Properties

Label 1800.2.m.c.899.7
Level $1800$
Weight $2$
Character 1800.899
Analytic conductor $14.373$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1800,2,Mod(899,1800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1800.899"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,32,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(26)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 899.7
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1800.899
Dual form 1800.2.m.c.899.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} -3.46410 q^{7} -2.82843 q^{8} +2.82843i q^{11} -3.46410 q^{13} +(-2.44949 - 4.24264i) q^{14} +(-2.00000 - 3.46410i) q^{16} +1.41421 q^{17} +4.00000 q^{19} +(-3.46410 + 2.00000i) q^{22} -4.89898i q^{23} +(-2.44949 - 4.24264i) q^{26} +(3.46410 - 6.00000i) q^{28} -2.44949 q^{29} -3.46410i q^{31} +(2.82843 - 4.89898i) q^{32} +(1.00000 + 1.73205i) q^{34} +(2.82843 + 4.89898i) q^{38} -1.41421i q^{41} -8.00000i q^{43} +(-4.89898 - 2.82843i) q^{44} +(6.00000 - 3.46410i) q^{46} -4.89898i q^{47} +5.00000 q^{49} +(3.46410 - 6.00000i) q^{52} -7.34847i q^{53} +9.79796 q^{56} +(-1.73205 - 3.00000i) q^{58} -11.3137i q^{59} +13.8564i q^{61} +(4.24264 - 2.44949i) q^{62} +8.00000 q^{64} -4.00000i q^{67} +(-1.41421 + 2.44949i) q^{68} -14.6969 q^{71} +4.00000i q^{73} +(-4.00000 + 6.92820i) q^{76} -9.79796i q^{77} -3.46410i q^{79} +(1.73205 - 1.00000i) q^{82} -14.1421 q^{83} +(9.79796 - 5.65685i) q^{86} -8.00000i q^{88} -7.07107i q^{89} +12.0000 q^{91} +(8.48528 + 4.89898i) q^{92} +(6.00000 - 3.46410i) q^{94} +8.00000i q^{97} +(3.53553 + 6.12372i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 16 q^{16} + 32 q^{19} + 8 q^{34} + 48 q^{46} + 40 q^{49} + 64 q^{64} - 32 q^{76} + 96 q^{91} + 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.500000 + 0.866025i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 0 0
\(6\) 0 0
\(7\) −3.46410 −1.30931 −0.654654 0.755929i \(-0.727186\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) −2.82843 −1.00000
\(9\) 0 0
\(10\) 0 0
\(11\) 2.82843i 0.852803i 0.904534 + 0.426401i \(0.140219\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) −3.46410 −0.960769 −0.480384 0.877058i \(-0.659503\pi\)
−0.480384 + 0.877058i \(0.659503\pi\)
\(14\) −2.44949 4.24264i −0.654654 1.13389i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 1.41421 0.342997 0.171499 0.985184i \(-0.445139\pi\)
0.171499 + 0.985184i \(0.445139\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −3.46410 + 2.00000i −0.738549 + 0.426401i
\(23\) 4.89898i 1.02151i −0.859727 0.510754i \(-0.829366\pi\)
0.859727 0.510754i \(-0.170634\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.44949 4.24264i −0.480384 0.832050i
\(27\) 0 0
\(28\) 3.46410 6.00000i 0.654654 1.13389i
\(29\) −2.44949 −0.454859 −0.227429 0.973795i \(-0.573032\pi\)
−0.227429 + 0.973795i \(0.573032\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) 2.82843 4.89898i 0.500000 0.866025i
\(33\) 0 0
\(34\) 1.00000 + 1.73205i 0.171499 + 0.297044i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 2.82843 + 4.89898i 0.458831 + 0.794719i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.41421i 0.220863i −0.993884 0.110432i \(-0.964777\pi\)
0.993884 0.110432i \(-0.0352233\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) −4.89898 2.82843i −0.738549 0.426401i
\(45\) 0 0
\(46\) 6.00000 3.46410i 0.884652 0.510754i
\(47\) 4.89898i 0.714590i −0.933992 0.357295i \(-0.883699\pi\)
0.933992 0.357295i \(-0.116301\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 3.46410 6.00000i 0.480384 0.832050i
\(53\) 7.34847i 1.00939i −0.863298 0.504695i \(-0.831605\pi\)
0.863298 0.504695i \(-0.168395\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 9.79796 1.30931
\(57\) 0 0
\(58\) −1.73205 3.00000i −0.227429 0.393919i
\(59\) 11.3137i 1.47292i −0.676481 0.736460i \(-0.736496\pi\)
0.676481 0.736460i \(-0.263504\pi\)
\(60\) 0 0
\(61\) 13.8564i 1.77413i 0.461644 + 0.887066i \(0.347260\pi\)
−0.461644 + 0.887066i \(0.652740\pi\)
