Defining parameters
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 52 | 24 | 28 |
Cusp forms | 40 | 24 | 16 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
425.2.b.a | $2$ | $3.394$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{2}+i q^{3}+q^{4}-q^{6}+i q^{7}+\cdots\) |
425.2.b.b | $2$ | $3.394$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{2}+q^{4}-4 i q^{7}+3 i q^{8}+3 q^{9}+\cdots\) |
425.2.b.c | $2$ | $3.394$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{2}-2 i q^{3}+q^{4}+2 q^{6}-2 i q^{7}+\cdots\) |
425.2.b.d | $4$ | $3.394$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_{2} q^{2}+(-\beta_{2}-\beta_1)q^{3}-q^{4}+\cdots\) |
425.2.b.e | $4$ | $3.394$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta_{2}+\beta_1)q^{2}+(\beta_{2}-2\beta_1)q^{3}+\cdots\) |
425.2.b.f | $10$ | $3.394$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{8}q^{2}+\beta _{6}q^{3}+(-2+\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)