00896695
\(995\) 0 0
\(996\) 19.7425 0.625564
\(997\) 30.0746 0.952471 0.476235 0.879318i \(-0.342001\pi\)
0.476235 + 0.879318i \(0.342001\pi\)
\(998\) 4.02958 0.127554
\(999\) −22.2780 −0.704846
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.x.1.3 5
5.4 even 2 7225.2.a.y.1.3 5
17.16 even 2 425.2.a.i.1.3 5
51.50 odd 2 3825.2.a.bq.1.3 5
68.67 odd 2 6800.2.a.bz.1.4 5
85.33 odd 4 425.2.b.f.324.5 10
85.67 odd 4 425.2.b.f.324.6 10
85.84 even 2 425.2.a.j.1.3 yes 5
255.254 odd 2 3825.2.a.bl.1.3 5
340.339 odd 2 6800.2.a.cd.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.3 5 17.16 even 2
425.2.a.j.1.3 yes 5 85.84 even 2
425.2.b.f.324.5 10 85.33 odd 4
425.2.b.f.324.6 10 85.67 odd 4
3825.2.a.bl.1.3 5 255.254 odd 2
3825.2.a.bq.1.3 5 51.50 odd 2
6800.2.a.bz.1.4 5 68.67 odd 2
6800.2.a.cd.1.2 5 340.339 odd 2
7225.2.a.x.1.3 5 1.1 even 1 trivial
7225.2.a.y.1.3 5 5.4 even 2