Properties

Label 7200.2.m.c.3599.1
Level $7200$
Weight $2$
Character 7200.3599
Analytic conductor $57.492$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7200,2,Mod(3599,7200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7200.3599"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-32,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{53}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3599.1
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 7200.3599
Dual form 7200.2.m.c.3599.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.46410 q^{7} -2.82843i q^{11} +3.46410 q^{13} -1.41421 q^{17} -4.00000 q^{19} -4.89898i q^{23} -2.44949 q^{29} +3.46410i q^{31} -1.41421i q^{41} -8.00000i q^{43} -4.89898i q^{47} +5.00000 q^{49} +7.34847i q^{53} +11.3137i q^{59} +13.8564i q^{61} -4.00000i q^{67} +14.6969 q^{71} -4.00000i q^{73} +9.79796i q^{77} +3.46410i q^{79} -14.1421 q^{83} -7.07107i q^{89} -12.0000 q^{91} -8.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{19} + 40 q^{49} - 96 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.46410 −1.30931 −0.654654 0.755929i \(-0.727186\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 2.82843i − 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) 3.46410 0.960769 0.480384 0.877058i \(-0.340497\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.41421 −0.342997 −0.171499 0.985184i \(-0.554861\pi\)
−0.171499 + 0.985184i \(0.554861\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.89898i − 1.02151i −0.859727 0.510754i \(-0.829366\pi\)
0.859727 0.510754i \(-0.170634\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.44949 −0.454859 −0.227429 0.973795i \(-0.573032\pi\)
−0.227429 + 0.973795i \(0.573032\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 1.41421i − 0.220863i −0.993884 0.110432i \(-0.964777\pi\)
0.993884 0.110432i \(-0.0352233\pi\)
\(42\) 0 0
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 4.89898i − 0.714590i −0.933992 0.357295i \(-0.883699\pi\)
0.933992 0.357295i \(-0.116301\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.34847i 1.00939i 0.863298 + 0.504695i \(0.168395\pi\)
−0.863298 + 0.504695i \(0.831605\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.3137i 1.47292i 0.676481 + 0.736460i \(0.263504\pi\)
−0.676481 + 0.736460i \(0.736496\pi\)
\(60\) 0 0
\(61\) 13.8564i 1.77413i 0.461644 + 0.887066i \(0.347260\pi\)
−0.461644 + 0.887066i \(0.652740\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.6969 1.74421 0.872103 0.489323i \(-0.162756\pi\)
0.872103 + 0.489323i \(0.162756\pi\)
\(72\) 0 0
\(73\) − 4.00000i − 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.79796i 1.11658i
\(78\) 0 0
\(79\) 3.46410i 0.389742i 0.980829 + 0.194871i \(0.0624288\pi\)
−0.980829 + 0.194871i \(0.937571\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −14.1421 −1.55230 −0.776151 0.630548i \(-0.782830\pi\)
−0.776151 + 0.630548i \(0.782830\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 7.07107i − 0.749532i −0.927119 0.374766i \(-0.877723\pi\)
0.927119 0.374766i \(-0.122277\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 8.00000i − 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.44949 0.243733 0.121867 0.992546i \(-0.461112\pi\)
0.121867 + 0.992546i \(0.461112\pi\)
\(102\) 0 0
\(103\) −3.46410 −0.341328 −0.170664 0.985329i \(-0.554591\pi\)
−0.170664 + 0.985329i \(0.554591\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.3137 −1.09374 −0.546869 0.837218i \(-0.684180\pi\)
−0.546869 + 0.837218i \(0.684180\pi\)
\(108\) 0 0
\(109\) 10.3923i 0.995402i 0.867349 + 0.497701i \(0.165822\pi\)