\(62\) 4.24264 2.44949i 0.538816 0.311086i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) −1.41421 + 2.44949i −0.171499 + 0.297044i
\(69\) 0 0
\(70\) 0 0
\(71\) −14.6969 −1.74421 −0.872103 0.489323i \(-0.837244\pi\)
−0.872103 + 0.489323i \(0.837244\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −4.00000 + 6.92820i −0.458831 + 0.794719i
\(77\) 9.79796i 1.11658i
\(78\) 0 0
\(79\) 3.46410i 0.389742i −0.980829 0.194871i \(-0.937571\pi\)
0.980829 0.194871i \(-0.0624288\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.73205 1.00000i 0.191273 0.110432i
\(83\) −14.1421 −1.55230 −0.776151 0.630548i \(-0.782830\pi\)
−0.776151 + 0.630548i \(0.782830\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 9.79796 5.65685i 1.05654 0.609994i
\(87\) 0 0
\(88\) 8.00000i 0.852803i
\(89\) 7.07107i 0.749532i −0.927119 0.374766i \(-0.877723\pi\)
0.927119 0.374766i \(-0.122277\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 8.48528 + 4.89898i 0.884652 + 0.510754i
\(93\) 0 0
\(94\) 6.00000 3.46410i 0.618853 0.357295i
\(95\) 0 0
\(96\) 0 0
\(97\) 8.00000i 0.812277i 0.913812 + 0.406138i \(0.133125\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 3.53553 + 6.12372i 0.357143 + 0.618590i
\(99\) 0 0
\(100\) 0 0
\(101\) 2.44949 0.243733 0.121867 0.992546i \(-0.461112\pi\)
0.121867 + 0.992546i \(0.461112\pi\)
\(102\) 0 0
\(103\) −3.46410 −0.341328 −0.170664 0.985329i \(-0.554591\pi\)
−0.170664 + 0.985329i \(0.554591\pi\)
\(104\) 9.79796 0.960769
\(105\) 0 0
\(106\) 9.00000 5.19615i 0.874157 0.504695i
\(107\) −11.3137 −1.09374 −0.546869 0.837218i \(-0.684180\pi\)
−0.546869 + 0.837218i \(0.684180\pi\)
\(108\) 0 0
\(109\) 10.3923i 0.995402i 0.867349 + 0.497701i \(0.165822\pi\)
−0.867349 + 0.497701i \(0.834178\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 6.92820 + 12.0000i 0.654654 + 1.13389i
\(113\) −18.3848 −1.72949 −0.864747 0.502208i \(-0.832521\pi\)
−0.864747 + 0.502208i \(0.832521\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.44949 4.24264i 0.227429 0.393919i
\(117\) 0 0
\(118\) 13.8564 8.00000i 1.27559 0.736460i
\(119\) −4.89898 −0.449089
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) −16.9706 + 9.79796i −1.53644 + 0.887066i
\(123\) 0 0
\(124\) 6.00000 + 3.46410i 0.538816 + 0.311086i
\(125\) 0 0
\(126\) 0 0
\(127\) −10.3923 −0.922168 −0.461084 0.887357i \(-0.652539\pi\)
−0.461084 + 0.887357i \(0.652539\pi\)
\(128\) 5.65685 + 9.79796i 0.500000 + 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 5.65685i 0.494242i −0.968985 0.247121i \(-0.920516\pi\)
0.968985 0.247121i \(-0.0794845\pi\)
\(132\) 0 0
\(133\) −13.8564 −1.20150
\(134\) 4.89898 2.82843i 0.423207 0.244339i
\(135\) 0 0
\(136\) −4.00000 −0.342997
\(137\) 9.89949 0.845771 0.422885 0.906183i \(-0.361017\pi\)
0.422885 + 0.906183i \(0.361017\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −10.3923 18.0000i −0.872103 1.51053i
\(143\) 9.79796i 0.819346i
\(144\) 0 0
\(145\) 0 0
\(146\) −4.89898 + 2.82843i −0.405442 + 0.234082i
\(147\) 0 0
\(148\) 0 0
\(149\) 17.1464 1.40469 0.702345 0.711837i \(-0.252136\pi\)
0.702345 + 0.711837i \(0.252136\pi\)
\(150\) 0 0
\(151\) 3.46410i 0.281905i 0.990016 + 0.140952i \(0.0450164\pi\)
−0.990016 + 0.140952i \(0.954984\pi\)
\(152\) −11.3137 −0.917663
\(153\) 0 0
\(154\) 12.0000 6.92820i 0.966988 0.558291i
\(155\) 0 0
\(156\) 0 0
\(157\) 13.8564 1.10586 0.552931 0.833227i \(-0.313509\pi\)
0.552931 + 0.833227i \(0.313509\pi\)
\(158\) 4.24264 2.44949i 0.337526 0.194871i
\(159\) 0 0
\(160\) 0 0
\(161\) 16.9706i 1.33747i
\(162\) 0 0
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) 2.44949 + 1.41421i 0.191273 + 0.110432i
\(165\) 0 0
\(166\) −10.0000 17.3205i −0.776151 1.34433i
\(167\) 19.5959i 1.51638i 0.652035 + 0.758189i \(0.273915\pi\)
−0.652035 + 0.758189i \(0.726085\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 13.8564 + 8.00000i 1.05654 + 0.609994i
\(173\) 2.44949i 0.186231i −0.995655 0.0931156i \(-0.970317\pi\)
0.995655 0.0931156i \(-0.0296826\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 9.79796 5.65685i 0.738549 0.426401i
\(177\) 0 0
