Properties

Label 425.2
Level 425
Weight 2
Dimension 6284
Nonzero newspaces 20
Newform subspaces 62
Sturm bound 28800
Trace bound 8

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 20 \)
Newform subspaces: \( 62 \)
Sturm bound: \(28800\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(425))\).

Total New Old
Modular forms 7648 6898 750
Cusp forms 6753 6284 469
Eisenstein series 895 614 281

Trace form

\( 6284 q - 90 q^{2} - 92 q^{3} - 98 q^{4} - 118 q^{5} - 156 q^{6} - 100 q^{7} - 114 q^{8} - 110 q^{9} - 138 q^{10} - 164 q^{11} - 164 q^{12} - 120 q^{13} - 148 q^{14} - 148 q^{15} - 198 q^{16} - 110 q^{17}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(425))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
425.2.a \(\chi_{425}(1, \cdot)\) 425.2.a.a 1 1
425.2.a.b 1
425.2.a.c 1
425.2.a.d 1
425.2.a.e 2
425.2.a.f 2
425.2.a.g 4
425.2.a.h 4
425.2.a.i 5
425.2.a.j 5
425.2.b \(\chi_{425}(324, \cdot)\) 425.2.b.a 2 1
425.2.b.b 2
425.2.b.c 2
425.2.b.d 4
425.2.b.e 4
425.2.b.f 10
425.2.c \(\chi_{425}(424, \cdot)\) 425.2.c.a 6 1
425.2.c.b 6
425.2.c.c 12
425.2.d \(\chi_{425}(101, \cdot)\) 425.2.d.a 6 1
425.2.d.b 6
425.2.d.c 6
425.2.d.d 8
425.2.e \(\chi_{425}(251, \cdot)\) 425.2.e.a 2 2
425.2.e.b 2
425.2.e.c 12
425.2.e.d 12
425.2.e.e 12
425.2.e.f 12
425.2.j \(\chi_{425}(149, \cdot)\) 425.2.j.a 12 2
425.2.j.b 12
425.2.j.c 12
425.2.j.d 12
425.2.k \(\chi_{425}(86, \cdot)\) 425.2.k.a 4 4
425.2.k.b 76
425.2.k.c 80
425.2.m \(\chi_{425}(26, \cdot)\) 425.2.m.a 4 4
425.2.m.b 24
425.2.m.c 24
425.2.m.d 24
425.2.m.e 24
425.2.n \(\chi_{425}(49, \cdot)\) 425.2.n.a 4 4
425.2.n.b 4
425.2.n.c 24
425.2.n.d 24
425.2.n.e 24
425.2.n.f 24
425.2.p \(\chi_{425}(16, \cdot)\) 425.2.p.a 168 4
425.2.q \(\chi_{425}(84, \cdot)\) 425.2.q.a 176 4
425.2.r \(\chi_{425}(69, \cdot)\) 425.2.r.a 160 4
425.2.s \(\chi_{425}(7, \cdot)\) 425.2.s.a 48 8
425.2.s.b 56
425.2.s.c 96
425.2.v \(\chi_{425}(82, \cdot)\) 425.2.v.a 48 8
425.2.v.b 56
425.2.v.c 96
425.2.w \(\chi_{425}(4, \cdot)\) 425.2.w.a 352 8
425.2.bb \(\chi_{425}(21, \cdot)\) 425.2.bb.a 336 8
425.2.bd \(\chi_{425}(9, \cdot)\) 425.2.bd.a 672 16
425.2.be \(\chi_{425}(36, \cdot)\) 425.2.be.a 704 16
425.2.bg \(\chi_{425}(12, \cdot)\) 425.2.bg.a 1376 32
425.2.bj \(\chi_{425}(3, \cdot)\) 425.2.bj.a 1376 32

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(425))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(425)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(425))\)\(^{\oplus 1}\)