Properties

Label 2-6800-1.1-c1-0-139
Degree $2$
Conductor $6800$
Sign $-1$
Analytic cond. $54.2982$
Root an. cond. $7.36873$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.96·3-s + 1.54·7-s + 0.849·9-s − 4.56·11-s − 1.09·13-s + 17-s − 4.67·19-s + 3.03·21-s − 0.529·23-s − 4.21·27-s + 8.06·29-s + 4.78·31-s − 8.94·33-s − 5.27·37-s − 2.15·39-s − 0.751·41-s − 9.49·43-s − 10.7·47-s − 4.61·49-s + 1.96·51-s + 0.0227·53-s − 9.17·57-s + 3.56·59-s + 3.92·61-s + 1.31·63-s + 9.75·67-s − 1.03·69-s + ⋯
L(s)  = 1  + 1.13·3-s + 0.583·7-s + 0.283·9-s − 1.37·11-s − 0.304·13-s + 0.242·17-s − 1.07·19-s + 0.661·21-s − 0.110·23-s − 0.812·27-s + 1.49·29-s + 0.858·31-s − 1.55·33-s − 0.867·37-s − 0.344·39-s − 0.117·41-s − 1.44·43-s − 1.56·47-s − 0.659·49-s + 0.274·51-s + 0.00313·53-s − 1.21·57-s + 0.464·59-s + 0.502·61-s + 0.165·63-s + 1.19·67-s − 0.125·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6800\)    =    \(2^{4} \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(54.2982\)
Root analytic conductor: \(7.36873\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 1.96T + 3T^{2} \)
7 \( 1 - 1.54T + 7T^{2} \)
11 \( 1 + 4.56T + 11T^{2} \)
13 \( 1 + 1.09T + 13T^{2} \)
19 \( 1 + 4.67T + 19T^{2} \)
23 \( 1 + 0.529T + 23T^{2} \)
29 \( 1 - 8.06T + 29T^{2} \)
31 \( 1 - 4.78T + 31T^{2} \)
37 \( 1 + 5.27T + 37T^{2} \)
41 \( 1 + 0.751T + 41T^{2} \)
43 \( 1 + 9.49T + 43T^{2} \)
47 \( 1 + 10.7T + 47T^{2} \)
53 \( 1 - 0.0227T + 53T^{2} \)
59 \( 1 - 3.56T + 59T^{2} \)
61 \( 1 - 3.92T + 61T^{2} \)
67 \( 1 - 9.75T + 67T^{2} \)
71 \( 1 + 1.21T + 71T^{2} \)
73 \( 1 - 10.1T + 73T^{2} \)
79 \( 1 + 14.4T + 79T^{2} \)
83 \( 1 - 5.08T + 83T^{2} \)
89 \( 1 + 17.6T + 89T^{2} \)
97 \( 1 + 6.78T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.966900405145238733475139003161, −7.04445295642574824002639546645, −6.34948045278581884908489656353, −5.25533103918527424272330506124, −4.82959886260957063944878767803, −3.87179594566174400710332652523, −2.95769664289084469231084976957, −2.46414169923693007483064779010, −1.58410490228433161795675349580, 0, 1.58410490228433161795675349580, 2.46414169923693007483064779010, 2.95769664289084469231084976957, 3.87179594566174400710332652523, 4.82959886260957063944878767803, 5.25533103918527424272330506124, 6.34948045278581884908489656353, 7.04445295642574824002639546645, 7.966900405145238733475139003161

Graph of the $Z$-function along the critical line