Defining parameters
Level: | \( N \) | = | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 20 \) | ||
Newform subspaces: | \( 62 \) | ||
Sturm bound: | \(28800\) | ||
Trace bound: | \(8\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(425))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7648 | 6898 | 750 |
Cusp forms | 6753 | 6284 | 469 |
Eisenstein series | 895 | 614 | 281 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(425))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(425))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(425)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(425))\)\(^{\oplus 1}\)