Properties

Label 6800.2.a.bz.1.4
Level $6800$
Weight $2$
Character 6800.1
Self dual yes
Analytic conductor $54.298$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-1,0,0,0,-1,0,6,0,-4,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.1893456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.96189\) of defining polynomial
Character \(\chi\) \(=\) 6800.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.96189 q^{3} +1.54475 q^{7} +0.849020 q^{9} -4.56006 q^{11} -1.09756 q^{13} +1.00000 q^{17} -4.67524 q^{19} +3.03063 q^{21} -0.529434 q^{23} -4.21999 q^{27} +8.06670 q^{29} +4.78005 q^{31} -8.94634 q^{33} -5.27917 q^{37} -2.15329 q^{39} -0.751460 q^{41} -9.49340 q^{43} -10.7419 q^{47} -4.61376 q^{49} +1.96189 q^{51} +0.0227951 q^{53} -9.17232 q^{57} +3.56962 q^{59} +3.92378 q^{61} +1.31152 q^{63} +9.75929 q^{67} -1.03869 q^{69} -1.21216 q^{71} +10.1135 q^{73} -7.04414 q^{77} -14.4151 q^{79} -10.8262 q^{81} +5.08949 q^{83} +15.8260 q^{87} -17.6123 q^{89} -1.69545 q^{91} +9.37794 q^{93} -6.78753 q^{97} -3.87158 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{3} - q^{7} + 6 q^{9} - 4 q^{11} - 3 q^{13} + 5 q^{17} - 6 q^{19} - 5 q^{21} - 4 q^{23} + 5 q^{27} + 2 q^{29} - 21 q^{31} + 12 q^{33} - 2 q^{37} - 23 q^{39} - 8 q^{41} + 4 q^{43} + 2 q^{47} + 10 q^{49}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.96189 1.13270 0.566349 0.824165i \(-0.308355\pi\)
0.566349 + 0.824165i \(0.308355\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.54475 0.583859 0.291930 0.956440i \(-0.405703\pi\)
0.291930 + 0.956440i \(0.405703\pi\)
\(8\) 0 0
\(9\) 0.849020 0.283007
\(10\) 0 0
\(11\) −4.56006 −1.37491 −0.687455 0.726227i \(-0.741272\pi\)
−0.687455 + 0.726227i \(0.741272\pi\)
\(12\) 0 0
\(13\) −1.09756 −0.304408 −0.152204 0.988349i \(-0.548637\pi\)
−0.152204 + 0.988349i \(0.548637\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −4.67524 −1.07257 −0.536287 0.844036i \(-0.680174\pi\)
−0.536287 + 0.844036i \(0.680174\pi\)
\(20\) 0 0
\(21\) 3.03063 0.661337
\(22\) 0 0
\(23\) −0.529434 −0.110395 −0.0551973 0.998475i \(-0.517579\pi\)
−0.0551973 + 0.998475i \(0.517579\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4.21999 −0.812138
\(28\) 0 0
\(29\) 8.06670 1.49795 0.748974 0.662599i \(-0.230547\pi\)
0.748974 + 0.662599i \(0.230547\pi\)
\(30\) 0 0
\(31\) 4.78005 0.858522 0.429261 0.903180i \(-0.358774\pi\)
0.429261 + 0.903180i \(0.358774\pi\)
\(32\) 0 0
\(33\) −8.94634 −1.55736
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.27917 −0.867889 −0.433945 0.900939i \(-0.642879\pi\)
−0.433945 + 0.900939i \(0.642879\pi\)
\(38\) 0 0
\(39\) −2.15329 −0.344803
\(40\) 0 0
\(41\) −0.751460 −0.117358 −0.0586792 0.998277i \(-0.518689\pi\)
−0.0586792 + 0.998277i \(0.518689\pi\)
\(42\) 0 0
\(43\) −9.49340 −1.44773 −0.723865 0.689941i \(-0.757636\pi\)
−0.723865 + 0.689941i \(0.757636\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.7419 −1.56687 −0.783437 0.621472i \(-0.786535\pi\)
−0.783437 + 0.621472i \(0.786535\pi\)
\(48\) 0 0
\(49\) −4.61376 −0.659108
\(50\) 0 0
\(51\) 1.96189 0.274720
\(52\) 0 0
\(53\) 0.0227951 0.00313115 0.00156557 0.999999i \(-0.499502\pi\)
0.00156557 + 0.999999i \(0.499502\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −9.17232 −1.21490
\(58\) 0 0
\(59\) 3.56962 0.464725 0.232362 0.972629i \(-0.425354\pi\)
0.232362 + 0.972629i \(0.425354\pi\)
\(60\) 0 0
\(61\) 3.92378 0.502389 0.251195 0.967937i \(-0.419177\pi\)
0.251195 + 0.967937i \(0.419177\pi\)
\(62\) 0 0
\(63\) 1.31152 0.165236
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.75929 1.19229 0.596144 0.802878i \(-0.296699\pi\)
0.596144 + 0.802878i \(0.296699\pi\)
\(68\) 0 0
\(69\) −1.03869 −0.125044
\(70\) 0 0
\(71\) −1.21216 −0.143857 −0.0719285 0.997410i \(-0.522915\pi\)
−0.0719285 + 0.997410i \(0.522915\pi\)
\(72\) 0 0
\(73\) 10.1135 1.18369 0.591845 0.806052i \(-0.298400\pi\)
0.591845 + 0.806052i \(0.298400\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.04414 −0.802754
\(78\) 0 0
\(79\) −14.4151 −1.62183 −0.810913 0.585166i \(-0.801029\pi\)
−0.810913 + 0.585166i \(0.801029\pi\)