−0.867349 + 0.497701i \(0.834178\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.3848 1.72949 0.864747 0.502208i \(-0.167479\pi\)
0.864747 + 0.502208i \(0.167479\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.89898 0.449089
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −10.3923 −0.922168 −0.461084 0.887357i \(-0.652539\pi\)
−0.461084 + 0.887357i \(0.652539\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.65685i 0.494242i 0.968985 + 0.247121i \(0.0794845\pi\)
−0.968985 + 0.247121i \(0.920516\pi\)
\(132\) 0 0
\(133\) 13.8564 1.20150
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.89949 −0.845771 −0.422885 0.906183i \(-0.638983\pi\)
−0.422885 + 0.906183i \(0.638983\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 9.79796i − 0.819346i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.1464 1.40469 0.702345 0.711837i \(-0.252136\pi\)
0.702345 + 0.711837i \(0.252136\pi\)
\(150\) 0 0
\(151\) − 3.46410i − 0.281905i −0.990016 0.140952i \(-0.954984\pi\)
0.990016 0.140952i \(-0.0450164\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.8564 −1.10586 −0.552931 0.833227i \(-0.686491\pi\)
−0.552931 + 0.833227i \(0.686491\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.9706i 1.33747i
\(162\) 0 0
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.5959i 1.51638i 0.652035 + 0.758189i \(0.273915\pi\)
−0.652035 + 0.758189i \(0.726085\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.44949i 0.186231i 0.995655 + 0.0931156i \(0.0296826\pi\)
−0.995655 + 0.0931156i \(0.970317\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 5.65685i − 0.422813i −0.977398 0.211407i \(-0.932196\pi\)
0.977398 0.211407i \(-0.0678044\pi\)
\(180\) 0 0
\(181\) 10.3923i 0.772454i 0.922404 + 0.386227i \(0.126222\pi\)
−0.922404 + 0.386227i \(0.873778\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000i 0.292509i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.5959 1.41791 0.708955 0.705253i \(-0.249167\pi\)
0.708955 + 0.705253i \(0.249167\pi\)
\(192\) 0 0
\(193\) 14.0000i 1.00774i 0.863779 + 0.503871i \(0.168091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.34847i 0.523557i 0.965128 + 0.261778i \(0.0843089\pi\)
−0.965128 + 0.261778i \(0.915691\pi\)
\(198\) 0 0
\(199\) 10.3923i 0.736691i 0.929689 + 0.368345i \(0.120076\pi\)
−0.929689 + 0.368345i \(0.879924\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.48528 0.595550
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.3137i 0.782586i
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 12.0000i − 0.814613i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.89898 −0.329541
\(222\) 0 0
\(223\) −17.3205 −1.15987 −0.579934 0.814664i \(-0.696921\pi\)
−0.579934 + 0.814664i \(0.696921\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.82843 −0.187729 −0.0938647 0.995585i \(-0.529922\pi\)
−0.0938647 + 0.995585i \(0.529922\pi\)
\(228\) 0 0
\(229\) − 17.3205i − 1.14457i −0.820054 0.572286i \(-0.806057\pi\)
0.820054 0.572286i \(-0.193943\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.41421 0.0926482 0.0463241 0.998926i \(-0.485249\pi\)
0.0463241 + 0.998926i \(0.485249\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.79796 −0.633777 −0.316889 0.948463i \(-0.602638\pi\)
−0.316889 + 0.948463i \(0.602638\pi\)
\(240\) 0 0
\(241\) −28.0000 −1.80364 −0.901819 0.432113i \(-0.857768\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −13.8564 −0.881662
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.1421i 0.892644i 0.894873 + 0.446322i \(0.147266\pi\)
−0.894873 + 0.446322i \(0.852734\pi\)
\(252\) 0 0
