Properties

Label 425.2.b.f.324.5
Level $425$
Weight $2$
Character 425.324
Analytic conductor $3.394$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(324,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-22,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.229451239931904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{7} + 64x^{6} - 30x^{5} + 2x^{4} + 136x^{3} + 324x^{2} + 180x + 50 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.5
Root \(1.70454 - 1.70454i\) of defining polynomial
Character \(\chi\) \(=\) 425.324
Dual form 425.2.b.f.324.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.150980i q^{2} -1.96189i q^{3} +1.97720 q^{4} -0.296207 q^{6} +1.54475i q^{7} -0.600480i q^{8} -0.849020 q^{9} +4.56006 q^{11} -3.87906i q^{12} -1.09756i q^{13} +0.233227 q^{14} +3.86375 q^{16} -1.00000i q^{17} +0.128185i q^{18} -4.67524 q^{19} +3.03063 q^{21} -0.688480i q^{22} +0.529434i q^{23} -1.17808 q^{24} -0.165710 q^{26} -4.21999i q^{27} +3.05428i q^{28} -8.06670 q^{29} -4.78005 q^{31} -1.78431i q^{32} -8.94634i q^{33} -0.150980 q^{34} -1.67869 q^{36} +5.27917i q^{37} +0.705870i q^{38} -2.15329 q^{39} -0.751460 q^{41} -0.457565i q^{42} +9.49340i q^{43} +9.01617 q^{44} +0.0799341 q^{46} -10.7419i q^{47} -7.58026i q^{48} +4.61376 q^{49} -1.96189 q^{51} -2.17010i q^{52} +0.0227951i q^{53} -0.637136 q^{54} +0.927590 q^{56} +9.17232i q^{57} +1.21791i q^{58} +3.56962 q^{59} +3.92378 q^{61} +0.721694i q^{62} -1.31152i q^{63} +7.45810 q^{64} -1.35072 q^{66} +9.75929i q^{67} -1.97720i q^{68} +1.03869 q^{69} +1.21216 q^{71} +0.509819i q^{72} +10.1135i q^{73} +0.797051 q^{74} -9.24392 q^{76} +7.04414i q^{77} +0.325105i q^{78} -14.4151 q^{79} -10.8262 q^{81} +0.113456i q^{82} -5.08949i q^{83} +5.99217 q^{84} +1.43332 q^{86} +15.8260i q^{87} -2.73822i q^{88} +17.6123 q^{89} +1.69545 q^{91} +1.04680i q^{92} +9.37794i q^{93} -1.62182 q^{94} -3.50062 q^{96} +6.78753i q^{97} -0.696587i q^{98} -3.87158 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 22 q^{4} + 6 q^{6} - 12 q^{9} + 8 q^{11} + 14 q^{14} + 54 q^{16} - 12 q^{19} - 10 q^{21} + 38 q^{24} - 10 q^{26} - 4 q^{29} + 42 q^{31} + 2 q^{34} + 44 q^{36} - 46 q^{39} - 16 q^{41} + 8 q^{44} - 12 q^{46}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.150980i − 0.106759i −0.998574 0.0533796i \(-0.983001\pi\)
0.998574 0.0533796i \(-0.0169993\pi\)
\(3\) − 1.96189i − 1.13270i −0.824165 0.566349i \(-0.808355\pi\)
0.824165 0.566349i \(-0.191645\pi\)
\(4\) 1.97720 0.988602
\(5\) 0 0
\(6\) −0.296207 −0.120926
\(7\) 1.54475i 0.583859i 0.956440 + 0.291930i \(0.0942973\pi\)
−0.956440 + 0.291930i \(0.905703\pi\)
\(8\) − 0.600480i − 0.212302i
\(9\) −0.849020 −0.283007
\(10\) 0 0
\(11\) 4.56006 1.37491 0.687455 0.726227i \(-0.258728\pi\)
0.687455 + 0.726227i \(0.258728\pi\)
\(12\) − 3.87906i − 1.11979i
\(13\) − 1.09756i − 0.304408i −0.988349 0.152204i \(-0.951363\pi\)
0.988349 0.152204i \(-0.0486371\pi\)
\(14\) 0.233227 0.0623324
\(15\) 0 0
\(16\) 3.86375 0.965937
\(17\) − 1.00000i − 0.242536i
\(18\) 0.128185i 0.0302136i
\(19\) −4.67524 −1.07257 −0.536287 0.844036i \(-0.680174\pi\)
−0.536287 + 0.844036i \(0.680174\pi\)
\(20\) 0 0
\(21\) 3.03063 0.661337
\(22\) − 0.688480i − 0.146784i
\(23\) 0.529434i 0.110395i 0.998475 + 0.0551973i \(0.0175788\pi\)
−0.998475 + 0.0551973i \(0.982421\pi\)
\(24\) −1.17808 −0.240474
\(25\) 0 0
\(26\) −0.165710 −0.0324984
\(27\) − 4.21999i − 0.812138i
\(28\) 3.05428i 0.577205i
\(29\) −8.06670 −1.49795 −0.748974 0.662599i \(-0.769453\pi\)
−0.748974 + 0.662599i \(0.769453\pi\)
\(30\) 0 0
\(31\) −4.78005 −0.858522 −0.429261 0.903180i \(-0.641226\pi\)
−0.429261 + 0.903180i \(0.641226\pi\)
\(32\) − 1.78431i − 0.315425i
\(33\) − 8.94634i − 1.55736i
\(34\) −0.150980 −0.0258929
\(35\) 0 0
\(36\) −1.67869 −0.279781
\(37\) 5.27917i 0.867889i 0.900939 + 0.433945i \(0.142879\pi\)
−0.900939 + 0.433945i \(0.857121\pi\)
\(38\) 0.705870i 0.114507i
\(39\) −2.15329 −0.344803
\(40\) 0 0
\(41\) −0.751460 −0.117358 −0.0586792 0.998277i \(-0.518689\pi\)
−0.0586792 + 0.998277i \(0.518689\pi\)
\(42\) − 0.457565i − 0.0706038i
\(43\) 9.49340i 1.44773i 0.689941 + 0.723865i \(0.257636\pi\)
−0.689941 + 0.723865i \(0.742364\pi\)
\(44\) 9.01617 1.35924
\(45\) 0 0
\(46\) 0.0799341 0.0117856
\(47\) − 10.7419i − 1.56687i −0.621472 0.783437i \(-0.713465\pi\)
0.621472 0.783437i \(-0.286535\pi\)
\(48\) − 7.58026i − 1.09412i
\(49\) 4.61376 0.659108
\(50\) 0 0
\(51\) −1.96189 −0.274720
\(52\) − 2.17010i − 0.300939i
\(53\) 0.0227951i 0.00313115i 0.999999 + 0.00156557i \(0.000498337\pi\)
−0.999999 + 0.00156557i \(0.999502\pi\)
\(54\) −0.637136 −0.0867032
\(55\) 0 0
\(56\) 0.927590 0.123954
\(57\) 9.17232i 1.21490i
\(58\) 1.21791i 0.159920i
\(59\) 3.56962 0.464725 0.232362 0.972629i \(-0.425354\pi\)
0.232362 + 0.972629i \(0.425354\pi\)
\(60\) 0 0
\(61\) 3.92378 0.502389 0.251195 0.967937i \(-0.419177\pi\)
0.251195 + 0.967937i \(0.419177\pi\)
\(62\) 0.721694i 0.0916552i
\(63\) − 1.31152i − 0.165236i
\(64\) 7.45810 0.932263
\(65\) 0 0
\(66\) −1.35072 −0.166262