\(80\) 0 0
\(81\) −10.8262 −1.20291
\(82\) 0 0
\(83\) 5.08949 0.558644 0.279322 0.960197i \(-0.409890\pi\)
0.279322 + 0.960197i \(0.409890\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 15.8260 1.69672
\(88\) 0 0
\(89\) −17.6123 −1.86690 −0.933450 0.358707i \(-0.883218\pi\)
−0.933450 + 0.358707i \(0.883218\pi\)
\(90\) 0 0
\(91\) −1.69545 −0.177732
\(92\) 0 0
\(93\) 9.37794 0.972447
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.78753 −0.689170 −0.344585 0.938755i \(-0.611980\pi\)
−0.344585 + 0.938755i \(0.611980\pi\)
\(98\) 0 0
\(99\) −3.87158 −0.389108
\(100\) 0 0
\(101\) −8.21768 −0.817690 −0.408845 0.912604i \(-0.634068\pi\)
−0.408845 + 0.912604i \(0.634068\pi\)
\(102\) 0 0
\(103\) −17.2696 −1.70163 −0.850814 0.525466i \(-0.823891\pi\)
−0.850814 + 0.525466i \(0.823891\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.3869 −1.48750 −0.743752 0.668455i \(-0.766956\pi\)
−0.743752 + 0.668455i \(0.766956\pi\)
\(108\) 0 0
\(109\) 17.2221 1.64957 0.824787 0.565443i \(-0.191295\pi\)
0.824787 + 0.565443i \(0.191295\pi\)
\(110\) 0 0
\(111\) −10.3572 −0.983057
\(112\) 0 0
\(113\) 18.9562 1.78325 0.891624 0.452777i \(-0.149567\pi\)
0.891624 + 0.452777i \(0.149567\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.931849 −0.0861495
\(118\) 0 0
\(119\) 1.54475 0.141607
\(120\) 0 0
\(121\) 9.79415 0.890377
\(122\) 0 0
\(123\) −1.47428 −0.132932
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −15.6123 −1.38537 −0.692684 0.721241i \(-0.743572\pi\)
−0.692684 + 0.721241i \(0.743572\pi\)
\(128\) 0 0
\(129\) −18.6250 −1.63984
\(130\) 0 0
\(131\) 4.79329 0.418791 0.209396 0.977831i \(-0.432850\pi\)
0.209396 + 0.977831i \(0.432850\pi\)
\(132\) 0 0
\(133\) −7.22207 −0.626233
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.6750 −1.33921 −0.669603 0.742719i \(-0.733536\pi\)
−0.669603 + 0.742719i \(0.733536\pi\)
\(138\) 0 0
\(139\) −8.33055 −0.706588 −0.353294 0.935512i \(-0.614938\pi\)
−0.353294 + 0.935512i \(0.614938\pi\)
\(140\) 0 0
\(141\) −21.0745 −1.77480
\(142\) 0 0
\(143\) 5.00494 0.418534
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −9.05169 −0.746571
\(148\) 0 0
\(149\) −3.10739 −0.254568 −0.127284 0.991866i \(-0.540626\pi\)
−0.127284 + 0.991866i \(0.540626\pi\)
\(150\) 0 0
\(151\) −10.4088 −0.847056 −0.423528 0.905883i \(-0.639209\pi\)
−0.423528 + 0.905883i \(0.639209\pi\)
\(152\) 0 0
\(153\) 0.849020 0.0686392
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.661967 −0.0528307 −0.0264154 0.999651i \(-0.508409\pi\)
−0.0264154 + 0.999651i \(0.508409\pi\)
\(158\) 0 0
\(159\) 0.0447215 0.00354664
\(160\) 0 0
\(161\) −0.817841 −0.0644549
\(162\) 0 0
\(163\) 16.2543 1.27314 0.636569 0.771220i \(-0.280353\pi\)
0.636569 + 0.771220i \(0.280353\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −19.9527 −1.54398 −0.771992 0.635632i \(-0.780740\pi\)
−0.771992 + 0.635632i \(0.780740\pi\)
\(168\) 0 0
\(169\) −11.7954 −0.907336
\(170\) 0 0
\(171\) −3.96937 −0.303546
\(172\) 0 0
\(173\) 3.91717 0.297817 0.148908 0.988851i \(-0.452424\pi\)
0.148908 + 0.988851i \(0.452424\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.00321 0.526393
\(178\) 0 0
\(179\) −3.14170 −0.234821 −0.117411 0.993083i \(-0.537459\pi\)
−0.117411 + 0.993083i \(0.537459\pi\)
\(180\) 0 0
\(181\) 0.782087 0.0581320 0.0290660 0.999577i \(-0.490747\pi\)
0.0290660 + 0.999577i \(0.490747\pi\)
\(182\) 0 0
\(183\) 7.69804 0.569055
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.56006 −0.333465
\(188\) 0 0
\(189\) −6.51882 −0.474174
\(190\) 0 0
\(191\) −12.4154 −0.898348 −0.449174 0.893444i \(-0.648282\pi\)
−0.449174 + 0.893444i \(0.648282\pi\)
\(192\) 0 0
\(193\) 1.70465 0.122704 0.0613518 0.998116i \(-0.480459\pi\)
0.0613518 + 0.998116i \(0.480459\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.2755 −1.15958 −0.579790 0.814766i \(-0.696866\pi\)
−0.579790 + 0.814766i \(0.696866\pi\)
\(198\) 0 0
\(199\) −17.1946 −1.21889 −0.609447 0.792827i \(-0.708608\pi\)
−0.609447 + 0.792827i \(0.708608\pi\)
\(200\) 0 0
\(201\) 19.1467 1.35050
\(202\) 0 0
\(203\) 12.4610 0.874591
