Properties

Label 7225.2.a.x
Level $7225$
Weight $2$
Character orbit 7225.a
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.1893456.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - \beta_1 q^{3} + (\beta_{4} + \beta_{2} + \beta_1 + 2) q^{4} + (\beta_{3} + \beta_{2} + \beta_1 - 1) q^{6} + (\beta_{4} + \beta_{3}) q^{7} + (\beta_{4} - 2 \beta_{2} - \beta_1 - 1) q^{8}+ \cdots + (\beta_{4} - 2 \beta_{3} + \beta_{2} + \cdots + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - q^{3} + 11 q^{4} - 3 q^{6} - q^{7} - 9 q^{8} + 6 q^{9} - 4 q^{11} - 17 q^{12} - 3 q^{13} + 7 q^{14} + 27 q^{16} - 22 q^{18} + 6 q^{19} - 5 q^{21} - 18 q^{22} - 4 q^{23} + 19 q^{24} - 5 q^{26}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 9\nu^{2} - \nu + 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 9\beta_{2} + \beta _1 + 20 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.60789
−2.48887
−1.96189
1.66068
1.18219
−2.80107 −2.60789 5.84602 0 7.30489 1.33298 −10.7730 3.80107 0
1.2 −2.19447 2.48887 2.81568 0 −5.46174 −3.05725 −1.78998 3.19447 0
1.3 0.150980 1.96189 −1.97720 0 0.296207 1.54475 −0.600480 0.849020 0
1.4 1.24214 −1.66068 −0.457096 0 −2.06279 −4.35698 −3.05205 −0.242137 0
1.5 2.60242 −1.18219 4.77260 0 −3.07656 3.53650 7.21549 −1.60242 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.x 5
5.b even 2 1 7225.2.a.y 5
17.b even 2 1 425.2.a.i 5
51.c odd 2 1 3825.2.a.bq 5
68.d odd 2 1 6800.2.a.bz 5
85.c even 2 1 425.2.a.j yes 5
85.g odd 4 2 425.2.b.f 10
255.h odd 2 1 3825.2.a.bl 5
340.d odd 2 1 6800.2.a.cd 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
425.2.a.i 5 17.b even 2 1
425.2.a.j yes 5 85.c even 2 1
425.2.b.f 10 85.g odd 4 2
3825.2.a.bl 5 255.h odd 2 1
3825.2.a.bq 5 51.c odd 2 1
6800.2.a.bz 5 68.d odd 2 1
6800.2.a.cd 5 340.d odd 2 1
7225.2.a.x 5 1.a even 1 1 trivial
7225.2.a.y 5 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\):

\( T_{2}^{5} + T_{2}^{4} - 10T_{2}^{3} - 6T_{2}^{2} + 21T_{2} - 3 \) Copy content Toggle raw display
\( T_{3}^{5} + T_{3}^{4} - 10T_{3}^{3} - 10T_{3}^{2} + 23T_{3} + 25 \) Copy content Toggle raw display
\( T_{7}^{5} + T_{7}^{4} - 22T_{7}^{3} - 2T_{7}^{2} + 109T_{7} - 97 \) Copy content Toggle raw display
\( T_{11}^{5} + 4T_{11}^{4} - 22T_{11}^{3} - 120T_{11}^{2} - 156T_{11} - 60 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} - 10 T^{3} + \cdots - 3 \) Copy content Toggle raw display
$3$ \( T^{5} + T^{4} + \cdots + 25 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + T^{4} + \cdots - 97 \) Copy content Toggle raw display
$11$ \( T^{5} + 4 T^{4} + \cdots - 60 \) Copy content Toggle raw display
$13$ \( T^{5} + 3 T^{4} + \cdots + 227 \) Copy content Toggle raw display
$17$ \( T^{5} \) Copy content Toggle raw display
$19$ \( T^{5} - 6 T^{4} + \cdots + 400 \) Copy content Toggle raw display
$23$ \( T^{5} + 4 T^{4} + \cdots - 108 \) Copy content Toggle raw display
$29$ \( T^{5} + 2 T^{4} + \cdots - 240 \) Copy content Toggle raw display
$31$ \( T^{5} + 21 T^{4} + \cdots - 2151 \) Copy content Toggle raw display
$37$ \( T^{5} - 2 T^{4} + \cdots - 3824 \) Copy content Toggle raw display
$41$ \( T^{5} - 8 T^{4} + \cdots - 48 \) Copy content Toggle raw display
$43$ \( T^{5} + 4 T^{4} + \cdots + 14704 \) Copy content Toggle raw display
$47$ \( T^{5} + 2 T^{4} + \cdots + 480 \) Copy content Toggle raw display
$53$ \( T^{5} - 21 T^{4} + \cdots - 9 \) Copy content Toggle raw display
$59$ \( T^{5} - 12 T^{4} + \cdots - 11760 \) Copy content Toggle raw display
$61$ \( T^{5} - 2 T^{4} + \cdots - 800 \) Copy content Toggle raw display
$67$ \( T^{5} + 12 T^{4} + \cdots + 27008 \) Copy content Toggle raw display
$71$ \( T^{5} + 21 T^{4} + \cdots - 11853 \) Copy content Toggle raw display
$73$ \( T^{5} + 22 T^{4} + \cdots + 41744 \) Copy content Toggle raw display
$79$ \( T^{5} + 41 T^{4} + \cdots - 42575 \) Copy content Toggle raw display
$83$ \( T^{5} + 8 T^{4} + \cdots + 5952 \) Copy content Toggle raw display
$89$ \( T^{5} + 10 T^{4} + \cdots - 18000 \) Copy content Toggle raw display
$97$ \( T^{5} - 20 T^{4} + \cdots + 8000 \) Copy content Toggle raw display
show more
show less