\(67\) 9.75929i 1.19229i 0.802878 + 0.596144i \(0.203301\pi\)
−0.802878 + 0.596144i \(0.796699\pi\)
\(68\) − 1.97720i − 0.239771i
\(69\) 1.03869 0.125044
\(70\) 0 0
\(71\) 1.21216 0.143857 0.0719285 0.997410i \(-0.477085\pi\)
0.0719285 + 0.997410i \(0.477085\pi\)
\(72\) 0.509819i 0.0600828i
\(73\) 10.1135i 1.18369i 0.806052 + 0.591845i \(0.201600\pi\)
−0.806052 + 0.591845i \(0.798400\pi\)
\(74\) 0.797051 0.0926552
\(75\) 0 0
\(76\) −9.24392 −1.06035
\(77\) 7.04414i 0.802754i
\(78\) 0.325105i 0.0368109i
\(79\) −14.4151 −1.62183 −0.810913 0.585166i \(-0.801029\pi\)
−0.810913 + 0.585166i \(0.801029\pi\)
\(80\) 0 0
\(81\) −10.8262 −1.20291
\(82\) 0.113456i 0.0125291i
\(83\) − 5.08949i − 0.558644i −0.960197 0.279322i \(-0.909890\pi\)
0.960197 0.279322i \(-0.0901098\pi\)
\(84\) 5.99217 0.653799
\(85\) 0 0
\(86\) 1.43332 0.154559
\(87\) 15.8260i 1.69672i
\(88\) − 2.73822i − 0.291896i
\(89\) 17.6123 1.86690 0.933450 0.358707i \(-0.116782\pi\)
0.933450 + 0.358707i \(0.116782\pi\)
\(90\) 0 0
\(91\) 1.69545 0.177732
\(92\) 1.04680i 0.109136i
\(93\) 9.37794i 0.972447i
\(94\) −1.62182 −0.167278
\(95\) 0 0
\(96\) −3.50062 −0.357281
\(97\) 6.78753i 0.689170i 0.938755 + 0.344585i \(0.111980\pi\)
−0.938755 + 0.344585i \(0.888020\pi\)
\(98\) − 0.696587i − 0.0703659i
\(99\) −3.87158 −0.389108
\(100\) 0 0
\(101\) −8.21768 −0.817690 −0.408845 0.912604i \(-0.634068\pi\)
−0.408845 + 0.912604i \(0.634068\pi\)
\(102\) 0.296207i 0.0293289i
\(103\) 17.2696i 1.70163i 0.525466 + 0.850814i \(0.323891\pi\)
−0.525466 + 0.850814i \(0.676109\pi\)
\(104\) −0.659062 −0.0646264
\(105\) 0 0
\(106\) 0.00344161 0.000334279 0
\(107\) − 15.3869i − 1.48750i −0.668455 0.743752i \(-0.733044\pi\)
0.668455 0.743752i \(-0.266956\pi\)
\(108\) − 8.34379i − 0.802881i
\(109\) −17.2221 −1.64957 −0.824787 0.565443i \(-0.808705\pi\)
−0.824787 + 0.565443i \(0.808705\pi\)
\(110\) 0 0
\(111\) 10.3572 0.983057
\(112\) 5.96851i 0.563972i
\(113\) 18.9562i 1.78325i 0.452777 + 0.891624i \(0.350433\pi\)
−0.452777 + 0.891624i \(0.649567\pi\)
\(114\) 1.38484 0.129702
\(115\) 0 0
\(116\) −15.9495 −1.48088
\(117\) 0.931849i 0.0861495i
\(118\) − 0.538943i − 0.0496137i
\(119\) 1.54475 0.141607
\(120\) 0 0
\(121\) 9.79415 0.890377
\(122\) − 0.592414i − 0.0536347i
\(123\) 1.47428i 0.132932i
\(124\) −9.45114 −0.848737
\(125\) 0 0
\(126\) −0.198014 −0.0176405
\(127\) − 15.6123i − 1.38537i −0.721241 0.692684i \(-0.756428\pi\)
0.721241 0.692684i \(-0.243572\pi\)
\(128\) − 4.69465i − 0.414952i
\(129\) 18.6250 1.63984
\(130\) 0 0
\(131\) −4.79329 −0.418791 −0.209396 0.977831i \(-0.567150\pi\)
−0.209396 + 0.977831i \(0.567150\pi\)
\(132\) − 17.6888i − 1.53961i
\(133\) − 7.22207i − 0.626233i
\(134\) 1.47346 0.127288
\(135\) 0 0
\(136\) −0.600480 −0.0514907
\(137\) 15.6750i 1.33921i 0.742719 + 0.669603i \(0.233536\pi\)
−0.742719 + 0.669603i \(0.766464\pi\)
\(138\) − 0.156822i − 0.0133496i
\(139\) −8.33055 −0.706588 −0.353294 0.935512i \(-0.614938\pi\)
−0.353294 + 0.935512i \(0.614938\pi\)
\(140\) 0 0
\(141\) −21.0745 −1.77480
\(142\) − 0.183012i − 0.0153581i
\(143\) − 5.00494i − 0.418534i
\(144\) −3.28040 −0.273367
\(145\) 0 0
\(146\) 1.52693 0.126370
\(147\) − 9.05169i − 0.746571i
\(148\) 10.4380i 0.857998i
\(149\) 3.10739 0.254568 0.127284 0.991866i \(-0.459374\pi\)
0.127284 + 0.991866i \(0.459374\pi\)
\(150\) 0 0
\(151\) 10.4088 0.847056 0.423528 0.905883i \(-0.360791\pi\)
0.423528 + 0.905883i \(0.360791\pi\)
\(152\) 2.80739i 0.227709i
\(153\) 0.849020i 0.0686392i
\(154\) 1.06353 0.0857014
\(155\) 0 0
\(156\) −4.25750 −0.340873
\(157\) 0.661967i 0.0528307i 0.999651 + 0.0264154i \(0.00840925\pi\)
−0.999651 + 0.0264154i \(0.991591\pi\)
\(158\) 2.17640i 0.173145i
\(159\) 0.0447215 0.00354664
\(160\) 0 0
\(161\) −0.817841 −0.0644549
\(162\) 1.63455i 0.128422i
\(163\) − 16.2543i − 1.27314i −0.771220 0.636569i \(-0.780353\pi\)
0.771220 0.636569i \(-0.219647\pi\)
\(164\) −1.48579 −0.116021
\(165\) 0 0
\(166\) −0.768414 −0.0596405
\(167\) − 19.9527i − 1.54398i −0.635632 0.771992i \(-0.719260\pi\)
0.635632 0.771992i \(-0.280740\pi\)
\(168\) − 1.81983i − 0.140403i
\(169\) 11.7954 0.907336
\(170\) 0 0
\(171\) 3.96937 0.303546
\(172\) 18.7704i 1.43123i
\(173\) 3.91717i 0.297817i 0.988851 + 0.148908i \(0.0475760\pi\)
−0.988851 + 0.148908i \(0.952424\pi\)
\(174\) 2.38941 0.181141
\(175\) 0 0
\(176\) 17.6189 1.32808
\(177\) − 7.00321i − 0.526393i
\(178\) − 2.65911i − 0.199309i
\(179\) −3.14170 −0.234821 −0.117411 0.993083i \(-0.537459\pi\)
−0.117411 + 0.993083i \(0.537459\pi\)
\(180\) 0 0
\(181\) 0.782087 0.0581320 0.0290660 0.999577i \(-0.490747\pi\)
0.0290660 + 0.999577i \(0.490747\pi\)
\(182\) − 0.255980i − 0.0189745i
\(183\) − 7.69804i − 0.569055i
\(184\) 0.317914 0.0234370
\(185\) 0 0
\(186\) 1.41589 0.103818
\(187\) − 4.56006i − 0.333465i
\(188\) − 21.2390i − 1.54901i
\(189\) 6.51882 0.474174
\(190\) 0 0
\(191\) 12.4154 0.898348 0.449174 0.893444i \(-0.351718\pi\)
0.449174 + 0.893444i \(0.351718\pi\)
\(192\) − 14.6320i − 1.05597i
\(193\) 1.70465i 0.122704i 0.998116 + 0.0613518i \(0.0195412\pi\)