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.449500 −0.0312424
\(208\) 0 0
\(209\) 21.3194 1.47469
\(210\) 0 0
\(211\) −2.01038 −0.138400 −0.0692000 0.997603i \(-0.522045\pi\)
−0.0692000 + 0.997603i \(0.522045\pi\)
\(212\) 0 0
\(213\) −2.37813 −0.162947
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 7.38397 0.501256
\(218\) 0 0
\(219\) 19.8415 1.34076
\(220\) 0 0
\(221\) −1.09756 −0.0738298
\(222\) 0 0
\(223\) 14.1074 0.944701 0.472351 0.881411i \(-0.343406\pi\)
0.472351 + 0.881411i \(0.343406\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.7117 1.04282 0.521410 0.853306i \(-0.325406\pi\)
0.521410 + 0.853306i \(0.325406\pi\)
\(228\) 0 0
\(229\) 16.5921 1.09644 0.548219 0.836335i \(-0.315306\pi\)
0.548219 + 0.836335i \(0.315306\pi\)
\(230\) 0 0
\(231\) −13.8198 −0.909279
\(232\) 0 0
\(233\) 6.56378 0.430007 0.215004 0.976613i \(-0.431024\pi\)
0.215004 + 0.976613i \(0.431024\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −28.2809 −1.83704
\(238\) 0 0
\(239\) 7.62182 0.493015 0.246507 0.969141i \(-0.420717\pi\)
0.246507 + 0.969141i \(0.420717\pi\)
\(240\) 0 0
\(241\) 6.89554 0.444181 0.222090 0.975026i \(-0.428712\pi\)
0.222090 + 0.975026i \(0.428712\pi\)
\(242\) 0 0
\(243\) −8.57991 −0.550401
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.13136 0.326500
\(248\) 0 0
\(249\) 9.98504 0.632776
\(250\) 0 0
\(251\) 25.8326 1.63054 0.815270 0.579081i \(-0.196589\pi\)
0.815270 + 0.579081i \(0.196589\pi\)
\(252\) 0 0
\(253\) 2.41425 0.151783
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.8491 1.11340 0.556698 0.830715i \(-0.312068\pi\)
0.556698 + 0.830715i \(0.312068\pi\)
\(258\) 0 0
\(259\) −8.15497 −0.506725
\(260\) 0 0
\(261\) 6.84879 0.423929
\(262\) 0 0
\(263\) 14.3446 0.884529 0.442264 0.896885i \(-0.354175\pi\)
0.442264 + 0.896885i \(0.354175\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −34.5534 −2.11464
\(268\) 0 0
\(269\) −3.91172 −0.238502 −0.119251 0.992864i \(-0.538049\pi\)
−0.119251 + 0.992864i \(0.538049\pi\)
\(270\) 0 0
\(271\) −28.4490 −1.72816 −0.864078 0.503358i \(-0.832098\pi\)
−0.864078 + 0.503358i \(0.832098\pi\)
\(272\) 0 0
\(273\) −3.32629 −0.201316
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 25.6839 1.54320 0.771598 0.636111i \(-0.219458\pi\)
0.771598 + 0.636111i \(0.219458\pi\)
\(278\) 0 0
\(279\) 4.05836 0.242967
\(280\) 0 0
\(281\) −20.7667 −1.23884 −0.619420 0.785060i \(-0.712632\pi\)
−0.619420 + 0.785060i \(0.712632\pi\)
\(282\) 0 0
\(283\) 24.4689 1.45452 0.727262 0.686360i \(-0.240793\pi\)
0.727262 + 0.686360i \(0.240793\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.16082 −0.0685208
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −13.3164 −0.780621
\(292\) 0 0
\(293\) −28.1952 −1.64718 −0.823591 0.567185i \(-0.808033\pi\)
−0.823591 + 0.567185i \(0.808033\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 19.2434 1.11662
\(298\) 0 0
\(299\) 0.581085 0.0336050
\(300\) 0 0
\(301\) −14.6649 −0.845271
\(302\) 0 0
\(303\) −16.1222 −0.926196
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0.0120595 0.000688275 0 0.000344137 1.00000i \(-0.499890\pi\)
0.000344137 1.00000i \(0.499890\pi\)
\(308\) 0 0
\(309\) −33.8812 −1.92743
\(310\) 0 0
\(311\) 28.5605 1.61951 0.809757 0.586765i \(-0.199599\pi\)
0.809757 + 0.586765i \(0.199599\pi\)
\(312\) 0 0
\(313\) −4.11691 −0.232702 −0.116351 0.993208i \(-0.537120\pi\)
−0.116351 + 0.993208i \(0.537120\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.6297 1.15868 0.579338 0.815087i \(-0.303311\pi\)
0.579338 + 0.815087i \(0.303311\pi\)
\(318\) 0 0
\(319\) −36.7846 −2.05954
\(320\) 0 0
\(321\) −30.1874 −1.68489
\(322\) 0 0
\(323\) −4.67524 −0.260138
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 33.7878 1.86847
\(328\) 0 0
\(329\) −16.5936 −0.914834
\(330\) 0 0
\(331\) 0.971759 0.0534127 0.0267063 0.999643i \(-0.491498\pi\)
0.0267063 + 0.999643i \(0.491498\pi\)
\(332\) 0 0
\(333\) −4.48212 −0.245618
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.01450 −0.327630 −0.163815 0.986491i \(-0.552380\pi\)
−0.163815 + 0.986491i \(0.552380\pi\)