\(253\) −13.8564 −0.871145
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.0416 1.49968 0.749838 0.661622i \(-0.230131\pi\)
0.749838 + 0.661622i \(0.230131\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 9.79796i − 0.604168i −0.953281 0.302084i \(-0.902318\pi\)
0.953281 0.302084i \(-0.0976823\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.34847 −0.448044 −0.224022 0.974584i \(-0.571919\pi\)
−0.224022 + 0.974584i \(0.571919\pi\)
\(270\) 0 0
\(271\) 31.1769i 1.89386i 0.321436 + 0.946931i \(0.395835\pi\)
−0.321436 + 0.946931i \(0.604165\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −17.3205 −1.04069 −0.520344 0.853957i \(-0.674196\pi\)
−0.520344 + 0.853957i \(0.674196\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.0416i 1.43420i 0.696969 + 0.717102i \(0.254532\pi\)
−0.696969 + 0.717102i \(0.745468\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i 0.879688 + 0.475551i \(0.157751\pi\)
−0.879688 + 0.475551i \(0.842249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.89898i 0.289178i
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 26.9444i 1.57411i 0.616884 + 0.787054i \(0.288395\pi\)
−0.616884 + 0.787054i \(0.711605\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 16.9706i − 0.981433i
\(300\) 0 0
\(301\) 27.7128i 1.59734i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 4.00000i − 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.79796 0.555591 0.277796 0.960640i \(-0.410396\pi\)
0.277796 + 0.960640i \(0.410396\pi\)
\(312\) 0 0
\(313\) − 10.0000i − 0.565233i −0.959233 0.282617i \(-0.908798\pi\)
0.959233 0.282617i \(-0.0912024\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.2474i 0.687885i 0.938991 + 0.343943i \(0.111763\pi\)
−0.938991 + 0.343943i \(0.888237\pi\)
\(318\) 0 0
\(319\) 6.92820i 0.387905i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.65685 0.314756
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.9706i 0.935617i
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.00000i 0.217894i 0.994048 + 0.108947i \(0.0347479\pi\)
−0.994048 + 0.108947i \(0.965252\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.79796 0.530589
\(342\) 0 0
\(343\) 6.92820 0.374088
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.1421 0.759190 0.379595 0.925153i \(-0.376063\pi\)
0.379595 + 0.925153i \(0.376063\pi\)
\(348\) 0 0
\(349\) 27.7128i 1.48343i 0.670714 + 0.741716i \(0.265988\pi\)
−0.670714 + 0.741716i \(0.734012\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.5563 −0.827981 −0.413990 0.910281i \(-0.635865\pi\)
−0.413990 + 0.910281i \(0.635865\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.6969 0.775675 0.387837 0.921728i \(-0.373222\pi\)
0.387837 + 0.921728i \(0.373222\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −24.2487 −1.26577 −0.632886 0.774245i \(-0.718130\pi\)
−0.632886 + 0.774245i \(0.718130\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 25.4558i − 1.32160i
\(372\) 0 0
\(373\) 13.8564 0.717458 0.358729 0.933442i \(-0.383210\pi\)
0.358729 + 0.933442i \(0.383210\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.48528 −0.437014
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.79796i 0.500652i 0.968162 + 0.250326i \(0.0805379\pi\)
−0.968162 + 0.250326i \(0.919462\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 26.9444 1.36613 0.683067 0.730355i \(-0.260646\pi\)
0.683067 + 0.730355i \(0.260646\pi\)
\(390\) 0 0
\(391\) 6.92820i 0.350374i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 1.41421i − 0.0706225i −0.999376 0.0353112i \(-0.988758\pi\)
0.999376 0.0353112i \(-0.0112422\pi\)
\(402\) 0 0