−0.998116 + 0.0613518i \(0.980459\pi\)
\(194\) 1.02478 0.0735752
\(195\) 0 0
\(196\) 9.12234 0.651596
\(197\) 16.2755i 1.15958i 0.814766 + 0.579790i \(0.196866\pi\)
−0.814766 + 0.579790i \(0.803134\pi\)
\(198\) 0.584533i 0.0415409i
\(199\) −17.1946 −1.21889 −0.609447 0.792827i \(-0.708608\pi\)
−0.609447 + 0.792827i \(0.708608\pi\)
\(200\) 0 0
\(201\) 19.1467 1.35050
\(202\) 1.24071i 0.0872959i
\(203\) − 12.4610i − 0.874591i
\(204\) −3.87906 −0.271589
\(205\) 0 0
\(206\) 2.60738 0.181665
\(207\) − 0.449500i − 0.0312424i
\(208\) − 4.24069i − 0.294039i
\(209\) −21.3194 −1.47469
\(210\) 0 0
\(211\) 2.01038 0.138400 0.0692000 0.997603i \(-0.477955\pi\)
0.0692000 + 0.997603i \(0.477955\pi\)
\(212\) 0.0450706i 0.00309546i
\(213\) − 2.37813i − 0.162947i
\(214\) −2.32312 −0.158805
\(215\) 0 0
\(216\) −2.53402 −0.172418
\(217\) − 7.38397i − 0.501256i
\(218\) 2.60019i 0.176107i
\(219\) 19.8415 1.34076
\(220\) 0 0
\(221\) −1.09756 −0.0738298
\(222\) − 1.56373i − 0.104950i
\(223\) − 14.1074i − 0.944701i −0.881411 0.472351i \(-0.843406\pi\)
0.881411 0.472351i \(-0.156594\pi\)
\(224\) 2.75631 0.184164
\(225\) 0 0
\(226\) 2.86201 0.190378
\(227\) 15.7117i 1.04282i 0.853306 + 0.521410i \(0.174594\pi\)
−0.853306 + 0.521410i \(0.825406\pi\)
\(228\) 18.1356i 1.20106i
\(229\) −16.5921 −1.09644 −0.548219 0.836335i \(-0.684694\pi\)
−0.548219 + 0.836335i \(0.684694\pi\)
\(230\) 0 0
\(231\) 13.8198 0.909279
\(232\) 4.84389i 0.318017i
\(233\) 6.56378i 0.430007i 0.976613 + 0.215004i \(0.0689764\pi\)
−0.976613 + 0.215004i \(0.931024\pi\)
\(234\) 0.140691 0.00919726
\(235\) 0 0
\(236\) 7.05787 0.459428
\(237\) 28.2809i 1.83704i
\(238\) − 0.233227i − 0.0151178i
\(239\) 7.62182 0.493015 0.246507 0.969141i \(-0.420717\pi\)
0.246507 + 0.969141i \(0.420717\pi\)
\(240\) 0 0
\(241\) 6.89554 0.444181 0.222090 0.975026i \(-0.428712\pi\)
0.222090 + 0.975026i \(0.428712\pi\)
\(242\) − 1.47872i − 0.0950560i
\(243\) 8.57991i 0.550401i
\(244\) 7.75812 0.496663
\(245\) 0 0
\(246\) 0.222588 0.0141917
\(247\) 5.13136i 0.326500i
\(248\) 2.87032i 0.182266i
\(249\) −9.98504 −0.632776
\(250\) 0 0
\(251\) −25.8326 −1.63054 −0.815270 0.579081i \(-0.803411\pi\)
−0.815270 + 0.579081i \(0.803411\pi\)
\(252\) − 2.59314i − 0.163353i
\(253\) 2.41425i 0.151783i
\(254\) −2.35715 −0.147901
\(255\) 0 0
\(256\) 14.2074 0.887963
\(257\) − 17.8491i − 1.11340i −0.830715 0.556698i \(-0.812068\pi\)
0.830715 0.556698i \(-0.187932\pi\)
\(258\) − 2.81201i − 0.175068i
\(259\) −8.15497 −0.506725
\(260\) 0 0
\(261\) 6.84879 0.423929
\(262\) 0.723692i 0.0447099i
\(263\) − 14.3446i − 0.884529i −0.896885 0.442264i \(-0.854175\pi\)
0.896885 0.442264i \(-0.145825\pi\)
\(264\) −5.37210 −0.330630
\(265\) 0 0
\(266\) −1.09039 −0.0668562
\(267\) − 34.5534i − 2.11464i
\(268\) 19.2961i 1.17870i
\(269\) 3.91172 0.238502 0.119251 0.992864i \(-0.461951\pi\)
0.119251 + 0.992864i \(0.461951\pi\)
\(270\) 0 0
\(271\) 28.4490 1.72816 0.864078 0.503358i \(-0.167902\pi\)
0.864078 + 0.503358i \(0.167902\pi\)
\(272\) − 3.86375i − 0.234274i
\(273\) − 3.32629i − 0.201316i
\(274\) 2.36662 0.142973
\(275\) 0 0
\(276\) 2.05371 0.123619
\(277\) − 25.6839i − 1.54320i −0.636111 0.771598i \(-0.719458\pi\)
0.636111 0.771598i \(-0.280542\pi\)
\(278\) 1.25775i 0.0754348i
\(279\) 4.05836 0.242967
\(280\) 0 0
\(281\) −20.7667 −1.23884 −0.619420 0.785060i \(-0.712632\pi\)
−0.619420 + 0.785060i \(0.712632\pi\)
\(282\) 3.18184i 0.189476i
\(283\) − 24.4689i − 1.45452i −0.686360 0.727262i \(-0.740793\pi\)
0.686360 0.727262i \(-0.259207\pi\)
\(284\) 2.39669 0.142217
\(285\) 0 0
\(286\) −0.755647 −0.0446824
\(287\) − 1.16082i − 0.0685208i
\(288\) 1.51491i 0.0892672i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 13.3164 0.780621
\(292\) 19.9964i 1.17020i
\(293\) − 28.1952i − 1.64718i −0.567185 0.823591i \(-0.691967\pi\)
0.567185 0.823591i \(-0.308033\pi\)
\(294\) −1.36663 −0.0797034
\(295\) 0 0
\(296\) 3.17003 0.184254
\(297\) − 19.2434i − 1.11662i
\(298\) − 0.469156i − 0.0271775i
\(299\) 0.581085 0.0336050
\(300\) 0 0
\(301\) −14.6649 −0.845271
\(302\) − 1.57153i − 0.0904311i
\(303\) 16.1222i 0.926196i
\(304\) −18.0640 −1.03604
\(305\) 0 0
\(306\) 0.128185 0.00732787
\(307\) 0.0120595i 0 0.000688275i 1.00000 0.000344137i \(0.000109542\pi\)
−1.00000 0.000344137i \(0.999890\pi\)
\(308\) 13.9277i 0.793605i
\(309\) 33.8812 1.92743
\(310\) 0 0
\(311\) −28.5605 −1.61951 −0.809757 0.586765i \(-0.800401\pi\)
−0.809757 + 0.586765i \(0.800401\pi\)
\(312\) 1.29301i 0.0732022i
\(313\) − 4.11691i − 0.232702i −0.993208 0.116351i \(-0.962880\pi\)
0.993208 0.116351i \(-0.0371197\pi\)
\(314\) 0.0999440 0.00564017
\(315\) 0 0
\(316\) −28.5016 −1.60334
\(317\) − 20.6297i − 1.15868i −0.815087 0.579338i \(-0.803311\pi\)
0.815087 0.579338i \(-0.196689\pi\)
\(318\) − 0.00675207i 0 0.000378637i
\(319\) −36.7846 −2.05954
\(320\) 0 0
\(321\) −30.1874 −1.68489
\(322\) 0.123478i 0.00688116i
\(323\) 4.67524i 0.260138i
\(324\) −21.4057 −1.18920
\(325\) 0 0
\(326\) −2.45409 −0.135919
\(327\) 33.7878i 1.86847i