\(178\) 8.66025 5.00000i 0.649113 0.374766i
\(179\) 5.65685i 0.422813i 0.977398 + 0.211407i \(0.0678044\pi\)
−0.977398 + 0.211407i \(0.932196\pi\)
\(180\) 0 0
\(181\) 10.3923i 0.772454i 0.922404 + 0.386227i \(0.126222\pi\)
−0.922404 + 0.386227i \(0.873778\pi\)
\(182\) 8.48528 + 14.6969i 0.628971 + 1.08941i
\(183\) 0 0
\(184\) 13.8564i 1.02151i
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000i 0.292509i
\(188\) 8.48528 + 4.89898i 0.618853 + 0.357295i
\(189\) 0 0
\(190\) 0 0
\(191\) −19.5959 −1.41791 −0.708955 0.705253i \(-0.750833\pi\)
−0.708955 + 0.705253i \(0.750833\pi\)
\(192\) 0 0
\(193\) 14.0000i 1.00774i −0.863779 0.503871i \(-0.831909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) −9.79796 + 5.65685i −0.703452 + 0.406138i
\(195\) 0 0
\(196\) −5.00000 + 8.66025i −0.357143 + 0.618590i
\(197\) 7.34847i 0.523557i −0.965128 0.261778i \(-0.915691\pi\)
0.965128 0.261778i \(-0.0843089\pi\)
\(198\) 0 0
\(199\) 10.3923i 0.736691i −0.929689 0.368345i \(-0.879924\pi\)
0.929689 0.368345i \(-0.120076\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1.73205 + 3.00000i 0.121867 + 0.211079i
\(203\) 8.48528 0.595550
\(204\) 0 0
\(205\) 0 0
\(206\) −2.44949 4.24264i −0.170664 0.295599i
\(207\) 0 0
\(208\) 6.92820 + 12.0000i 0.480384 + 0.832050i
\(209\) 11.3137i 0.782586i
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 12.7279 + 7.34847i 0.874157 + 0.504695i
\(213\) 0 0
\(214\) −8.00000 13.8564i −0.546869 0.947204i
\(215\) 0 0
\(216\) 0 0
\(217\) 12.0000i 0.814613i
\(218\) −12.7279 + 7.34847i −0.862044 + 0.497701i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.89898 −0.329541
\(222\) 0 0
\(223\) −17.3205 −1.15987 −0.579934 0.814664i \(-0.696921\pi\)
−0.579934 + 0.814664i \(0.696921\pi\)
\(224\) −9.79796 + 16.9706i −0.654654 + 1.13389i
\(225\) 0 0
\(226\) −13.0000 22.5167i −0.864747 1.49779i
\(227\) −2.82843 −0.187729 −0.0938647 0.995585i \(-0.529922\pi\)
−0.0938647 + 0.995585i \(0.529922\pi\)
\(228\) 0 0
\(229\) 17.3205i 1.14457i −0.820054 0.572286i \(-0.806057\pi\)
0.820054 0.572286i \(-0.193943\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.92820 0.454859
\(233\) −1.41421 −0.0926482 −0.0463241 0.998926i \(-0.514751\pi\)
−0.0463241 + 0.998926i \(0.514751\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 19.5959 + 11.3137i 1.27559 + 0.736460i
\(237\) 0 0
\(238\) −3.46410 6.00000i −0.224544 0.388922i
\(239\) 9.79796 0.633777 0.316889 0.948463i \(-0.397362\pi\)
0.316889 + 0.948463i \(0.397362\pi\)
\(240\) 0 0
\(241\) −28.0000 −1.80364 −0.901819 0.432113i \(-0.857768\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) 2.12132 + 3.67423i 0.136364 + 0.236189i
\(243\) 0 0
\(244\) −24.0000 13.8564i −1.53644 0.887066i
\(245\) 0 0
\(246\) 0 0
\(247\) −13.8564 −0.881662
\(248\) 9.79796i 0.622171i
\(249\) 0 0
\(250\) 0 0
\(251\) 14.1421i 0.892644i −0.894873 0.446322i \(-0.852734\pi\)
0.894873 0.446322i \(-0.147266\pi\)
\(252\) 0 0
\(253\) 13.8564 0.871145
\(254\) −7.34847 12.7279i −0.461084 0.798621i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −24.0416 −1.49968 −0.749838 0.661622i \(-0.769869\pi\)
−0.749838 + 0.661622i \(0.769869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 6.92820 4.00000i 0.428026 0.247121i
\(263\) 9.79796i 0.604168i −0.953281 0.302084i \(-0.902318\pi\)
0.953281 0.302084i \(-0.0976823\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −9.79796 16.9706i −0.600751 1.04053i
\(267\) 0 0
\(268\) 6.92820 + 4.00000i 0.423207 + 0.244339i
\(269\) −7.34847 −0.448044 −0.224022 0.974584i \(-0.571919\pi\)
−0.224022 + 0.974584i \(0.571919\pi\)
\(270\) 0 0
\(271\) 31.1769i 1.89386i −0.321436 0.946931i \(-0.604165\pi\)
0.321436 0.946931i \(-0.395835\pi\)
\(272\) −2.82843 4.89898i −0.171499 0.297044i
\(273\) 0 0
\(274\) 7.00000 + 12.1244i 0.422885 + 0.732459i
\(275\) 0 0
\(276\) 0 0
\(277\) 17.3205 1.04069 0.520344 0.853957i \(-0.325804\pi\)
0.520344 + 0.853957i \(0.325804\pi\)
\(278\) 2.82843 + 4.89898i 0.169638 + 0.293821i
\(279\) 0 0
\(280\) 0 0
\(281\) 24.0416i 1.43420i 0.696969 + 0.717102i \(0.254532\pi\)