\(403\) 12.0000i 0.597763i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −32.0000 −1.58230 −0.791149 0.611623i \(-0.790517\pi\)
−0.791149 + 0.611623i \(0.790517\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 39.1918i − 1.92850i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 19.7990i 0.967244i 0.875277 + 0.483622i \(0.160679\pi\)
−0.875277 + 0.483622i \(0.839321\pi\)
\(420\) 0 0
\(421\) 24.2487i 1.18181i 0.806741 + 0.590905i \(0.201229\pi\)
−0.806741 + 0.590905i \(0.798771\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 48.0000i − 2.32288i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.6969 −0.707927 −0.353963 0.935259i \(-0.615166\pi\)
−0.353963 + 0.935259i \(0.615166\pi\)
\(432\) 0 0
\(433\) − 22.0000i − 1.05725i −0.848855 0.528626i \(-0.822707\pi\)
0.848855 0.528626i \(-0.177293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 19.5959i 0.937400i
\(438\) 0 0
\(439\) 3.46410i 0.165333i 0.996577 + 0.0826663i \(0.0263436\pi\)
−0.996577 + 0.0826663i \(0.973656\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.82843 0.134383 0.0671913 0.997740i \(-0.478596\pi\)
0.0671913 + 0.997740i \(0.478596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 24.0416i − 1.13459i −0.823513 0.567297i \(-0.807989\pi\)
0.823513 0.567297i \(-0.192011\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 8.00000i − 0.374224i −0.982339 0.187112i \(-0.940087\pi\)
0.982339 0.187112i \(-0.0599128\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.1464 0.798589 0.399294 0.916823i \(-0.369255\pi\)
0.399294 + 0.916823i \(0.369255\pi\)
\(462\) 0 0
\(463\) 17.3205 0.804952 0.402476 0.915430i \(-0.368150\pi\)
0.402476 + 0.915430i \(0.368150\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −36.7696 −1.70149 −0.850746 0.525577i \(-0.823849\pi\)
−0.850746 + 0.525577i \(0.823849\pi\)
\(468\) 0 0
\(469\) 13.8564i 0.639829i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −22.6274 −1.04041
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.4949 1.11920 0.559600 0.828763i \(-0.310955\pi\)
0.559600 + 0.828763i \(0.310955\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −10.3923 −0.470920 −0.235460 0.971884i \(-0.575660\pi\)
−0.235460 + 0.971884i \(0.575660\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 39.5980i 1.78703i 0.449032 + 0.893516i \(0.351769\pi\)
−0.449032 + 0.893516i \(0.648231\pi\)
\(492\) 0 0
\(493\) 3.46410 0.156015
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −50.9117 −2.28370
\(498\) 0 0
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 14.6969i − 0.655304i −0.944798 0.327652i \(-0.893743\pi\)
0.944798 0.327652i \(-0.106257\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −41.6413 −1.84572 −0.922860 0.385136i \(-0.874154\pi\)
−0.922860 + 0.385136i \(0.874154\pi\)
\(510\) 0 0
\(511\) 13.8564i 0.612971i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −13.8564 −0.609404
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 26.8701i − 1.17720i −0.808425 0.588599i \(-0.799680\pi\)
0.808425 0.588599i \(-0.200320\pi\)
\(522\) 0 0
\(523\) − 20.0000i − 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 4.89898i − 0.213403i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 4.89898i − 0.212198i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 14.1421i − 0.609145i
\(540\) 0 0
\(541\) − 10.3923i − 0.446800i −0.974727 0.223400i \(-0.928284\pi\)
0.974727 0.223400i \(-0.0717156\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.79796 0.417407
\(552\) 0 0
\(553\) − 12.0000i − 0.510292i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 7.34847i − 0.311365i −0.987807 0.155682i \(-0.950242\pi\)