\(328\) 0.451237i 0.0249154i
\(329\) 16.5936 0.914834
\(330\) 0 0
\(331\) −0.971759 −0.0534127 −0.0267063 0.999643i \(-0.508502\pi\)
−0.0267063 + 0.999643i \(0.508502\pi\)
\(332\) − 10.0630i − 0.552277i
\(333\) − 4.48212i − 0.245618i
\(334\) −3.01246 −0.164835
\(335\) 0 0
\(336\) 11.7096 0.638810
\(337\) 6.01450i 0.327630i 0.986491 + 0.163815i \(0.0523801\pi\)
−0.986491 + 0.163815i \(0.947620\pi\)
\(338\) − 1.78087i − 0.0968665i
\(339\) 37.1900 2.01988
\(340\) 0 0
\(341\) −21.7973 −1.18039
\(342\) − 0.599298i − 0.0324063i
\(343\) 17.9403i 0.968686i
\(344\) 5.70060 0.307356
\(345\) 0 0
\(346\) 0.591416 0.0317947
\(347\) 5.33466i 0.286380i 0.989695 + 0.143190i \(0.0457360\pi\)
−0.989695 + 0.143190i \(0.954264\pi\)
\(348\) 31.2912i 1.67739i
\(349\) 20.7601 1.11126 0.555632 0.831429i \(-0.312476\pi\)
0.555632 + 0.831429i \(0.312476\pi\)
\(350\) 0 0
\(351\) −4.63169 −0.247221
\(352\) − 8.13656i − 0.433680i
\(353\) 15.0618i 0.801659i 0.916153 + 0.400829i \(0.131278\pi\)
−0.916153 + 0.400829i \(0.868722\pi\)
\(354\) −1.05735 −0.0561974
\(355\) 0 0
\(356\) 34.8231 1.84562
\(357\) − 3.03063i − 0.160398i
\(358\) 0.474335i 0.0250694i
\(359\) 9.72949 0.513503 0.256751 0.966477i \(-0.417348\pi\)
0.256751 + 0.966477i \(0.417348\pi\)
\(360\) 0 0
\(361\) 2.85791 0.150416
\(362\) − 0.118080i − 0.00620613i
\(363\) − 19.2151i − 1.00853i
\(364\) 3.35225 0.175706
\(365\) 0 0
\(366\) −1.16225 −0.0607519
\(367\) 8.62563i 0.450254i 0.974329 + 0.225127i \(0.0722797\pi\)
−0.974329 + 0.225127i \(0.927720\pi\)
\(368\) 2.04560i 0.106634i
\(369\) 0.638005 0.0332132
\(370\) 0 0
\(371\) −0.0352126 −0.00182815
\(372\) 18.5421i 0.961364i
\(373\) 15.0922i 0.781444i 0.920509 + 0.390722i \(0.127775\pi\)
−0.920509 + 0.390722i \(0.872225\pi\)
\(374\) −0.688480 −0.0356004
\(375\) 0 0
\(376\) −6.45032 −0.332650
\(377\) 8.85368i 0.455988i
\(378\) − 0.984214i − 0.0506225i
\(379\) 10.7124 0.550261 0.275131 0.961407i \(-0.411279\pi\)
0.275131 + 0.961407i \(0.411279\pi\)
\(380\) 0 0
\(381\) −30.6297 −1.56920
\(382\) − 1.87448i − 0.0959070i
\(383\) − 15.8670i − 0.810764i −0.914147 0.405382i \(-0.867139\pi\)
0.914147 0.405382i \(-0.132861\pi\)
\(384\) −9.21039 −0.470016
\(385\) 0 0
\(386\) 0.257369 0.0130997
\(387\) − 8.06009i − 0.409717i
\(388\) 13.4203i 0.681315i
\(389\) −22.3496 −1.13317 −0.566585 0.824003i \(-0.691736\pi\)
−0.566585 + 0.824003i \(0.691736\pi\)
\(390\) 0 0
\(391\) 0.529434 0.0267746
\(392\) − 2.77047i − 0.139930i
\(393\) 9.40391i 0.474364i
\(394\) 2.45728 0.123796
\(395\) 0 0
\(396\) −7.65491 −0.384674
\(397\) 31.3003i 1.57092i 0.618915 + 0.785458i \(0.287572\pi\)
−0.618915 + 0.785458i \(0.712428\pi\)
\(398\) 2.59605i 0.130128i
\(399\) −14.1689 −0.709333
\(400\) 0 0
\(401\) 32.0373 1.59987 0.799934 0.600088i \(-0.204868\pi\)
0.799934 + 0.600088i \(0.204868\pi\)
\(402\) − 2.89077i − 0.144179i
\(403\) 5.24639i 0.261341i
\(404\) −16.2480 −0.808370
\(405\) 0 0
\(406\) −1.88137 −0.0933707
\(407\) 24.0733i 1.19327i
\(408\) 1.17808i 0.0583235i
\(409\) 21.5037 1.06329 0.531645 0.846968i \(-0.321574\pi\)
0.531645 + 0.846968i \(0.321574\pi\)
\(410\) 0 0
\(411\) 30.7527 1.51692
\(412\) 34.1456i 1.68223i
\(413\) 5.51416i 0.271334i
\(414\) −0.0678656 −0.00333541
\(415\) 0 0
\(416\) −1.95839 −0.0960178
\(417\) 16.3436i 0.800352i
\(418\) 3.21881i 0.157437i
\(419\) 16.7246 0.817048 0.408524 0.912748i \(-0.366044\pi\)
0.408524 + 0.912748i \(0.366044\pi\)
\(420\) 0 0
\(421\) −16.9873 −0.827908 −0.413954 0.910298i \(-0.635853\pi\)
−0.413954 + 0.910298i \(0.635853\pi\)
\(422\) − 0.303528i − 0.0147755i
\(423\) 9.12012i 0.443435i
\(424\) 0.0136880 0.000664748 0
\(425\) 0 0
\(426\) −0.359051 −0.0173961
\(427\) 6.06125i 0.293325i
\(428\) − 30.4230i − 1.47055i
\(429\) −9.81914 −0.474073
\(430\) 0 0
\(431\) −17.0941 −0.823392 −0.411696 0.911321i \(-0.635064\pi\)
−0.411696 + 0.911321i \(0.635064\pi\)
\(432\) − 16.3050i − 0.784474i
\(433\) − 9.95242i − 0.478283i −0.970985 0.239141i \(-0.923134\pi\)
0.970985 0.239141i \(-0.0768659\pi\)
\(434\) −1.11483 −0.0535138
\(435\) 0 0
\(436\) −34.0516 −1.63077
\(437\) − 2.47523i − 0.118406i
\(438\) − 2.99568i − 0.143139i
\(439\) −2.92877 −0.139782 −0.0698912 0.997555i \(-0.522265\pi\)
−0.0698912 + 0.997555i \(0.522265\pi\)
\(440\) 0 0
\(441\) −3.91717 −0.186532
\(442\) 0.165710i 0.00788202i
\(443\) 0.778484i 0.0369869i 0.999829 + 0.0184934i \(0.00588698\pi\)
−0.999829 + 0.0184934i \(0.994113\pi\)
\(444\) 20.4782 0.971853
\(445\) 0 0
\(446\) −2.12994 −0.100856
\(447\) − 6.09637i − 0.288349i
\(448\) 11.5209i 0.544310i
\(449\) 31.2804 1.47621 0.738107 0.674684i \(-0.235720\pi\)
0.738107 + 0.674684i \(0.235720\pi\)
\(450\) 0 0
\(451\) −3.42670 −0.161357
\(452\) 37.4803i 1.76292i
\(453\) − 20.4209i − 0.959460i
\(454\) 2.37215 0.111331
\(455\) 0 0
\(456\) 5.50780 0.257926
\(457\) − 3.59265i − 0.168057i −0.996463 0.0840285i \(-0.973221\pi\)
0.996463 0.0840285i \(-0.0267787\pi\)
\(458\) 2.50509i 0.117055i
\(459\) −4.21999 −0.196972
\(460\) 0 0
\(461\) −6.60392 −0.307575 −0.153788 0.988104i \(-0.549147\pi\)