−0.696969 + 0.717102i \(0.745468\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i 0.879688 + 0.475551i \(0.157751\pi\)
−0.879688 + 0.475551i \(0.842249\pi\)
\(284\) 14.6969 25.4558i 0.872103 1.51053i
\(285\) 0 0
\(286\) 12.0000 6.92820i 0.709575 0.409673i
\(287\) 4.89898i 0.289178i
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) −6.92820 4.00000i −0.405442 0.234082i
\(293\) 26.9444i 1.57411i −0.616884 0.787054i \(-0.711605\pi\)
0.616884 0.787054i \(-0.288395\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 12.1244 + 21.0000i 0.702345 + 1.21650i
\(299\) 16.9706i 0.981433i
\(300\) 0 0
\(301\) 27.7128i 1.59734i
\(302\) −4.24264 + 2.44949i −0.244137 + 0.140952i
\(303\) 0 0
\(304\) −8.00000 13.8564i −0.458831 0.794719i
\(305\) 0 0
\(306\) 0 0
\(307\) 4.00000i 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 16.9706 + 9.79796i 0.966988 + 0.558291i
\(309\) 0 0
\(310\) 0 0
\(311\) −9.79796 −0.555591 −0.277796 0.960640i \(-0.589604\pi\)
−0.277796 + 0.960640i \(0.589604\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) 9.79796 + 16.9706i 0.552931 + 0.957704i
\(315\) 0 0
\(316\) 6.00000 + 3.46410i 0.337526 + 0.194871i
\(317\) 12.2474i 0.687885i −0.938991 0.343943i \(-0.888237\pi\)
0.938991 0.343943i \(-0.111763\pi\)
\(318\) 0 0
\(319\) 6.92820i 0.387905i
\(320\) 0 0
\(321\) 0 0
\(322\) −20.7846 + 12.0000i −1.15828 + 0.668734i
\(323\) 5.65685 0.314756
\(324\) 0 0
\(325\) 0 0
\(326\) −19.5959 + 11.3137i −1.08532 + 0.626608i
\(327\) 0 0
\(328\) 4.00000i 0.220863i
\(329\) 16.9706i 0.935617i
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 14.1421 24.4949i 0.776151 1.34433i
\(333\) 0 0
\(334\) −24.0000 + 13.8564i −1.31322 + 0.758189i
\(335\) 0 0
\(336\) 0 0
\(337\) 4.00000i 0.217894i −0.994048 0.108947i \(-0.965252\pi\)
0.994048 0.108947i \(-0.0347479\pi\)
\(338\) −0.707107 1.22474i −0.0384615 0.0666173i
\(339\) 0 0
\(340\) 0 0
\(341\) 9.79796 0.530589
\(342\) 0 0
\(343\) 6.92820 0.374088
\(344\) 22.6274i 1.21999i
\(345\) 0 0
\(346\) 3.00000 1.73205i 0.161281 0.0931156i
\(347\) 14.1421 0.759190 0.379595 0.925153i \(-0.376063\pi\)
0.379595 + 0.925153i \(0.376063\pi\)
\(348\) 0 0
\(349\) 27.7128i 1.48343i 0.670714 + 0.741716i \(0.265988\pi\)
−0.670714 + 0.741716i \(0.734012\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 13.8564 + 8.00000i 0.738549 + 0.426401i
\(353\) 15.5563 0.827981 0.413990 0.910281i \(-0.364135\pi\)
0.413990 + 0.910281i \(0.364135\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 12.2474 + 7.07107i 0.649113 + 0.374766i
\(357\) 0 0
\(358\) −6.92820 + 4.00000i −0.366167 + 0.211407i
\(359\) −14.6969 −0.775675 −0.387837 0.921728i \(-0.626778\pi\)
−0.387837 + 0.921728i \(0.626778\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −12.7279 + 7.34847i −0.668965 + 0.386227i
\(363\) 0 0
\(364\) −12.0000 + 20.7846i −0.628971 + 1.08941i
\(365\) 0 0
\(366\) 0 0
\(367\) −24.2487 −1.26577 −0.632886 0.774245i \(-0.718130\pi\)
−0.632886 + 0.774245i \(0.718130\pi\)
\(368\) −16.9706 + 9.79796i −0.884652 + 0.510754i
\(369\) 0 0
\(370\) 0 0
\(371\) 25.4558i 1.32160i
\(372\) 0 0
\(373\) −13.8564 −0.717458 −0.358729 0.933442i \(-0.616790\pi\)
−0.358729 + 0.933442i \(0.616790\pi\)
\(374\) −4.89898 + 2.82843i −0.253320 + 0.146254i
\(375\) 0 0
\(376\) 13.8564i 0.714590i
\(377\) 8.48528 0.437014
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −13.8564 24.0000i −0.708955 1.22795i
\(383\) 9.79796i 0.500652i 0.968162 + 0.250326i \(0.0805379\pi\)
−0.968162 + 0.250326i \(0.919462\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 17.1464 9.89949i 0.872730 0.503871i
\(387\) 0 0
\(388\) −13.8564 8.00000i −0.703452 0.406138i
\(389\) 26.9444 1.36613 0.683067 0.730355i \(-0.260646\pi\)
0.683067 + 0.730355i \(0.260646\pi\)
\(390\) 0 0
\(391\) 6.92820i 0.350374i
\(392\) −14.1421 −0.714286
\(393\) 0 0
\(394\) 9.00000 5.19615i 0.453413 0.261778i
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 12.7279 7.34847i 0.637993 0.368345i
\(399\) 0 0
\(400\) 0 0
\(401\) 1.41421i 0.0706225i −0.999376 0.0353112i \(-0.988758\pi\)
0.999376 0.0353112i \(-0.0112422\pi\)