0.987807 0.155682i \(-0.0497576\pi\)
\(558\) 0 0
\(559\) − 27.7128i − 1.17213i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.1421 −0.596020 −0.298010 0.954563i \(-0.596323\pi\)
−0.298010 + 0.954563i \(0.596323\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.89949i 0.415008i 0.978234 + 0.207504i \(0.0665341\pi\)
−0.978234 + 0.207504i \(0.933466\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 14.0000i − 0.582828i −0.956597 0.291414i \(-0.905874\pi\)
0.956597 0.291414i \(-0.0941257\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 48.9898 2.03244
\(582\) 0 0
\(583\) 20.7846 0.860811
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.6274 0.933933 0.466967 0.884275i \(-0.345347\pi\)
0.466967 + 0.884275i \(0.345347\pi\)
\(588\) 0 0
\(589\) − 13.8564i − 0.570943i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.07107 −0.290374 −0.145187 0.989404i \(-0.546378\pi\)
−0.145187 + 0.989404i \(0.546378\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.89898 0.200167 0.100083 0.994979i \(-0.468089\pi\)
0.100083 + 0.994979i \(0.468089\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 45.0333 1.82785 0.913923 0.405887i \(-0.133038\pi\)
0.913923 + 0.405887i \(0.133038\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 16.9706i − 0.686555i
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.0416 0.967880 0.483940 0.875101i \(-0.339205\pi\)
0.483940 + 0.875101i \(0.339205\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 24.4949i 0.981367i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 31.1769i 1.24113i 0.784154 + 0.620567i \(0.213097\pi\)
−0.784154 + 0.620567i \(0.786903\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 17.3205 0.686264
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5563i 0.614439i 0.951639 + 0.307219i \(0.0993986\pi\)
−0.951639 + 0.307219i \(0.900601\pi\)
\(642\) 0 0
\(643\) − 32.0000i − 1.26196i −0.775800 0.630978i \(-0.782654\pi\)
0.775800 0.630978i \(-0.217346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.6969i 0.577796i 0.957360 + 0.288898i \(0.0932889\pi\)
−0.957360 + 0.288898i \(0.906711\pi\)
\(648\) 0 0
\(649\) 32.0000 1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 17.1464i − 0.670992i −0.942042 0.335496i \(-0.891096\pi\)
0.942042 0.335496i \(-0.108904\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 11.3137i 0.440720i 0.975419 + 0.220360i \(0.0707231\pi\)
−0.975419 + 0.220360i \(0.929277\pi\)
\(660\) 0 0
\(661\) − 13.8564i − 0.538952i −0.963007 0.269476i \(-0.913150\pi\)
0.963007 0.269476i \(-0.0868504\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000i 0.464642i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 39.1918 1.51298
\(672\) 0 0
\(673\) 14.0000i 0.539660i 0.962908 + 0.269830i \(0.0869676\pi\)
−0.962908 + 0.269830i \(0.913032\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 17.1464i − 0.658991i −0.944157 0.329495i \(-0.893121\pi\)
0.944157 0.329495i \(-0.106879\pi\)
\(678\) 0 0
\(679\) 27.7128i 1.06352i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.7696 1.40695 0.703474 0.710721i \(-0.251631\pi\)
0.703474 + 0.710721i \(0.251631\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 25.4558i 0.969790i
\(690\) 0 0
\(691\) −32.0000 −1.21734 −0.608669 0.793424i \(-0.708296\pi\)
−0.608669 + 0.793424i \(0.708296\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.00000i 0.0757554i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.34847 −0.277548 −0.138774 0.990324i \(-0.544316\pi\)