−0.153788 + 0.988104i \(0.549147\pi\)
\(462\) − 2.08652i − 0.0970739i
\(463\) − 10.9502i − 0.508898i −0.967086 0.254449i \(-0.918106\pi\)
0.967086 0.254449i \(-0.0818941\pi\)
\(464\) −31.1677 −1.44692
\(465\) 0 0
\(466\) 0.991002 0.0459073
\(467\) 10.1288i 0.468704i 0.972152 + 0.234352i \(0.0752968\pi\)
−0.972152 + 0.234352i \(0.924703\pi\)
\(468\) 1.84246i 0.0851676i
\(469\) −15.0756 −0.696128
\(470\) 0 0
\(471\) 1.29871 0.0598413
\(472\) − 2.14349i − 0.0986619i
\(473\) 43.2905i 1.99050i
\(474\) 4.26986 0.196121
\(475\) 0 0
\(476\) 3.05428 0.139993
\(477\) − 0.0193535i 0 0.000886135i
\(478\) − 1.15075i − 0.0526339i
\(479\) 7.73039 0.353211 0.176605 0.984282i \(-0.443488\pi\)
0.176605 + 0.984282i \(0.443488\pi\)
\(480\) 0 0
\(481\) 5.79420 0.264193
\(482\) − 1.04109i − 0.0474204i
\(483\) 1.60452i 0.0730080i
\(484\) 19.3650 0.880229
\(485\) 0 0
\(486\) 1.29540 0.0587605
\(487\) − 13.5925i − 0.615933i −0.951397 0.307966i \(-0.900352\pi\)
0.951397 0.307966i \(-0.0996485\pi\)
\(488\) − 2.35615i − 0.106658i
\(489\) −31.8892 −1.44208
\(490\) 0 0
\(491\) 38.8592 1.75369 0.876846 0.480772i \(-0.159643\pi\)
0.876846 + 0.480772i \(0.159643\pi\)
\(492\) 2.91496i 0.131417i
\(493\) 8.06670i 0.363306i
\(494\) 0.774734 0.0348569
\(495\) 0 0
\(496\) −18.4689 −0.829279
\(497\) 1.87248i 0.0839922i
\(498\) 1.50754i 0.0675547i
\(499\) 26.6894 1.19478 0.597391 0.801950i \(-0.296204\pi\)
0.597391 + 0.801950i \(0.296204\pi\)
\(500\) 0 0
\(501\) −39.1450 −1.74887
\(502\) 3.90022i 0.174075i
\(503\) − 0.591853i − 0.0263894i −0.999913 0.0131947i \(-0.995800\pi\)
0.999913 0.0131947i \(-0.00420013\pi\)
\(504\) −0.787542 −0.0350799
\(505\) 0 0
\(506\) 0.364504 0.0162042
\(507\) − 23.1412i − 1.02774i
\(508\) − 30.8687i − 1.36958i
\(509\) −11.6397 −0.515922 −0.257961 0.966155i \(-0.583051\pi\)
−0.257961 + 0.966155i \(0.583051\pi\)
\(510\) 0 0
\(511\) −15.6227 −0.691109
\(512\) − 11.5343i − 0.509750i
\(513\) 19.7295i 0.871078i
\(514\) −2.69486 −0.118865
\(515\) 0 0
\(516\) 36.8255 1.62115
\(517\) − 48.9839i − 2.15431i
\(518\) 1.23124i 0.0540976i
\(519\) 7.68506 0.337337
\(520\) 0 0
\(521\) −11.5584 −0.506382 −0.253191 0.967416i \(-0.581480\pi\)
−0.253191 + 0.967416i \(0.581480\pi\)
\(522\) − 1.03403i − 0.0452584i
\(523\) 14.5087i 0.634420i 0.948355 + 0.317210i \(0.102746\pi\)
−0.948355 + 0.317210i \(0.897254\pi\)
\(524\) −9.47731 −0.414018
\(525\) 0 0
\(526\) −2.16576 −0.0944316
\(527\) 4.78005i 0.208222i
\(528\) − 34.5664i − 1.50431i
\(529\) 22.7197 0.987813
\(530\) 0 0
\(531\) −3.03068 −0.131520
\(532\) − 14.2795i − 0.619095i
\(533\) 0.824772i 0.0357249i
\(534\) −5.21689 −0.225757
\(535\) 0 0
\(536\) 5.86026 0.253125
\(537\) 6.16367i 0.265982i
\(538\) − 0.590594i − 0.0254623i
\(539\) 21.0390 0.906214
\(540\) 0 0
\(541\) −3.23241 −0.138972 −0.0694860 0.997583i \(-0.522136\pi\)
−0.0694860 + 0.997583i \(0.522136\pi\)
\(542\) − 4.29525i − 0.184497i
\(543\) − 1.53437i − 0.0658461i
\(544\) −1.78431 −0.0765017
\(545\) 0 0
\(546\) −0.502205 −0.0214924
\(547\) − 38.7154i − 1.65535i −0.561206 0.827676i \(-0.689662\pi\)
0.561206 0.827676i \(-0.310338\pi\)
\(548\) 30.9927i 1.32394i
\(549\) −3.33137 −0.142179
\(550\) 0 0
\(551\) 37.7138 1.60666
\(552\) − 0.623714i − 0.0265470i
\(553\) − 22.2677i − 0.946919i
\(554\) −3.87777 −0.164750
\(555\) 0 0
\(556\) −16.4712 −0.698535
\(557\) − 0.669168i − 0.0283536i −0.999900 0.0141768i \(-0.995487\pi\)
0.999900 0.0141768i \(-0.00451276\pi\)
\(558\) − 0.612732i − 0.0259390i
\(559\) 10.4196 0.440701
\(560\) 0 0
\(561\) −8.94634 −0.377715
\(562\) 3.13537i 0.132258i
\(563\) − 42.4772i − 1.79020i −0.445864 0.895101i \(-0.647104\pi\)
0.445864 0.895101i \(-0.352896\pi\)
\(564\) −41.6687 −1.75457
\(565\) 0 0
\(566\) −3.69432 −0.155284
\(567\) − 16.7238i − 0.702333i
\(568\) − 0.727878i − 0.0305411i
\(569\) −36.3706 −1.52474 −0.762368 0.647143i \(-0.775964\pi\)
−0.762368 + 0.647143i \(0.775964\pi\)
\(570\) 0 0
\(571\) 26.5970 1.11305 0.556525 0.830831i \(-0.312134\pi\)
0.556525 + 0.830831i \(0.312134\pi\)
\(572\) − 9.89578i − 0.413763i
\(573\) − 24.3577i − 1.01756i
\(574\) −0.175260 −0.00731523
\(575\) 0 0
\(576\) −6.33207 −0.263836
\(577\) 2.30741i 0.0960586i 0.998846 + 0.0480293i \(0.0152941\pi\)
−0.998846 + 0.0480293i \(0.984706\pi\)
\(578\) 0.150980i 0.00627996i
\(579\) 3.34434 0.138986
\(580\) 0 0
\(581\) 7.86198 0.326170
\(582\) − 2.01052i − 0.0833386i
\(583\) 0.103947i 0.00430504i
\(584\) 6.07293 0.251300
\(585\) 0 0
\(586\) −4.25692 −0.175852
\(587\) − 25.8915i − 1.06866i −0.845277 0.534329i \(-0.820564\pi\)
0.845277 0.534329i \(-0.179436\pi\)
\(588\) − 17.8971i − 0.738062i
\(589\) 22.3479 0.920829
\(590\) 0 0
\(591\) 31.9308 1.31346
\(592\) 20.3974i 0.838327i
\(593\) 42.0620i 1.72728i 0.504109 + 0.863640i \(0.331821\pi\)
−0.504109 + 0.863640i \(0.668179\pi\)
\(594\) −2.90538 −0.119209
\(595\) 0 0
\(596\) 6.14396 0.251666
\(597\) 33.7340i 1.38064i
\(598\) − 0.0877324i − 0.00358765i
\(599\) −23.6399 −0.965902 −0.482951 0.875647i \(-0.660435\pi\)
−0.482951 + 0.875647i \(0.660435\pi\)