\(338\) 0 0
\(339\) 37.1900 2.01988
\(340\) 0 0
\(341\) −21.7973 −1.18039
\(342\) 0 0
\(343\) −17.9403 −0.968686
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.33466 0.286380 0.143190 0.989695i \(-0.454264\pi\)
0.143190 + 0.989695i \(0.454264\pi\)
\(348\) 0 0
\(349\) −20.7601 −1.11126 −0.555632 0.831429i \(-0.687524\pi\)
−0.555632 + 0.831429i \(0.687524\pi\)
\(350\) 0 0
\(351\) 4.63169 0.247221
\(352\) 0 0
\(353\) 15.0618 0.801659 0.400829 0.916153i \(-0.368722\pi\)
0.400829 + 0.916153i \(0.368722\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.03063 0.160398
\(358\) 0 0
\(359\) 9.72949 0.513503 0.256751 0.966477i \(-0.417348\pi\)
0.256751 + 0.966477i \(0.417348\pi\)
\(360\) 0 0
\(361\) 2.85791 0.150416
\(362\) 0 0
\(363\) 19.2151 1.00853
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.62563 0.450254 0.225127 0.974329i \(-0.427720\pi\)
0.225127 + 0.974329i \(0.427720\pi\)
\(368\) 0 0
\(369\) −0.638005 −0.0332132
\(370\) 0 0
\(371\) 0.0352126 0.00182815
\(372\) 0 0
\(373\) 15.0922 0.781444 0.390722 0.920509i \(-0.372225\pi\)
0.390722 + 0.920509i \(0.372225\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.85368 −0.455988
\(378\) 0 0
\(379\) 10.7124 0.550261 0.275131 0.961407i \(-0.411279\pi\)
0.275131 + 0.961407i \(0.411279\pi\)
\(380\) 0 0
\(381\) −30.6297 −1.56920
\(382\) 0 0
\(383\) 15.8670 0.810764 0.405382 0.914147i \(-0.367139\pi\)
0.405382 + 0.914147i \(0.367139\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.06009 −0.409717
\(388\) 0 0
\(389\) 22.3496 1.13317 0.566585 0.824003i \(-0.308264\pi\)
0.566585 + 0.824003i \(0.308264\pi\)
\(390\) 0 0
\(391\) −0.529434 −0.0267746
\(392\) 0 0
\(393\) 9.40391 0.474364
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −31.3003 −1.57092 −0.785458 0.618915i \(-0.787572\pi\)
−0.785458 + 0.618915i \(0.787572\pi\)
\(398\) 0 0
\(399\) −14.1689 −0.709333
\(400\) 0 0
\(401\) 32.0373 1.59987 0.799934 0.600088i \(-0.204868\pi\)
0.799934 + 0.600088i \(0.204868\pi\)
\(402\) 0 0
\(403\) −5.24639 −0.261341
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0733 1.19327
\(408\) 0 0
\(409\) −21.5037 −1.06329 −0.531645 0.846968i \(-0.678426\pi\)
−0.531645 + 0.846968i \(0.678426\pi\)
\(410\) 0 0
\(411\) −30.7527 −1.51692
\(412\) 0 0
\(413\) 5.51416 0.271334
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −16.3436 −0.800352
\(418\) 0 0
\(419\) 16.7246 0.817048 0.408524 0.912748i \(-0.366044\pi\)
0.408524 + 0.912748i \(0.366044\pi\)
\(420\) 0 0
\(421\) −16.9873 −0.827908 −0.413954 0.910298i \(-0.635853\pi\)
−0.413954 + 0.910298i \(0.635853\pi\)
\(422\) 0 0
\(423\) −9.12012 −0.443435
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.06125 0.293325
\(428\) 0 0
\(429\) 9.81914 0.474073
\(430\) 0 0
\(431\) 17.0941 0.823392 0.411696 0.911321i \(-0.364936\pi\)
0.411696 + 0.911321i \(0.364936\pi\)
\(432\) 0 0
\(433\) −9.95242 −0.478283 −0.239141 0.970985i \(-0.576866\pi\)
−0.239141 + 0.970985i \(0.576866\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.47523 0.118406
\(438\) 0 0
\(439\) −2.92877 −0.139782 −0.0698912 0.997555i \(-0.522265\pi\)
−0.0698912 + 0.997555i \(0.522265\pi\)
\(440\) 0 0
\(441\) −3.91717 −0.186532
\(442\) 0 0
\(443\) −0.778484 −0.0369869 −0.0184934 0.999829i \(-0.505887\pi\)
−0.0184934 + 0.999829i \(0.505887\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6.09637 −0.288349
\(448\) 0 0
\(449\) −31.2804 −1.47621 −0.738107 0.674684i \(-0.764280\pi\)
−0.738107 + 0.674684i \(0.764280\pi\)
\(450\) 0 0
\(451\) 3.42670 0.161357
\(452\) 0 0
\(453\) −20.4209 −0.959460
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.59265 0.168057 0.0840285 0.996463i \(-0.473221\pi\)
0.0840285 + 0.996463i \(0.473221\pi\)
\(458\) 0 0
\(459\) −4.21999 −0.196972
\(460\) 0 0
\(461\) −6.60392 −0.307575 −0.153788 0.988104i \(-0.549147\pi\)
−0.153788 + 0.988104i \(0.549147\pi\)
\(462\) 0 0
\(463\) 10.9502 0.508898 0.254449 0.967086i \(-0.418106\pi\)
0.254449 + 0.967086i \(0.418106\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.1288 0.468704 0.234352 0.972152i \(-0.424703\pi\)