−0.138774 + 0.990324i \(0.544316\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.48528 −0.319122
\(708\) 0 0
\(709\) − 3.46410i − 0.130097i −0.997882 0.0650485i \(-0.979280\pi\)
0.997882 0.0650485i \(-0.0207202\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.9706 0.635553
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −44.0908 −1.64431 −0.822155 0.569264i \(-0.807228\pi\)
−0.822155 + 0.569264i \(0.807228\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −24.2487 −0.899335 −0.449667 0.893196i \(-0.648458\pi\)
−0.449667 + 0.893196i \(0.648458\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.3137i 0.418453i
\(732\) 0 0
\(733\) −38.1051 −1.40744 −0.703722 0.710475i \(-0.748480\pi\)
−0.703722 + 0.710475i \(0.748480\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.3137 −0.416746
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 39.1918i 1.43781i 0.695109 + 0.718905i \(0.255356\pi\)
−0.695109 + 0.718905i \(0.744644\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 39.1918 1.43204
\(750\) 0 0
\(751\) 3.46410i 0.126407i 0.998001 + 0.0632034i \(0.0201317\pi\)
−0.998001 + 0.0632034i \(0.979868\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −10.3923 −0.377715 −0.188857 0.982005i \(-0.560478\pi\)
−0.188857 + 0.982005i \(0.560478\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 18.3848i − 0.666448i −0.942848 0.333224i \(-0.891864\pi\)
0.942848 0.333224i \(-0.108136\pi\)
\(762\) 0 0
\(763\) − 36.0000i − 1.30329i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 39.1918i 1.41514i
\(768\) 0 0
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 22.0454i − 0.792918i −0.918052 0.396459i \(-0.870239\pi\)
0.918052 0.396459i \(-0.129761\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.65685i 0.202678i
\(780\) 0 0
\(781\) − 41.5692i − 1.48746i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 20.0000i 0.712923i 0.934310 + 0.356462i \(0.116017\pi\)
−0.934310 + 0.356462i \(0.883983\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −63.6867 −2.26444
\(792\) 0 0
\(793\) 48.0000i 1.70453i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 12.2474i − 0.433827i −0.976191 0.216913i \(-0.930401\pi\)
0.976191 0.216913i \(-0.0695989\pi\)
\(798\) 0 0
\(799\) 6.92820i 0.245102i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11.3137 −0.399252
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.41421i 0.0497211i 0.999691 + 0.0248606i \(0.00791417\pi\)
−0.999691 + 0.0248606i \(0.992086\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 32.0000i 1.11954i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.44949 0.0854878 0.0427439 0.999086i \(-0.486390\pi\)
0.0427439 + 0.999086i \(0.486390\pi\)
\(822\) 0 0
\(823\) 17.3205 0.603755 0.301877 0.953347i \(-0.402387\pi\)
0.301877 + 0.953347i \(0.402387\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.65685 0.196708 0.0983540 0.995151i \(-0.468642\pi\)
0.0983540 + 0.995151i \(0.468642\pi\)
\(828\) 0 0
\(829\) 10.3923i 0.360940i 0.983581 + 0.180470i \(0.0577618\pi\)
−0.983581 + 0.180470i \(0.942238\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.07107 −0.244998
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.89898 −0.169132 −0.0845658 0.996418i \(-0.526950\pi\)
−0.0845658 + 0.996418i \(0.526950\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10.3923 −0.357084
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −13.8564 −0.474434 −0.237217 0.971457i \(-0.576235\pi\)
−0.237217 + 0.971457i \(0.576235\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.41421 −0.0483086 −0.0241543 0.999708i \(-0.507689\pi\)
−0.0241543 + 0.999708i \(0.507689\pi\)