\(402\) 0 0
\(403\) 12.0000i 0.597763i
\(404\) −2.44949 + 4.24264i −0.121867 + 0.211079i
\(405\) 0 0
\(406\) 6.00000 + 10.3923i 0.297775 + 0.515761i
\(407\) 0 0
\(408\) 0 0
\(409\) −32.0000 −1.58230 −0.791149 0.611623i \(-0.790517\pi\)
−0.791149 + 0.611623i \(0.790517\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3.46410 6.00000i 0.170664 0.295599i
\(413\) 39.1918i 1.92850i
\(414\) 0 0
\(415\) 0 0
\(416\) −9.79796 + 16.9706i −0.480384 + 0.832050i
\(417\) 0 0
\(418\) −13.8564 + 8.00000i −0.677739 + 0.391293i
\(419\) 19.7990i 0.967244i −0.875277 0.483622i \(-0.839321\pi\)
0.875277 0.483622i \(-0.160679\pi\)
\(420\) 0 0
\(421\) 24.2487i 1.18181i 0.806741 + 0.590905i \(0.201229\pi\)
−0.806741 + 0.590905i \(0.798771\pi\)
\(422\) 14.1421 + 24.4949i 0.688428 + 1.19239i
\(423\) 0 0
\(424\) 20.7846i 1.00939i
\(425\) 0 0
\(426\) 0 0
\(427\) 48.0000i 2.32288i
\(428\) 11.3137 19.5959i 0.546869 0.947204i
\(429\) 0 0
\(430\) 0 0
\(431\) 14.6969 0.707927 0.353963 0.935259i \(-0.384834\pi\)
0.353963 + 0.935259i \(0.384834\pi\)
\(432\) 0 0
\(433\) 22.0000i 1.05725i 0.848855 + 0.528626i \(0.177293\pi\)
−0.848855 + 0.528626i \(0.822707\pi\)
\(434\) −14.6969 + 8.48528i −0.705476 + 0.407307i
\(435\) 0 0
\(436\) −18.0000 10.3923i −0.862044 0.497701i
\(437\) 19.5959i 0.937400i
\(438\) 0 0
\(439\) 3.46410i 0.165333i −0.996577 0.0826663i \(-0.973656\pi\)
0.996577 0.0826663i \(-0.0263436\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.46410 6.00000i −0.164771 0.285391i
\(443\) 2.82843 0.134383 0.0671913 0.997740i \(-0.478596\pi\)
0.0671913 + 0.997740i \(0.478596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −12.2474 21.2132i −0.579934 1.00447i
\(447\) 0 0
\(448\) −27.7128 −1.30931
\(449\) 24.0416i 1.13459i −0.823513 0.567297i \(-0.807989\pi\)
0.823513 0.567297i \(-0.192011\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 18.3848 31.8434i 0.864747 1.49779i
\(453\) 0 0
\(454\) −2.00000 3.46410i −0.0938647 0.162578i
\(455\) 0 0
\(456\) 0 0
\(457\) 8.00000i 0.374224i 0.982339 + 0.187112i \(0.0599128\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(458\) 21.2132 12.2474i 0.991228 0.572286i
\(459\) 0 0
\(460\) 0 0
\(461\) 17.1464 0.798589 0.399294 0.916823i \(-0.369255\pi\)
0.399294 + 0.916823i \(0.369255\pi\)
\(462\) 0 0
\(463\) 17.3205 0.804952 0.402476 0.915430i \(-0.368150\pi\)
0.402476 + 0.915430i \(0.368150\pi\)
\(464\) 4.89898 + 8.48528i 0.227429 + 0.393919i
\(465\) 0 0
\(466\) −1.00000 1.73205i −0.0463241 0.0802357i
\(467\) −36.7696 −1.70149 −0.850746 0.525577i \(-0.823849\pi\)
−0.850746 + 0.525577i \(0.823849\pi\)
\(468\) 0 0
\(469\) 13.8564i 0.639829i
\(470\) 0 0
\(471\) 0 0
\(472\) 32.0000i 1.47292i
\(473\) 22.6274 1.04041
\(474\) 0 0
\(475\) 0 0
\(476\) 4.89898 8.48528i 0.224544 0.388922i
\(477\) 0 0
\(478\) 6.92820 + 12.0000i 0.316889 + 0.548867i
\(479\) −24.4949 −1.11920 −0.559600 0.828763i \(-0.689045\pi\)
−0.559600 + 0.828763i \(0.689045\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −19.7990 34.2929i −0.901819 1.56200i
\(483\) 0 0
\(484\) −3.00000 + 5.19615i −0.136364 + 0.236189i
\(485\) 0 0
\(486\) 0 0
\(487\) −10.3923 −0.470920 −0.235460 0.971884i \(-0.575660\pi\)
−0.235460 + 0.971884i \(0.575660\pi\)
\(488\) 39.1918i 1.77413i
\(489\) 0 0
\(490\) 0 0
\(491\) 39.5980i 1.78703i −0.449032 0.893516i \(-0.648231\pi\)
0.449032 0.893516i \(-0.351769\pi\)
\(492\) 0 0
\(493\) −3.46410 −0.156015
\(494\) −9.79796 16.9706i −0.440831 0.763542i
\(495\) 0 0
\(496\) −12.0000 + 6.92820i −0.538816 + 0.311086i
\(497\) 50.9117 2.28370
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 17.3205 10.0000i 0.773052 0.446322i
\(503\) 14.6969i 0.655304i −0.944798 0.327652i \(-0.893743\pi\)
0.944798 0.327652i \(-0.106257\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.79796 + 16.9706i 0.435572 + 0.754434i
\(507\) 0 0
\(508\) 10.3923 18.0000i 0.461084 0.798621i
\(509\) −41.6413 −1.84572 −0.922860 0.385136i \(-0.874154\pi\)
−0.922860 + 0.385136i \(0.874154\pi\)
\(510\) 0 0
\(511\) 13.8564i 0.612971i
\(512\) −22.6274 −1.00000
\(513\) 0 0