0.234352 + 0.972152i \(0.424703\pi\)
\(468\) 0 0
\(469\) 15.0756 0.696128
\(470\) 0 0
\(471\) −1.29871 −0.0598413
\(472\) 0 0
\(473\) 43.2905 1.99050
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.0193535 0.000886135 0
\(478\) 0 0
\(479\) 7.73039 0.353211 0.176605 0.984282i \(-0.443488\pi\)
0.176605 + 0.984282i \(0.443488\pi\)
\(480\) 0 0
\(481\) 5.79420 0.264193
\(482\) 0 0
\(483\) −1.60452 −0.0730080
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −13.5925 −0.615933 −0.307966 0.951397i \(-0.599648\pi\)
−0.307966 + 0.951397i \(0.599648\pi\)
\(488\) 0 0
\(489\) 31.8892 1.44208
\(490\) 0 0
\(491\) −38.8592 −1.75369 −0.876846 0.480772i \(-0.840357\pi\)
−0.876846 + 0.480772i \(0.840357\pi\)
\(492\) 0 0
\(493\) 8.06670 0.363306
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.87248 −0.0839922
\(498\) 0 0
\(499\) 26.6894 1.19478 0.597391 0.801950i \(-0.296204\pi\)
0.597391 + 0.801950i \(0.296204\pi\)
\(500\) 0 0
\(501\) −39.1450 −1.74887
\(502\) 0 0
\(503\) 0.591853 0.0263894 0.0131947 0.999913i \(-0.495800\pi\)
0.0131947 + 0.999913i \(0.495800\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −23.1412 −1.02774
\(508\) 0 0
\(509\) 11.6397 0.515922 0.257961 0.966155i \(-0.416949\pi\)
0.257961 + 0.966155i \(0.416949\pi\)
\(510\) 0 0
\(511\) 15.6227 0.691109
\(512\) 0 0
\(513\) 19.7295 0.871078
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 48.9839 2.15431
\(518\) 0 0
\(519\) 7.68506 0.337337
\(520\) 0 0
\(521\) −11.5584 −0.506382 −0.253191 0.967416i \(-0.581480\pi\)
−0.253191 + 0.967416i \(0.581480\pi\)
\(522\) 0 0
\(523\) −14.5087 −0.634420 −0.317210 0.948355i \(-0.602746\pi\)
−0.317210 + 0.948355i \(0.602746\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.78005 0.208222
\(528\) 0 0
\(529\) −22.7197 −0.987813
\(530\) 0 0
\(531\) 3.03068 0.131520
\(532\) 0 0
\(533\) 0.824772 0.0357249
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6.16367 −0.265982
\(538\) 0 0
\(539\) 21.0390 0.906214
\(540\) 0 0
\(541\) −3.23241 −0.138972 −0.0694860 0.997583i \(-0.522136\pi\)
−0.0694860 + 0.997583i \(0.522136\pi\)
\(542\) 0 0
\(543\) 1.53437 0.0658461
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −38.7154 −1.65535 −0.827676 0.561206i \(-0.810338\pi\)
−0.827676 + 0.561206i \(0.810338\pi\)
\(548\) 0 0
\(549\) 3.33137 0.142179
\(550\) 0 0
\(551\) −37.7138 −1.60666
\(552\) 0 0
\(553\) −22.2677 −0.946919
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.669168 0.0283536 0.0141768 0.999900i \(-0.495487\pi\)
0.0141768 + 0.999900i \(0.495487\pi\)
\(558\) 0 0
\(559\) 10.4196 0.440701
\(560\) 0 0
\(561\) −8.94634 −0.377715
\(562\) 0 0
\(563\) 42.4772 1.79020 0.895101 0.445864i \(-0.147104\pi\)
0.895101 + 0.445864i \(0.147104\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −16.7238 −0.702333
\(568\) 0 0
\(569\) 36.3706 1.52474 0.762368 0.647143i \(-0.224036\pi\)
0.762368 + 0.647143i \(0.224036\pi\)
\(570\) 0 0
\(571\) −26.5970 −1.11305 −0.556525 0.830831i \(-0.687866\pi\)
−0.556525 + 0.830831i \(0.687866\pi\)
\(572\) 0 0
\(573\) −24.3577 −1.01756
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −2.30741 −0.0960586 −0.0480293 0.998846i \(-0.515294\pi\)
−0.0480293 + 0.998846i \(0.515294\pi\)
\(578\) 0 0
\(579\) 3.34434 0.138986
\(580\) 0 0
\(581\) 7.86198 0.326170
\(582\) 0 0
\(583\) −0.103947 −0.00430504
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.8915 −1.06866 −0.534329 0.845277i \(-0.679436\pi\)
−0.534329 + 0.845277i \(0.679436\pi\)
\(588\) 0 0
\(589\) −22.3479 −0.920829
\(590\) 0 0
\(591\) −31.9308 −1.31346
\(592\) 0 0
\(593\) 42.0620 1.72728 0.863640 0.504109i \(-0.168179\pi\)
0.863640 + 0.504109i \(0.168179\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −33.7340 −1.38064
\(598\) 0 0
\(599\) −23.6399 −0.965902 −0.482951 0.875647i \(-0.660435\pi\)
−0.482951 + 0.875647i \(0.660435\pi\)
\(600\) 0 0
\(601\) −9.89731 −0.403720 −0.201860 0.979414i \(-0.564699\pi\)
−0.201860 + 0.979414i \(0.564699\pi\)
\(602\) 0 0
\(603\) 8.28583 0.337425
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −29.5988 −1.20138 −0.600688 0.799483i \(-0.705107\pi\)