\(858\) 0 0
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.79796 0.332373
\(870\) 0 0
\(871\) − 13.8564i − 0.469506i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −55.4256 −1.87159 −0.935795 0.352544i \(-0.885317\pi\)
−0.935795 + 0.352544i \(0.885317\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 43.8406i − 1.47703i −0.674238 0.738514i \(-0.735528\pi\)
0.674238 0.738514i \(-0.264472\pi\)
\(882\) 0 0
\(883\) 40.0000i 1.34611i 0.739594 + 0.673054i \(0.235018\pi\)
−0.739594 + 0.673054i \(0.764982\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 9.79796i − 0.328983i −0.986378 0.164492i \(-0.947402\pi\)
0.986378 0.164492i \(-0.0525984\pi\)
\(888\) 0 0
\(889\) 36.0000 1.20740
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 19.5959i 0.655752i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 8.48528i − 0.283000i
\(900\) 0 0
\(901\) − 10.3923i − 0.346218i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 8.00000i 0.265636i 0.991140 + 0.132818i \(0.0424025\pi\)
−0.991140 + 0.132818i \(0.957597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −39.1918 −1.29848 −0.649242 0.760582i \(-0.724914\pi\)
−0.649242 + 0.760582i \(0.724914\pi\)
\(912\) 0 0
\(913\) 40.0000i 1.32381i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 19.5959i − 0.647114i
\(918\) 0 0
\(919\) − 10.3923i − 0.342811i −0.985201 0.171405i \(-0.945169\pi\)
0.985201 0.171405i \(-0.0548307\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 50.9117 1.67578
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.41421i 0.0463988i 0.999731 + 0.0231994i \(0.00738527\pi\)
−0.999731 + 0.0231994i \(0.992615\pi\)
\(930\) 0 0
\(931\) −20.0000 −0.655474
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 2.00000i − 0.0653372i −0.999466 0.0326686i \(-0.989599\pi\)
0.999466 0.0326686i \(-0.0104006\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.44949 −0.0798511 −0.0399255 0.999203i \(-0.512712\pi\)
−0.0399255 + 0.999203i \(0.512712\pi\)
\(942\) 0 0
\(943\) −6.92820 −0.225613
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.6274 0.735292 0.367646 0.929966i \(-0.380164\pi\)
0.367646 + 0.929966i \(0.380164\pi\)
\(948\) 0 0
\(949\) − 13.8564i − 0.449798i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 26.8701 0.870407 0.435203 0.900332i \(-0.356677\pi\)
0.435203 + 0.900332i \(0.356677\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 34.2929 1.10737
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 45.0333 1.44817 0.724087 0.689709i \(-0.242261\pi\)
0.724087 + 0.689709i \(0.242261\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.1127i 0.998454i 0.866471 + 0.499227i \(0.166383\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 0 0
\(973\) 13.8564 0.444216
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.0416 0.769160 0.384580 0.923092i \(-0.374346\pi\)
0.384580 + 0.923092i \(0.374346\pi\)
\(978\) 0 0
\(979\) −20.0000 −0.639203
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 48.9898i 1.56253i 0.624198 + 0.781266i \(0.285426\pi\)
−0.624198 + 0.781266i \(0.714574\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −39.1918 −1.24623
\(990\) 0 0
\(991\) − 51.9615i − 1.65061i −0.564686 0.825306i \(-0.691003\pi\)
0.564686 0.825306i \(-0.308997\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 13.8564 0.438837 0.219418 0.975631i \(-0.429584\pi\)
0.219418 + 0.975631i \(0.429584\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.m.c.3599.1 8
3.2 odd 2 inner 7200.2.m.c.3599.4 8
4.3 odd 2 1800.2.m.c.899.2 8
5.2 odd 4 288.2.f.a.143.1 4
5.3 odd 4 7200.2.b.c.4751.3 4