\(514\) −17.0000 29.4449i −0.749838 1.29876i
\(515\) 0 0
\(516\) 0 0
\(517\) 13.8564 0.609404
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.8701i 1.17720i −0.808425 0.588599i \(-0.799680\pi\)
0.808425 0.588599i \(-0.200320\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 9.79796 + 5.65685i 0.428026 + 0.247121i
\(525\) 0 0
\(526\) 12.0000 6.92820i 0.523225 0.302084i
\(527\) 4.89898i 0.213403i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 13.8564 24.0000i 0.600751 1.04053i
\(533\) 4.89898i 0.212198i
\(534\) 0 0
\(535\) 0 0
\(536\) 11.3137i 0.488678i
\(537\) 0 0
\(538\) −5.19615 9.00000i −0.224022 0.388018i
\(539\) 14.1421i 0.609145i
\(540\) 0 0
\(541\) 10.3923i 0.446800i −0.974727 0.223400i \(-0.928284\pi\)
0.974727 0.223400i \(-0.0717156\pi\)
\(542\) 38.1838 22.0454i 1.64013 0.946931i
\(543\) 0 0
\(544\) 4.00000 6.92820i 0.171499 0.297044i
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) −9.89949 + 17.1464i −0.422885 + 0.732459i
\(549\) 0 0
\(550\) 0 0
\(551\) −9.79796 −0.417407
\(552\) 0 0
\(553\) 12.0000i 0.510292i
\(554\) 12.2474 + 21.2132i 0.520344 + 0.901263i
\(555\) 0 0
\(556\) −4.00000 + 6.92820i −0.169638 + 0.293821i
\(557\) 7.34847i 0.311365i 0.987807 + 0.155682i \(0.0497576\pi\)
−0.987807 + 0.155682i \(0.950242\pi\)
\(558\) 0 0
\(559\) 27.7128i 1.17213i
\(560\) 0 0
\(561\) 0 0
\(562\) −29.4449 + 17.0000i −1.24206 + 0.717102i
\(563\) −14.1421 −0.596020 −0.298010 0.954563i \(-0.596323\pi\)
−0.298010 + 0.954563i \(0.596323\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −19.5959 + 11.3137i −0.823678 + 0.475551i
\(567\) 0 0
\(568\) 41.5692 1.74421
\(569\) 9.89949i 0.415008i 0.978234 + 0.207504i \(0.0665341\pi\)
−0.978234 + 0.207504i \(0.933466\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 16.9706 + 9.79796i 0.709575 + 0.409673i
\(573\) 0 0
\(574\) −6.00000 + 3.46410i −0.250435 + 0.144589i
\(575\) 0 0
\(576\) 0 0
\(577\) 14.0000i 0.582828i 0.956597 + 0.291414i \(0.0941257\pi\)
−0.956597 + 0.291414i \(0.905874\pi\)
\(578\) −10.6066 18.3712i −0.441176 0.764140i
\(579\) 0 0
\(580\) 0 0
\(581\) 48.9898 2.03244
\(582\) 0 0
\(583\) 20.7846 0.860811
\(584\) 11.3137i 0.468165i
\(585\) 0 0
\(586\) 33.0000 19.0526i 1.36322 0.787054i
\(587\) 22.6274 0.933933 0.466967 0.884275i \(-0.345347\pi\)
0.466967 + 0.884275i \(0.345347\pi\)
\(588\) 0 0
\(589\) 13.8564i 0.570943i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.07107 0.290374 0.145187 0.989404i \(-0.453622\pi\)
0.145187 + 0.989404i \(0.453622\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −17.1464 + 29.6985i −0.702345 + 1.21650i
\(597\) 0 0
\(598\) −20.7846 + 12.0000i −0.849946 + 0.490716i
\(599\) −4.89898 −0.200167 −0.100083 0.994979i \(-0.531911\pi\)
−0.100083 + 0.994979i \(0.531911\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) −33.9411 + 19.5959i −1.38334 + 0.798670i
\(603\) 0 0
\(604\) −6.00000 3.46410i −0.244137 0.140952i
\(605\) 0 0
\(606\) 0 0
\(607\) 45.0333 1.82785 0.913923 0.405887i \(-0.133038\pi\)
0.913923 + 0.405887i \(0.133038\pi\)
\(608\) 11.3137 19.5959i 0.458831 0.794719i
\(609\) 0 0
\(610\) 0 0
\(611\) 16.9706i 0.686555i
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 4.89898 2.82843i 0.197707 0.114146i
\(615\) 0 0
\(616\) 27.7128i 1.11658i
\(617\) −24.0416 −0.967880 −0.483940 0.875101i \(-0.660795\pi\)
−0.483940 + 0.875101i \(0.660795\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −6.92820 12.0000i −0.277796 0.481156i
\(623\) 24.4949i 0.981367i
\(624\) 0 0
\(625\) 0 0
\(626\) −12.2474 + 7.07107i −0.489506 + 0.282617i
\(627\) 0 0
\(628\) −13.8564 + 24.0000i −0.552931 + 0.957704i
\(629\) 0 0
\(630\) 0 0
\(631\) 31.1769i 1.24113i −0.784154 0.620567i \(-0.786903\pi\)
0.784154 0.620567i \(-0.213097\pi\)
\(632\) 9.79796i 0.389742i
\(633\) 0 0
\(634\) 15.0000 8.66025i 0.595726 0.343943i
\(635\) 0 0
\(636\) 0 0
\(637\) −17.3205 −0.686264
\(638\) 8.48528 4.89898i 0.335936 0.193952i
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5563i 0.614439i 0.951639 + 0.307219i \(0.0993986\pi\)
−0.951639 + 0.307219i \(0.900601\pi\)
\(642\) 0 0