−0.600688 + 0.799483i \(0.705107\pi\)
\(608\) 0 0
\(609\) 24.4471 0.990648
\(610\) 0 0
\(611\) 11.7899 0.476969
\(612\) 0 0
\(613\) 13.6657 0.551953 0.275977 0.961164i \(-0.410999\pi\)
0.275977 + 0.961164i \(0.410999\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 41.8255 1.68383 0.841916 0.539609i \(-0.181428\pi\)
0.841916 + 0.539609i \(0.181428\pi\)
\(618\) 0 0
\(619\) −17.8194 −0.716221 −0.358110 0.933679i \(-0.616579\pi\)
−0.358110 + 0.933679i \(0.616579\pi\)
\(620\) 0 0
\(621\) 2.23421 0.0896556
\(622\) 0 0
\(623\) −27.2066 −1.09001
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 41.8263 1.67038
\(628\) 0 0
\(629\) −5.27917 −0.210494
\(630\) 0 0
\(631\) −32.6557 −1.30000 −0.650001 0.759934i \(-0.725231\pi\)
−0.650001 + 0.759934i \(0.725231\pi\)
\(632\) 0 0
\(633\) −3.94414 −0.156766
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 5.06387 0.200638
\(638\) 0 0
\(639\) −1.02915 −0.0407124
\(640\) 0 0
\(641\) 25.0356 0.988845 0.494422 0.869222i \(-0.335380\pi\)
0.494422 + 0.869222i \(0.335380\pi\)
\(642\) 0 0
\(643\) 12.4048 0.489196 0.244598 0.969625i \(-0.421344\pi\)
0.244598 + 0.969625i \(0.421344\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 37.9570 1.49224 0.746121 0.665811i \(-0.231914\pi\)
0.746121 + 0.665811i \(0.231914\pi\)
\(648\) 0 0
\(649\) −16.2777 −0.638955
\(650\) 0 0
\(651\) 14.4865 0.567773
\(652\) 0 0
\(653\) −36.9847 −1.44732 −0.723662 0.690155i \(-0.757543\pi\)
−0.723662 + 0.690155i \(0.757543\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8.58652 0.334992
\(658\) 0 0
\(659\) −29.0956 −1.13341 −0.566703 0.823922i \(-0.691781\pi\)
−0.566703 + 0.823922i \(0.691781\pi\)
\(660\) 0 0
\(661\) 33.6207 1.30769 0.653847 0.756627i \(-0.273154\pi\)
0.653847 + 0.756627i \(0.273154\pi\)
\(662\) 0 0
\(663\) −2.15329 −0.0836269
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.27078 −0.165365
\(668\) 0 0
\(669\) 27.6772 1.07006
\(670\) 0 0
\(671\) −17.8927 −0.690740
\(672\) 0 0
\(673\) 13.1865 0.508304 0.254152 0.967164i \(-0.418204\pi\)
0.254152 + 0.967164i \(0.418204\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.37696 −0.0529208 −0.0264604 0.999650i \(-0.508424\pi\)
−0.0264604 + 0.999650i \(0.508424\pi\)
\(678\) 0 0
\(679\) −10.4850 −0.402378
\(680\) 0 0
\(681\) 30.8246 1.18120
\(682\) 0 0
\(683\) 10.4181 0.398637 0.199319 0.979935i \(-0.436127\pi\)
0.199319 + 0.979935i \(0.436127\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 32.5520 1.24193
\(688\) 0 0
\(689\) −0.0250190 −0.000953146 0
\(690\) 0 0
\(691\) −4.39455 −0.167177 −0.0835883 0.996500i \(-0.526638\pi\)
−0.0835883 + 0.996500i \(0.526638\pi\)
\(692\) 0 0
\(693\) −5.98061 −0.227185
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.751460 −0.0284636
\(698\) 0 0
\(699\) 12.8774 0.487069
\(700\) 0 0
\(701\) −1.18383 −0.0447127 −0.0223563 0.999750i \(-0.507117\pi\)
−0.0223563 + 0.999750i \(0.507117\pi\)
\(702\) 0 0
\(703\) 24.6814 0.930876
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.6942 −0.477416
\(708\) 0 0
\(709\) −13.3650 −0.501932 −0.250966 0.967996i \(-0.580748\pi\)
−0.250966 + 0.967996i \(0.580748\pi\)
\(710\) 0 0
\(711\) −12.2387 −0.458987
\(712\) 0 0
\(713\) −2.53072 −0.0947762
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 14.9532 0.558437
\(718\) 0 0
\(719\) −14.1925 −0.529292 −0.264646 0.964346i \(-0.585255\pi\)
−0.264646 + 0.964346i \(0.585255\pi\)
\(720\) 0 0
\(721\) −26.6772 −0.993512
\(722\) 0 0
\(723\) 13.5283 0.503123
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 33.0852 1.22706 0.613530 0.789671i \(-0.289749\pi\)
0.613530 + 0.789671i \(0.289749\pi\)
\(728\) 0 0
\(729\) 15.6458 0.579475
\(730\) 0 0
\(731\) −9.49340 −0.351126
\(732\) 0 0
\(733\) −14.0451 −0.518767 −0.259383 0.965774i \(-0.583519\pi\)
−0.259383 + 0.965774i \(0.583519\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −44.5030 −1.63929
\(738\) 0 0
\(739\) 5.14831 0.189384 0.0946918 0.995507i \(-0.469813\pi\)
0.0946918 + 0.995507i \(0.469813\pi\)
\(740\) 0 0
\(741\) 10.0672 0.369827
\(742\) 0 0
\(743\) −26.8978 −0.986784 −0.493392 0.869807i \(-0.664243\pi\)