\(600\) 0 0
\(601\) −9.89731 −0.403720 −0.201860 0.979414i \(-0.564699\pi\)
−0.201860 + 0.979414i \(0.564699\pi\)
\(602\) 2.21411i 0.0902405i
\(603\) − 8.28583i − 0.337425i
\(604\) 20.5803 0.837402
\(605\) 0 0
\(606\) 2.43414 0.0988800
\(607\) − 29.5988i − 1.20138i −0.799483 0.600688i \(-0.794893\pi\)
0.799483 0.600688i \(-0.205107\pi\)
\(608\) 8.34209i 0.338316i
\(609\) −24.4471 −0.990648
\(610\) 0 0
\(611\) −11.7899 −0.476969
\(612\) 1.67869i 0.0678568i
\(613\) 13.6657i 0.551953i 0.961164 + 0.275977i \(0.0890013\pi\)
−0.961164 + 0.275977i \(0.910999\pi\)
\(614\) 0.00182076 7.34797e−5 0
\(615\) 0 0
\(616\) 4.22986 0.170426
\(617\) − 41.8255i − 1.68383i −0.539609 0.841916i \(-0.681428\pi\)
0.539609 0.841916i \(-0.318572\pi\)
\(618\) − 5.11539i − 0.205771i
\(619\) −17.8194 −0.716221 −0.358110 0.933679i \(-0.616579\pi\)
−0.358110 + 0.933679i \(0.616579\pi\)
\(620\) 0 0
\(621\) 2.23421 0.0896556
\(622\) 4.31207i 0.172898i
\(623\) 27.2066i 1.09001i
\(624\) −8.31978 −0.333058
\(625\) 0 0
\(626\) −0.621573 −0.0248431
\(627\) 41.8263i 1.67038i
\(628\) 1.30884i 0.0522286i
\(629\) 5.27917 0.210494
\(630\) 0 0
\(631\) 32.6557 1.30000 0.650001 0.759934i \(-0.274769\pi\)
0.650001 + 0.759934i \(0.274769\pi\)
\(632\) 8.65599i 0.344317i
\(633\) − 3.94414i − 0.156766i
\(634\) −3.11467 −0.123699
\(635\) 0 0
\(636\) 0.0884235 0.00350622
\(637\) − 5.06387i − 0.200638i
\(638\) 5.55376i 0.219875i
\(639\) −1.02915 −0.0407124
\(640\) 0 0
\(641\) 25.0356 0.988845 0.494422 0.869222i \(-0.335380\pi\)
0.494422 + 0.869222i \(0.335380\pi\)
\(642\) 4.55770i 0.179878i
\(643\) − 12.4048i − 0.489196i −0.969625 0.244598i \(-0.921344\pi\)
0.969625 0.244598i \(-0.0786560\pi\)
\(644\) −1.61704 −0.0637203
\(645\) 0 0
\(646\) 0.705870 0.0277721
\(647\) 37.9570i 1.49224i 0.665811 + 0.746121i \(0.268086\pi\)
−0.665811 + 0.746121i \(0.731914\pi\)
\(648\) 6.50093i 0.255381i
\(649\) 16.2777 0.638955
\(650\) 0 0
\(651\) −14.4865 −0.567773
\(652\) − 32.1382i − 1.25863i
\(653\) − 36.9847i − 1.44732i −0.690155 0.723662i \(-0.742457\pi\)
0.690155 0.723662i \(-0.257543\pi\)
\(654\) 5.10130 0.199477
\(655\) 0 0
\(656\) −2.90345 −0.113361
\(657\) − 8.58652i − 0.334992i
\(658\) − 2.50531i − 0.0976670i
\(659\) −29.0956 −1.13341 −0.566703 0.823922i \(-0.691781\pi\)
−0.566703 + 0.823922i \(0.691781\pi\)
\(660\) 0 0
\(661\) 33.6207 1.30769 0.653847 0.756627i \(-0.273154\pi\)
0.653847 + 0.756627i \(0.273154\pi\)
\(662\) 0.146717i 0.00570230i
\(663\) 2.15329i 0.0836269i
\(664\) −3.05614 −0.118601
\(665\) 0 0
\(666\) −0.676712 −0.0262220
\(667\) − 4.27078i − 0.165365i
\(668\) − 39.4505i − 1.52639i
\(669\) −27.6772 −1.07006
\(670\) 0 0
\(671\) 17.8927 0.690740
\(672\) − 5.40758i − 0.208602i
\(673\) 13.1865i 0.508304i 0.967164 + 0.254152i \(0.0817964\pi\)
−0.967164 + 0.254152i \(0.918204\pi\)
\(674\) 0.908071 0.0349776
\(675\) 0 0
\(676\) 23.3219 0.896994
\(677\) 1.37696i 0.0529208i 0.999650 + 0.0264604i \(0.00842360\pi\)
−0.999650 + 0.0264604i \(0.991576\pi\)
\(678\) − 5.61496i − 0.215641i
\(679\) −10.4850 −0.402378
\(680\) 0 0
\(681\) 30.8246 1.18120
\(682\) 3.29097i 0.126018i
\(683\) − 10.4181i − 0.398637i −0.979935 0.199319i \(-0.936127\pi\)
0.979935 0.199319i \(-0.0638729\pi\)
\(684\) 7.84827 0.300086
\(685\) 0 0
\(686\) 2.70864 0.103416
\(687\) 32.5520i 1.24193i
\(688\) 36.6801i 1.39842i
\(689\) 0.0250190 0.000953146 0
\(690\) 0 0
\(691\) 4.39455 0.167177 0.0835883 0.996500i \(-0.473362\pi\)
0.0835883 + 0.996500i \(0.473362\pi\)
\(692\) 7.74505i 0.294423i
\(693\) − 5.98061i − 0.227185i
\(694\) 0.805430 0.0305737
\(695\) 0 0
\(696\) 9.50319 0.360218
\(697\) 0.751460i 0.0284636i
\(698\) − 3.13437i − 0.118638i
\(699\) 12.8774 0.487069
\(700\) 0 0
\(701\) −1.18383 −0.0447127 −0.0223563 0.999750i \(-0.507117\pi\)
−0.0223563 + 0.999750i \(0.507117\pi\)
\(702\) 0.699294i 0.0263932i
\(703\) − 24.6814i − 0.930876i
\(704\) 34.0094 1.28178
\(705\) 0 0
\(706\) 2.27404 0.0855845
\(707\) − 12.6942i − 0.477416i
\(708\) − 13.8468i − 0.520394i
\(709\) 13.3650 0.501932 0.250966 0.967996i \(-0.419252\pi\)
0.250966 + 0.967996i \(0.419252\pi\)
\(710\) 0 0
\(711\) 12.2387 0.458987
\(712\) − 10.5758i − 0.396346i
\(713\) − 2.53072i − 0.0947762i
\(714\) −0.457565 −0.0171239
\(715\) 0 0
\(716\) −6.21178 −0.232145
\(717\) − 14.9532i − 0.558437i
\(718\) − 1.46896i − 0.0548212i
\(719\) −14.1925 −0.529292 −0.264646 0.964346i \(-0.585255\pi\)
−0.264646 + 0.964346i \(0.585255\pi\)
\(720\) 0 0
\(721\) −26.6772 −0.993512
\(722\) − 0.431488i − 0.0160583i
\(723\) − 13.5283i − 0.503123i
\(724\) 1.54635 0.0574695
\(725\) 0 0
\(726\) −2.90110 −0.107670
\(727\) 33.0852i 1.22706i 0.789671 + 0.613530i \(0.210251\pi\)
−0.789671 + 0.613530i \(0.789749\pi\)
\(728\) − 1.01808i − 0.0377327i
\(729\) −15.6458 −0.579475
\(730\) 0 0
\(731\) 9.49340 0.351126
\(732\) − 15.2206i − 0.562570i
\(733\) − 14.0451i − 0.518767i −0.965774 0.259383i \(-0.916481\pi\)
0.965774 0.259383i \(-0.0835193\pi\)
\(734\) 1.30230 0.0480688
\(735\) 0 0
\(736\) 0.944674 0.0348212
\(737\) 44.5030i 1.63929i