\(643\) 32.0000i 1.26196i −0.775800 0.630978i \(-0.782654\pi\)
0.775800 0.630978i \(-0.217346\pi\)
\(644\) −29.3939 16.9706i −1.15828 0.668734i
\(645\) 0 0
\(646\) 4.00000 + 6.92820i 0.157378 + 0.272587i
\(647\) 14.6969i 0.577796i 0.957360 + 0.288898i \(0.0932889\pi\)
−0.957360 + 0.288898i \(0.906711\pi\)
\(648\) 0 0
\(649\) 32.0000 1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) −27.7128 16.0000i −1.08532 0.626608i
\(653\) 17.1464i 0.670992i 0.942042 + 0.335496i \(0.108904\pi\)
−0.942042 + 0.335496i \(0.891096\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −4.89898 + 2.82843i −0.191273 + 0.110432i
\(657\) 0 0
\(658\) −20.7846 + 12.0000i −0.810268 + 0.467809i
\(659\) 11.3137i 0.440720i −0.975419 0.220360i \(-0.929277\pi\)
0.975419 0.220360i \(-0.0707231\pi\)
\(660\) 0 0
\(661\) 13.8564i 0.538952i −0.963007 0.269476i \(-0.913150\pi\)
0.963007 0.269476i \(-0.0868504\pi\)
\(662\) −2.82843 4.89898i −0.109930 0.190404i
\(663\) 0 0
\(664\) 40.0000 1.55230
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000i 0.464642i
\(668\) −33.9411 19.5959i −1.31322 0.758189i
\(669\) 0 0
\(670\) 0 0
\(671\) −39.1918 −1.51298
\(672\) 0 0
\(673\) 14.0000i 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) 4.89898 2.82843i 0.188702 0.108947i
\(675\) 0 0
\(676\) 1.00000 1.73205i 0.0384615 0.0666173i
\(677\) 17.1464i 0.658991i 0.944157 + 0.329495i \(0.106879\pi\)
−0.944157 + 0.329495i \(0.893121\pi\)
\(678\) 0 0
\(679\) 27.7128i 1.06352i
\(680\) 0 0
\(681\) 0 0
\(682\) 6.92820 + 12.0000i 0.265295 + 0.459504i
\(683\) 36.7696 1.40695 0.703474 0.710721i \(-0.251631\pi\)
0.703474 + 0.710721i \(0.251631\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 4.89898 + 8.48528i 0.187044 + 0.323970i
\(687\) 0 0
\(688\) −27.7128 + 16.0000i −1.05654 + 0.609994i
\(689\) 25.4558i 0.969790i
\(690\) 0 0
\(691\) 32.0000 1.21734 0.608669 0.793424i \(-0.291704\pi\)
0.608669 + 0.793424i \(0.291704\pi\)
\(692\) 4.24264 + 2.44949i 0.161281 + 0.0931156i
\(693\) 0 0
\(694\) 10.0000 + 17.3205i 0.379595 + 0.657477i
\(695\) 0 0
\(696\) 0 0
\(697\) 2.00000i 0.0757554i
\(698\) −33.9411 + 19.5959i −1.28469 + 0.741716i
\(699\) 0 0
\(700\) 0 0
\(701\) −7.34847 −0.277548 −0.138774 0.990324i \(-0.544316\pi\)
−0.138774 + 0.990324i \(0.544316\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 22.6274i 0.852803i
\(705\) 0 0
\(706\) 11.0000 + 19.0526i 0.413990 + 0.717053i
\(707\) −8.48528 −0.319122
\(708\) 0 0
\(709\) 3.46410i 0.130097i −0.997882 0.0650485i \(-0.979280\pi\)
0.997882 0.0650485i \(-0.0207202\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 20.0000i 0.749532i
\(713\) −16.9706 −0.635553
\(714\) 0 0
\(715\) 0 0
\(716\) −9.79796 5.65685i −0.366167 0.211407i
\(717\) 0 0
\(718\) −10.3923 18.0000i −0.387837 0.671754i
\(719\) 44.0908 1.64431 0.822155 0.569264i \(-0.192772\pi\)
0.822155 + 0.569264i \(0.192772\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) −2.12132 3.67423i −0.0789474 0.136741i
\(723\) 0 0
\(724\) −18.0000 10.3923i −0.668965 0.386227i
\(725\) 0 0
\(726\) 0 0
\(727\) −24.2487 −0.899335 −0.449667 0.893196i \(-0.648458\pi\)
−0.449667 + 0.893196i \(0.648458\pi\)
\(728\) −33.9411 −1.25794
\(729\) 0 0
\(730\) 0 0
\(731\) 11.3137i 0.418453i
\(732\) 0 0
\(733\) 38.1051 1.40744 0.703722 0.710475i \(-0.251520\pi\)
0.703722 + 0.710475i \(0.251520\pi\)
\(734\) −17.1464 29.6985i −0.632886 1.09619i
\(735\) 0 0
\(736\) −24.0000 13.8564i −0.884652 0.510754i
\(737\) 11.3137 0.416746
\(738\) 0 0
\(739\) 40.0000 1.47142 0.735712 0.677295i \(-0.236848\pi\)
0.735712 + 0.677295i \(0.236848\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −31.1769 + 18.0000i −1.14454 + 0.660801i
\(743\) 39.1918i 1.43781i 0.695109 + 0.718905i \(0.255356\pi\)
−0.695109 + 0.718905i \(0.744644\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −9.79796 16.9706i −0.358729 0.621336i
\(747\) 0 0
\(748\) −6.92820 4.00000i −0.253320 0.146254i
\(749\) 39.1918 1.43204
\(750\) 0 0
\(751\) 3.46410i 0.126407i −0.998001 0.0632034i \(-0.979868\pi\)
0.998001 0.0632034i \(-0.0201317\pi\)
\(752\) −16.9706 + 9.79796i −0.618853 + 0.357295i