−0.493392 + 0.869807i \(0.664243\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.32108 0.158100
\(748\) 0 0
\(749\) −23.7688 −0.868494
\(750\) 0 0
\(751\) −13.5733 −0.495295 −0.247648 0.968850i \(-0.579657\pi\)
−0.247648 + 0.968850i \(0.579657\pi\)
\(752\) 0 0
\(753\) 50.6808 1.84691
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −9.44665 −0.343344 −0.171672 0.985154i \(-0.554917\pi\)
−0.171672 + 0.985154i \(0.554917\pi\)
\(758\) 0 0
\(759\) 4.73650 0.171924
\(760\) 0 0
\(761\) −26.6325 −0.965427 −0.482713 0.875778i \(-0.660349\pi\)
−0.482713 + 0.875778i \(0.660349\pi\)
\(762\) 0 0
\(763\) 26.6037 0.963120
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.91787 −0.141466
\(768\) 0 0
\(769\) −17.9587 −0.647609 −0.323805 0.946124i \(-0.604962\pi\)
−0.323805 + 0.946124i \(0.604962\pi\)
\(770\) 0 0
\(771\) 35.0180 1.26114
\(772\) 0 0
\(773\) −17.0705 −0.613984 −0.306992 0.951712i \(-0.599323\pi\)
−0.306992 + 0.951712i \(0.599323\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −15.9992 −0.573967
\(778\) 0 0
\(779\) 3.51326 0.125876
\(780\) 0 0
\(781\) 5.52752 0.197790
\(782\) 0 0
\(783\) −34.0414 −1.21654
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 18.3219 0.653104 0.326552 0.945179i \(-0.394113\pi\)
0.326552 + 0.945179i \(0.394113\pi\)
\(788\) 0 0
\(789\) 28.1426 1.00190
\(790\) 0 0
\(791\) 29.2825 1.04117
\(792\) 0 0
\(793\) −4.30658 −0.152931
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.4573 0.582949 0.291474 0.956579i \(-0.405854\pi\)
0.291474 + 0.956579i \(0.405854\pi\)
\(798\) 0 0
\(799\) −10.7419 −0.380023
\(800\) 0 0
\(801\) −14.9532 −0.528345
\(802\) 0 0
\(803\) −46.1180 −1.62747
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −7.67438 −0.270151
\(808\) 0 0
\(809\) 19.3869 0.681607 0.340804 0.940134i \(-0.389301\pi\)
0.340804 + 0.940134i \(0.389301\pi\)
\(810\) 0 0
\(811\) 27.4015 0.962196 0.481098 0.876667i \(-0.340238\pi\)
0.481098 + 0.876667i \(0.340238\pi\)
\(812\) 0 0
\(813\) −55.8139 −1.95748
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 44.3840 1.55280
\(818\) 0 0
\(819\) −1.43947 −0.0502992
\(820\) 0 0
\(821\) 20.6646 0.721198 0.360599 0.932721i \(-0.382572\pi\)
0.360599 + 0.932721i \(0.382572\pi\)
\(822\) 0 0
\(823\) −0.983957 −0.0342986 −0.0171493 0.999853i \(-0.505459\pi\)
−0.0171493 + 0.999853i \(0.505459\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −15.5237 −0.539811 −0.269906 0.962887i \(-0.586992\pi\)
−0.269906 + 0.962887i \(0.586992\pi\)
\(828\) 0 0
\(829\) −41.6910 −1.44799 −0.723994 0.689806i \(-0.757696\pi\)
−0.723994 + 0.689806i \(0.757696\pi\)
\(830\) 0 0
\(831\) 50.3890 1.74798
\(832\) 0 0
\(833\) −4.61376 −0.159857
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −20.1718 −0.697238
\(838\) 0 0
\(839\) −11.0633 −0.381949 −0.190974 0.981595i \(-0.561165\pi\)
−0.190974 + 0.981595i \(0.561165\pi\)
\(840\) 0 0
\(841\) 36.0716 1.24385
\(842\) 0 0
\(843\) −40.7421 −1.40323
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 15.1295 0.519855
\(848\) 0 0
\(849\) 48.0053 1.64754
\(850\) 0 0
\(851\) 2.79497 0.0958103
\(852\) 0 0
\(853\) 16.9575 0.580615 0.290307 0.956933i \(-0.406242\pi\)
0.290307 + 0.956933i \(0.406242\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.7394 −0.742605 −0.371302 0.928512i \(-0.621089\pi\)
−0.371302 + 0.928512i \(0.621089\pi\)
\(858\) 0 0
\(859\) −31.5036 −1.07489 −0.537444 0.843300i \(-0.680610\pi\)
−0.537444 + 0.843300i \(0.680610\pi\)
\(860\) 0 0
\(861\) −2.27740 −0.0776134
\(862\) 0 0
\(863\) 12.4798 0.424817 0.212408 0.977181i \(-0.431869\pi\)
0.212408 + 0.977181i \(0.431869\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.96189 0.0666293
\(868\) 0 0
\(869\) 65.7338 2.22987
\(870\) 0 0
\(871\) −10.7114 −0.362942
\(872\) 0 0
\(873\) −5.76275 −0.195039
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14.5835 0.492450 0.246225 0.969213i \(-0.420810\pi\)
0.246225 + 0.969213i \(0.420810\pi\)
\(878\) 0 0
\(879\) −55.3159 −1.86576
\(880\) 0 0
\(881\) −12.4663 −0.420001 −0.210001 0.977701i \(-0.567347\pi\)
−0.210001 + 0.977701i \(0.567347\pi\)