\(738\) − 0.0963262i − 0.00354582i
\(739\) 5.14831 0.189384 0.0946918 0.995507i \(-0.469813\pi\)
0.0946918 + 0.995507i \(0.469813\pi\)
\(740\) 0 0
\(741\) 10.0672 0.369827
\(742\) 0.00531642i 0 0.000195172i
\(743\) 26.8978i 0.986784i 0.869807 + 0.493392i \(0.164243\pi\)
−0.869807 + 0.493392i \(0.835757\pi\)
\(744\) 5.63127 0.206452
\(745\) 0 0
\(746\) 2.27863 0.0834264
\(747\) 4.32108i 0.158100i
\(748\) − 9.01617i − 0.329664i
\(749\) 23.7688 0.868494
\(750\) 0 0
\(751\) 13.5733 0.495295 0.247648 0.968850i \(-0.420343\pi\)
0.247648 + 0.968850i \(0.420343\pi\)
\(752\) − 41.5042i − 1.51350i
\(753\) 50.6808i 1.84691i
\(754\) 1.33673 0.0486809
\(755\) 0 0
\(756\) 12.8890 0.468770
\(757\) 9.44665i 0.343344i 0.985154 + 0.171672i \(0.0549170\pi\)
−0.985154 + 0.171672i \(0.945083\pi\)
\(758\) − 1.61737i − 0.0587455i
\(759\) 4.73650 0.171924
\(760\) 0 0
\(761\) −26.6325 −0.965427 −0.482713 0.875778i \(-0.660349\pi\)
−0.482713 + 0.875778i \(0.660349\pi\)
\(762\) 4.62448i 0.167527i
\(763\) − 26.6037i − 0.963120i
\(764\) 24.5478 0.888109
\(765\) 0 0
\(766\) −2.39560 −0.0865565
\(767\) − 3.91787i − 0.141466i
\(768\) − 27.8734i − 1.00579i
\(769\) 17.9587 0.647609 0.323805 0.946124i \(-0.395038\pi\)
0.323805 + 0.946124i \(0.395038\pi\)
\(770\) 0 0
\(771\) −35.0180 −1.26114
\(772\) 3.37045i 0.121305i
\(773\) − 17.0705i − 0.613984i −0.951712 0.306992i \(-0.900677\pi\)
0.951712 0.306992i \(-0.0993226\pi\)
\(774\) −1.21691 −0.0437411
\(775\) 0 0
\(776\) 4.07578 0.146312
\(777\) 15.9992i 0.573967i
\(778\) 3.37436i 0.120976i
\(779\) 3.51326 0.125876
\(780\) 0 0
\(781\) 5.52752 0.197790
\(782\) − 0.0799341i − 0.00285844i
\(783\) 34.0414i 1.21654i
\(784\) 17.8264 0.636657
\(785\) 0 0
\(786\) 1.41981 0.0506428
\(787\) 18.3219i 0.653104i 0.945179 + 0.326552i \(0.105887\pi\)
−0.945179 + 0.326552i \(0.894113\pi\)
\(788\) 32.1800i 1.14636i
\(789\) −28.1426 −1.00190
\(790\) 0 0
\(791\) −29.2825 −1.04117
\(792\) 2.32481i 0.0826084i
\(793\) − 4.30658i − 0.152931i
\(794\) 4.72573 0.167710
\(795\) 0 0
\(796\) −33.9973 −1.20500
\(797\) − 16.4573i − 0.582949i −0.956579 0.291474i \(-0.905854\pi\)
0.956579 0.291474i \(-0.0941458\pi\)
\(798\) 2.13923i 0.0757279i
\(799\) −10.7419 −0.380023
\(800\) 0 0
\(801\) −14.9532 −0.528345
\(802\) − 4.83701i − 0.170801i
\(803\) 46.1180i 1.62747i
\(804\) 37.8569 1.33511
\(805\) 0 0
\(806\) 0.792102 0.0279006
\(807\) − 7.67438i − 0.270151i
\(808\) 4.93455i 0.173597i
\(809\) −19.3869 −0.681607 −0.340804 0.940134i \(-0.610699\pi\)
−0.340804 + 0.940134i \(0.610699\pi\)
\(810\) 0 0
\(811\) −27.4015 −0.962196 −0.481098 0.876667i \(-0.659762\pi\)
−0.481098 + 0.876667i \(0.659762\pi\)
\(812\) − 24.6380i − 0.864623i
\(813\) − 55.8139i − 1.95748i
\(814\) 3.63460 0.127393
\(815\) 0 0
\(816\) −7.58026 −0.265362
\(817\) − 44.3840i − 1.55280i
\(818\) − 3.24664i − 0.113516i
\(819\) −1.43947 −0.0502992
\(820\) 0 0
\(821\) 20.6646 0.721198 0.360599 0.932721i \(-0.382572\pi\)
0.360599 + 0.932721i \(0.382572\pi\)
\(822\) − 4.64305i − 0.161945i
\(823\) 0.983957i 0.0342986i 0.999853 + 0.0171493i \(0.00545906\pi\)
−0.999853 + 0.0171493i \(0.994541\pi\)
\(824\) 10.3701 0.361259
\(825\) 0 0
\(826\) 0.832530 0.0289674
\(827\) − 15.5237i − 0.539811i −0.962887 0.269906i \(-0.913008\pi\)
0.962887 0.269906i \(-0.0869925\pi\)
\(828\) − 0.888753i − 0.0308863i
\(829\) 41.6910 1.44799 0.723994 0.689806i \(-0.242304\pi\)
0.723994 + 0.689806i \(0.242304\pi\)
\(830\) 0 0
\(831\) −50.3890 −1.74798
\(832\) − 8.18571i − 0.283788i
\(833\) − 4.61376i − 0.159857i
\(834\) 2.46757 0.0854449
\(835\) 0 0
\(836\) −42.1528 −1.45789
\(837\) 20.1718i 0.697238i
\(838\) − 2.52508i − 0.0872274i
\(839\) −11.0633 −0.381949 −0.190974 0.981595i \(-0.561165\pi\)
−0.190974 + 0.981595i \(0.561165\pi\)
\(840\) 0 0
\(841\) 36.0716 1.24385
\(842\) 2.56474i 0.0883869i
\(843\) 40.7421i 1.40323i
\(844\) 3.97493 0.136823
\(845\) 0 0
\(846\) 1.37696 0.0473408
\(847\) 15.1295i 0.519855i
\(848\) 0.0880745i 0.00302449i
\(849\) −48.0053 −1.64754
\(850\) 0 0
\(851\) −2.79497 −0.0958103
\(852\) − 4.70204i − 0.161089i
\(853\) 16.9575i 0.580615i 0.956933 + 0.290307i \(0.0937576\pi\)
−0.956933 + 0.290307i \(0.906242\pi\)
\(854\) 0.915130 0.0313151
\(855\) 0 0
\(856\) −9.23951 −0.315800
\(857\) 21.7394i 0.742605i 0.928512 + 0.371302i \(0.121089\pi\)
−0.928512 + 0.371302i \(0.878911\pi\)
\(858\) 1.48250i 0.0506117i
\(859\) −31.5036 −1.07489 −0.537444 0.843300i \(-0.680610\pi\)
−0.537444 + 0.843300i \(0.680610\pi\)
\(860\) 0 0
\(861\) −2.27740 −0.0776134
\(862\) 2.58087i 0.0879048i
\(863\) − 12.4798i − 0.424817i −0.977181 0.212408i \(-0.931869\pi\)
0.977181 0.212408i \(-0.0681307\pi\)
\(864\) −7.52977 −0.256168
\(865\) 0 0
\(866\) −1.50262 −0.0510611
\(867\) 1.96189i 0.0666293i
\(868\) − 14.5996i − 0.495543i
\(869\) −65.7338 −2.22987
\(870\) 0 0
\(871\) 10.7114 0.362942
\(872\) 10.3415i 0.350208i
\(873\) − 5.76275i − 0.195039i
\(874\) −0.373712 −0.0126410
\(875\) 0 0
\(876\) 39.2307 1.32548
\(877\) − 14.5835i − 0.492450i −0.969213 0.246225i \(-0.920810\pi\)
0.969213 0.246225i \(-0.0791902\pi\)