5.4 even 2 inner 7200.2.m.c.3599.6 8
8.3 odd 2 inner 7200.2.m.c.3599.5 8
8.5 even 2 1800.2.m.c.899.3 8
12.11 even 2 1800.2.m.c.899.8 8
15.2 even 4 288.2.f.a.143.3 4
15.8 even 4 7200.2.b.c.4751.4 4
15.14 odd 2 inner 7200.2.m.c.3599.7 8
20.3 even 4 1800.2.b.c.251.2 4
20.7 even 4 72.2.f.a.35.3 yes 4
20.19 odd 2 1800.2.m.c.899.7 8
24.5 odd 2 1800.2.m.c.899.5 8
24.11 even 2 inner 7200.2.m.c.3599.8 8
40.3 even 4 7200.2.b.c.4751.1 4
40.13 odd 4 1800.2.b.c.251.4 4
40.19 odd 2 inner 7200.2.m.c.3599.2 8
40.27 even 4 288.2.f.a.143.4 4
40.29 even 2 1800.2.m.c.899.6 8
40.37 odd 4 72.2.f.a.35.1 4
45.2 even 12 2592.2.p.a.2159.1 4
45.7 odd 12 2592.2.p.a.2159.2 4
45.22 odd 12 2592.2.p.c.431.2 4
45.32 even 12 2592.2.p.c.431.1 4
60.23 odd 4 1800.2.b.c.251.3 4
60.47 odd 4 72.2.f.a.35.2 yes 4
60.59 even 2 1800.2.m.c.899.1 8
80.27 even 4 2304.2.c.i.2303.1 8
80.37 odd 4 2304.2.c.i.2303.3 8
80.67 even 4 2304.2.c.i.2303.6 8
80.77 odd 4 2304.2.c.i.2303.8 8
120.29 odd 2 1800.2.m.c.899.4 8
120.53 even 4 1800.2.b.c.251.1 4
120.59 even 2 inner 7200.2.m.c.3599.3 8
120.77 even 4 72.2.f.a.35.4 yes 4
120.83 odd 4 7200.2.b.c.4751.2 4
120.107 odd 4 288.2.f.a.143.2 4
180.7 even 12 648.2.l.c.539.1 4
180.47 odd 12 648.2.l.c.539.2 4
180.67 even 12 648.2.l.a.107.2 4
180.167 odd 12 648.2.l.a.107.1 4
240.77 even 4 2304.2.c.i.2303.4 8
240.107 odd 4 2304.2.c.i.2303.5 8
240.197 even 4 2304.2.c.i.2303.7 8
240.227 odd 4 2304.2.c.i.2303.2 8
360.67 even 12 2592.2.p.a.431.1 4
360.77 even 12 648.2.l.c.107.1 4
360.157 odd 12 648.2.l.c.107.2 4
360.187 even 12 2592.2.p.c.2159.1 4
360.227 odd 12 2592.2.p.c.2159.2 4
360.277 odd 12 648.2.l.a.539.2 4
360.317 even 12 648.2.l.a.539.1 4
360.347 odd 12 2592.2.p.a.431.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.f.a.35.1 4 40.37 odd 4
72.2.f.a.35.2 yes 4 60.47 odd 4
72.2.f.a.35.3 yes 4 20.7 even 4
72.2.f.a.35.4 yes 4 120.77 even 4
288.2.f.a.143.1 4 5.2 odd 4
288.2.f.a.143.2 4 120.107 odd 4
288.2.f.a.143.3 4 15.2 even 4
288.2.f.a.143.4 4 40.27 even 4
648.2.l.a.107.1 4 180.167 odd 12
648.2.l.a.107.2 4 180.67 even 12
648.2.l.a.539.1 4 360.317 even 12
648.2.l.a.539.2 4 360.277 odd 12
648.2.l.c.107.1 4 360.77 even 12
648.2.l.c.107.2 4 360.157 odd 12
648.2.l.c.539.1 4 180.7 even 12
648.2.l.c.539.2 4 180.47 odd 12
1800.2.b.c.251.1 4 120.53 even 4
1800.2.b.c.251.2 4 20.3 even 4
1800.2.b.c.251.3 4 60.23 odd 4
1800.2.b.c.251.4 4 40.13 odd 4
1800.2.m.c.899.1 8 60.59 even 2
1800.2.m.c.899.2 8 4.3 odd 2
1800.2.m.c.899.3 8 8.5 even 2
1800.2.m.c.899.4 8 120.29 odd 2
1800.2.m.c.899.5 8 24.5 odd 2
1800.2.m.c.899.6 8 40.29 even 2
1800.2.m.c.899.7 8 20.19 odd 2
1800.2.m.c.899.8 8 12.11 even 2
2304.2.c.i.2303.1 8 80.27 even 4
2304.2.c.i.2303.2 8 240.227 odd 4
2304.2.c.i.2303.3 8 80.37 odd 4
2304.2.c.i.2303.4 8 240.77 even 4
2304.2.c.i.2303.5 8 240.107 odd 4
2304.2.c.i.2303.6 8 80.67 even 4
2304.2.c.i.2303.7 8 240.197 even 4
2304.2.c.i.2303.8 8 80.77 odd 4
2592.2.p.a.431.1 4 360.67 even 12
2592.2.p.a.431.2 4 360.347 odd 12
2592.2.p.a.2159.1 4 45.2 even 12
2592.2.p.a.2159.2 4 45.7 odd 12
2592.2.p.c.431.1 4 45.32 even 12
2592.2.p.c.431.2 4 45.22 odd 12
2592.2.p.c.2159.1 4 360.187 even 12
2592.2.p.c.2159.2 4 360.227 odd 12
7200.2.b.c.4751.1 4 40.3 even 4
7200.2.b.c.4751.2 4 120.83 odd 4
7200.2.b.c.4751.3 4 5.3 odd 4
7200.2.b.c.4751.4 4 15.8 even 4
7200.2.m.c.3599.1 8 1.1 even 1 trivial
7200.2.m.c.3599.2 8 40.19 odd 2 inner
7200.2.m.c.3599.3 8 120.59 even 2 inner
7200.2.m.c.3599.4 8 3.2 odd 2 inner
7200.2.m.c.3599.5 8 8.3 odd 2 inner
7200.2.m.c.3599.6 8 5.4 even 2 inner
7200.2.m.c.3599.7 8 15.14 odd 2 inner
7200.2.m.c.3599.8 8 24.11 even 2 inner