\(882\) 0 0
\(883\) 52.0737 1.75242 0.876209 0.481931i \(-0.160064\pi\)
0.876209 + 0.481931i \(0.160064\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 46.1318 1.54895 0.774477 0.632602i \(-0.218013\pi\)
0.774477 + 0.632602i \(0.218013\pi\)
\(888\) 0 0
\(889\) −24.1171 −0.808860
\(890\) 0 0
\(891\) 49.3682 1.65390
\(892\) 0 0
\(893\) 50.2212 1.68059
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.14003 0.0380643
\(898\) 0 0
\(899\) 38.5592 1.28602
\(900\) 0 0
\(901\) 0.0227951 0.000759414 0
\(902\) 0 0
\(903\) −28.7710 −0.957437
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.91050 −0.0966415 −0.0483207 0.998832i \(-0.515387\pi\)
−0.0483207 + 0.998832i \(0.515387\pi\)
\(908\) 0 0
\(909\) −6.97697 −0.231412
\(910\) 0 0
\(911\) 41.7029 1.38168 0.690839 0.723009i \(-0.257241\pi\)
0.690839 + 0.723009i \(0.257241\pi\)
\(912\) 0 0
\(913\) −23.2084 −0.768086
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.40441 0.244515
\(918\) 0 0
\(919\) 2.60146 0.0858144 0.0429072 0.999079i \(-0.486338\pi\)
0.0429072 + 0.999079i \(0.486338\pi\)
\(920\) 0 0
\(921\) 0.0236595 0.000779608 0
\(922\) 0 0
\(923\) 1.33042 0.0437912
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −14.6623 −0.481572
\(928\) 0 0
\(929\) 5.89744 0.193489 0.0967443 0.995309i \(-0.469157\pi\)
0.0967443 + 0.995309i \(0.469157\pi\)
\(930\) 0 0
\(931\) 21.5704 0.706943
\(932\) 0 0
\(933\) 56.0325 1.83442
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 58.2446 1.90277 0.951383 0.308010i \(-0.0996629\pi\)
0.951383 + 0.308010i \(0.0996629\pi\)
\(938\) 0 0
\(939\) −8.07694 −0.263581
\(940\) 0 0
\(941\) 28.2631 0.921350 0.460675 0.887569i \(-0.347607\pi\)
0.460675 + 0.887569i \(0.347607\pi\)
\(942\) 0 0
\(943\) 0.397848 0.0129557
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.3759 1.01958 0.509789 0.860299i \(-0.329723\pi\)
0.509789 + 0.860299i \(0.329723\pi\)
\(948\) 0 0
\(949\) −11.1001 −0.360325
\(950\) 0 0
\(951\) 40.4731 1.31243
\(952\) 0 0
\(953\) 27.2735 0.883476 0.441738 0.897144i \(-0.354362\pi\)
0.441738 + 0.897144i \(0.354362\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −72.1675 −2.33284
\(958\) 0 0
\(959\) −24.2139 −0.781908
\(960\) 0 0
\(961\) −8.15111 −0.262939
\(962\) 0 0
\(963\) −13.0638 −0.420974
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.30807 0.0420648 0.0210324 0.999779i \(-0.493305\pi\)
0.0210324 + 0.999779i \(0.493305\pi\)
\(968\) 0 0
\(969\) −9.17232 −0.294657
\(970\) 0 0
\(971\) 41.0902 1.31865 0.659324 0.751859i \(-0.270843\pi\)
0.659324 + 0.751859i \(0.270843\pi\)
\(972\) 0 0
\(973\) −12.8686 −0.412548
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −60.7556 −1.94375 −0.971873 0.235507i \(-0.924325\pi\)
−0.971873 + 0.235507i \(0.924325\pi\)
\(978\) 0 0
\(979\) 80.3132 2.56682
\(980\) 0 0
\(981\) 14.6219 0.466840
\(982\) 0 0
\(983\) −9.13830 −0.291466 −0.145733 0.989324i \(-0.546554\pi\)
−0.145733 + 0.989324i \(0.546554\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −32.5548 −1.03623
\(988\) 0 0
\(989\) 5.02613 0.159822
\(990\) 0 0
\(991\) −33.1886 −1.05427 −0.527135 0.849782i \(-0.676734\pi\)
−0.527135 + 0.849782i \(0.676734\pi\)
\(992\) 0 0
\(993\) 1.90649 0.0605005
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −30.0746 −0.952471 −0.476235 0.879318i \(-0.657999\pi\)
−0.476235 + 0.879318i \(0.657999\pi\)
\(998\) 0 0
\(999\) 22.2780 0.704846
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6800.2.a.bz.1.4 5
4.3 odd 2 425.2.a.i.1.3 5
5.4 even 2 6800.2.a.cd.1.2 5
12.11 even 2 3825.2.a.bq.1.3 5
20.3 even 4 425.2.b.f.324.5 10
20.7 even 4 425.2.b.f.324.6 10
20.19 odd 2 425.2.a.j.1.3 yes 5
60.59 even 2 3825.2.a.bl.1.3 5
68.67 odd 2 7225.2.a.x.1.3 5
340.339 odd 2 7225.2.a.y.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.3 5 4.3 odd 2
425.2.a.j.1.3 yes 5 20.19 odd 2
425.2.b.f.324.5 10 20.3 even 4
425.2.b.f.324.6 10 20.7 even 4
3825.2.a.bl.1.3 5 60.59 even 2
3825.2.a.bq.1.3 5 12.11 even 2
6800.2.a.bz.1.4 5 1.1 even 1 trivial
6800.2.a.cd.1.2 5 5.4 even 2
7225.2.a.x.1.3 5 68.67 odd 2
7225.2.a.y.1.3 5 340.339 odd 2