\(878\) 0.442186i 0.0149231i
\(879\) −55.3159 −1.86576
\(880\) 0 0
\(881\) −12.4663 −0.420001 −0.210001 0.977701i \(-0.567347\pi\)
−0.210001 + 0.977701i \(0.567347\pi\)
\(882\) 0.591416i 0.0199140i
\(883\) − 52.0737i − 1.75242i −0.481931 0.876209i \(-0.660064\pi\)
0.481931 0.876209i \(-0.339936\pi\)
\(884\) −2.17010 −0.0729883
\(885\) 0 0
\(886\) 0.117536 0.00394869
\(887\) 46.1318i 1.54895i 0.632602 + 0.774477i \(0.281987\pi\)
−0.632602 + 0.774477i \(0.718013\pi\)
\(888\) − 6.21926i − 0.208705i
\(889\) 24.1171 0.808860
\(890\) 0 0
\(891\) −49.3682 −1.65390
\(892\) − 27.8932i − 0.933934i
\(893\) 50.2212i 1.68059i
\(894\) −0.920433 −0.0307839
\(895\) 0 0
\(896\) 7.25204 0.242274
\(897\) − 1.14003i − 0.0380643i
\(898\) − 4.72273i − 0.157600i
\(899\) 38.5592 1.28602
\(900\) 0 0
\(901\) 0.0227951 0.000759414 0
\(902\) 0.517365i 0.0172264i
\(903\) 28.7710i 0.957437i
\(904\) 11.3828 0.378587
\(905\) 0 0
\(906\) −3.08316 −0.102431
\(907\) − 2.91050i − 0.0966415i −0.998832 0.0483207i \(-0.984613\pi\)
0.998832 0.0483207i \(-0.0153870\pi\)
\(908\) 31.0652i 1.03093i
\(909\) 6.97697 0.231412
\(910\) 0 0
\(911\) −41.7029 −1.38168 −0.690839 0.723009i \(-0.742759\pi\)
−0.690839 + 0.723009i \(0.742759\pi\)
\(912\) 35.4396i 1.17352i
\(913\) − 23.2084i − 0.768086i
\(914\) −0.542420 −0.0179416
\(915\) 0 0
\(916\) −32.8060 −1.08394
\(917\) − 7.40441i − 0.244515i
\(918\) 0.637136i 0.0210286i
\(919\) 2.60146 0.0858144 0.0429072 0.999079i \(-0.486338\pi\)
0.0429072 + 0.999079i \(0.486338\pi\)
\(920\) 0 0
\(921\) 0.0236595 0.000779608 0
\(922\) 0.997063i 0.0328365i
\(923\) − 1.33042i − 0.0437912i
\(924\) 27.3246 0.898915
\(925\) 0 0
\(926\) −1.65326 −0.0543296
\(927\) − 14.6623i − 0.481572i
\(928\) 14.3935i 0.472490i
\(929\) −5.89744 −0.193489 −0.0967443 0.995309i \(-0.530843\pi\)
−0.0967443 + 0.995309i \(0.530843\pi\)
\(930\) 0 0
\(931\) −21.5704 −0.706943
\(932\) 12.9779i 0.425106i
\(933\) 56.0325i 1.83442i
\(934\) 1.52925 0.0500385
\(935\) 0 0
\(936\) 0.559557 0.0182897
\(937\) − 58.2446i − 1.90277i −0.308010 0.951383i \(-0.599663\pi\)
0.308010 0.951383i \(-0.400337\pi\)
\(938\) 2.27613i 0.0743181i
\(939\) −8.07694 −0.263581
\(940\) 0 0
\(941\) 28.2631 0.921350 0.460675 0.887569i \(-0.347607\pi\)
0.460675 + 0.887569i \(0.347607\pi\)
\(942\) − 0.196079i − 0.00638861i
\(943\) − 0.397848i − 0.0129557i
\(944\) 13.7921 0.448895
\(945\) 0 0
\(946\) 6.53602 0.212504
\(947\) 31.3759i 1.01958i 0.860299 + 0.509789i \(0.170277\pi\)
−0.860299 + 0.509789i \(0.829723\pi\)
\(948\) 55.9171i 1.81610i
\(949\) 11.1001 0.360325
\(950\) 0 0
\(951\) −40.4731 −1.31243
\(952\) − 0.927590i − 0.0300634i
\(953\) 27.2735i 0.883476i 0.897144 + 0.441738i \(0.145638\pi\)
−0.897144 + 0.441738i \(0.854362\pi\)
\(954\) −0.00292200 −9.46031e−5 0
\(955\) 0 0
\(956\) 15.0699 0.487396
\(957\) 72.1675i 2.33284i
\(958\) − 1.16714i − 0.0377085i
\(959\) −24.2139 −0.781908
\(960\) 0 0
\(961\) −8.15111 −0.262939
\(962\) − 0.874810i − 0.0282050i
\(963\) 13.0638i 0.420974i
\(964\) 13.6339 0.439118
\(965\) 0 0
\(966\) 0.242250 0.00779428
\(967\) 1.30807i 0.0420648i 0.999779 + 0.0210324i \(0.00669531\pi\)
−0.999779 + 0.0210324i \(0.993305\pi\)
\(968\) − 5.88119i − 0.189029i
\(969\) 9.17232 0.294657
\(970\) 0 0
\(971\) −41.0902 −1.31865 −0.659324 0.751859i \(-0.729157\pi\)
−0.659324 + 0.751859i \(0.729157\pi\)
\(972\) 16.9642i 0.544128i
\(973\) − 12.8686i − 0.412548i
\(974\) −2.05219 −0.0657566
\(975\) 0 0
\(976\) 15.1605 0.485276
\(977\) 60.7556i 1.94375i 0.235507 + 0.971873i \(0.424325\pi\)
−0.235507 + 0.971873i \(0.575675\pi\)
\(978\) 4.81465i 0.153956i
\(979\) 80.3132 2.56682
\(980\) 0 0
\(981\) 14.6219 0.466840
\(982\) − 5.86698i − 0.187223i
\(983\) 9.13830i 0.291466i 0.989324 + 0.145733i \(0.0465541\pi\)
−0.989324 + 0.145733i \(0.953446\pi\)
\(984\) 0.885278 0.0282216
\(985\) 0 0
\(986\) 1.21791 0.0387863
\(987\) − 32.5548i − 1.03623i
\(988\) 10.1457i 0.322779i
\(989\) −5.02613 −0.159822
\(990\) 0 0
\(991\) 33.1886 1.05427 0.527135 0.849782i \(-0.323266\pi\)
0.527135 + 0.849782i \(0.323266\pi\)
\(992\) 8.52909i 0.270799i
\(993\) 1.90649i 0.0605005i
\(994\) 0.282708 0.00896695
\(995\) 0 0
\(996\) −19.7425 −0.625564
\(997\) 30.0746i 0.952471i 0.879318 + 0.476235i \(0.157999\pi\)
−0.879318 + 0.476235i \(0.842001\pi\)
\(998\) − 4.02958i − 0.127554i
\(999\) 22.2780 0.704846
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.b.f.324.5 10
5.2 odd 4 425.2.a.i.1.3 5
5.3 odd 4 425.2.a.j.1.3 yes 5
5.4 even 2 inner 425.2.b.f.324.6 10
15.2 even 4 3825.2.a.bq.1.3 5
15.8 even 4 3825.2.a.bl.1.3 5
20.3 even 4 6800.2.a.cd.1.2 5
20.7 even 4 6800.2.a.bz.1.4 5
85.33 odd 4 7225.2.a.y.1.3 5
85.67 odd 4 7225.2.a.x.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.3 5 5.2 odd 4
425.2.a.j.1.3 yes 5 5.3 odd 4
425.2.b.f.324.5 10 1.1 even 1 trivial
425.2.b.f.324.6 10 5.4 even 2 inner
3825.2.a.bl.1.3 5 15.8 even 4
3825.2.a.bq.1.3 5 15.2 even 4
6800.2.a.bz.1.4 5 20.7 even 4
6800.2.a.cd.1.2 5 20.3 even 4
7225.2.a.x.1.3 5 85.67 odd 4
7225.2.a.y.1.3 5 85.33 odd 4