\(753\) 0 0
\(754\) 6.00000 + 10.3923i 0.218507 + 0.378465i
\(755\) 0 0
\(756\) 0 0
\(757\) 10.3923 0.377715 0.188857 0.982005i \(-0.439522\pi\)
0.188857 + 0.982005i \(0.439522\pi\)
\(758\) 2.82843 + 4.89898i 0.102733 + 0.177939i
\(759\) 0 0
\(760\) 0 0
\(761\) 18.3848i 0.666448i −0.942848 0.333224i \(-0.891864\pi\)
0.942848 0.333224i \(-0.108136\pi\)
\(762\) 0 0
\(763\) 36.0000i 1.30329i
\(764\) 19.5959 33.9411i 0.708955 1.22795i
\(765\) 0 0
\(766\) −12.0000 + 6.92820i −0.433578 + 0.250326i
\(767\) 39.1918i 1.41514i
\(768\) 0 0
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 24.2487 + 14.0000i 0.872730 + 0.503871i
\(773\) 22.0454i 0.792918i 0.918052 + 0.396459i \(0.129761\pi\)
−0.918052 + 0.396459i \(0.870239\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 22.6274i 0.812277i
\(777\) 0 0
\(778\) 19.0526 + 33.0000i 0.683067 + 1.18311i
\(779\) 5.65685i 0.202678i
\(780\) 0 0
\(781\) 41.5692i 1.48746i
\(782\) 8.48528 4.89898i 0.303433 0.175187i
\(783\) 0 0
\(784\) −10.0000 17.3205i −0.357143 0.618590i
\(785\) 0 0
\(786\) 0 0
\(787\) 20.0000i 0.712923i 0.934310 + 0.356462i \(0.116017\pi\)
−0.934310 + 0.356462i \(0.883983\pi\)
\(788\) 12.7279 + 7.34847i 0.453413 + 0.261778i
\(789\) 0 0
\(790\) 0 0
\(791\) 63.6867 2.26444
\(792\) 0 0
\(793\) 48.0000i 1.70453i
\(794\) 0 0
\(795\) 0 0
\(796\) 18.0000 + 10.3923i 0.637993 + 0.368345i
\(797\) 12.2474i 0.433827i 0.976191 + 0.216913i \(0.0695989\pi\)
−0.976191 + 0.216913i \(0.930401\pi\)
\(798\) 0 0
\(799\) 6.92820i 0.245102i
\(800\) 0 0
\(801\) 0 0
\(802\) 1.73205 1.00000i 0.0611608 0.0353112i
\(803\) −11.3137 −0.399252
\(804\) 0 0
\(805\) 0 0
\(806\) −14.6969 + 8.48528i −0.517678 + 0.298881i
\(807\) 0 0
\(808\) −6.92820 −0.243733
\(809\) 1.41421i 0.0497211i 0.999691 + 0.0248606i \(0.00791417\pi\)
−0.999691 + 0.0248606i \(0.992086\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) −8.48528 + 14.6969i −0.297775 + 0.515761i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 32.0000i 1.11954i
\(818\) −22.6274 39.1918i −0.791149 1.37031i
\(819\) 0 0
\(820\) 0 0
\(821\) 2.44949 0.0854878 0.0427439 0.999086i \(-0.486390\pi\)
0.0427439 + 0.999086i \(0.486390\pi\)
\(822\) 0 0
\(823\) 17.3205 0.603755 0.301877 0.953347i \(-0.402387\pi\)
0.301877 + 0.953347i \(0.402387\pi\)
\(824\) 9.79796 0.341328
\(825\) 0 0
\(826\) −48.0000 + 27.7128i −1.67013 + 0.964252i
\(827\) 5.65685 0.196708 0.0983540 0.995151i \(-0.468642\pi\)
0.0983540 + 0.995151i \(0.468642\pi\)
\(828\) 0 0
\(829\) 10.3923i 0.360940i 0.983581 + 0.180470i \(0.0577618\pi\)
−0.983581 + 0.180470i \(0.942238\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −27.7128 −0.960769
\(833\) 7.07107 0.244998
\(834\) 0 0
\(835\) 0 0
\(836\) −19.5959 11.3137i −0.677739 0.391293i
\(837\) 0 0
\(838\) 24.2487 14.0000i 0.837658 0.483622i
\(839\) 4.89898 0.169132 0.0845658 0.996418i \(-0.473050\pi\)
0.0845658 + 0.996418i \(0.473050\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) −29.6985 + 17.1464i −1.02348 + 0.590905i
\(843\) 0 0
\(844\) −20.0000 + 34.6410i −0.688428 + 1.19239i
\(845\) 0 0
\(846\) 0 0
\(847\) −10.3923 −0.357084
\(848\) −25.4558 + 14.6969i −0.874157 + 0.504695i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 13.8564 0.474434 0.237217 0.971457i \(-0.423765\pi\)
0.237217 + 0.971457i \(0.423765\pi\)
\(854\) 58.7878 33.9411i 2.01168 1.16144i
\(855\) 0 0
\(856\) 32.0000 1.09374
\(857\) 1.41421 0.0483086 0.0241543 0.999708i \(-0.492311\pi\)
0.0241543 + 0.999708i \(0.492311\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.3923 + 18.0000i 0.353963 + 0.613082i
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −26.9444 + 15.5563i −0.915608 + 0.528626i
\(867\) 0 0
\(868\) −20.7846 12.0000i −0.705476 0.407307i
\(869\) 9.79796 0.332373
\(870\) 0 0
\(871\) 13.8564i 0.469506i
\(872\) 29.3939i 0.995402i
\(873\) 0 0
\(874\) 24.0000 13.8564i 0.811812 0.468700i
\(875\) 0 0
\(876\) 0 0
\(877\) 55.4256 1.87159 0.935795 0.352544i \(-0.114683\pi\)
0.935795 + 0.352544i \(0.114683\pi\)
\(878\) 4.24264 2.44949i 0.143182 0.0826663i
\(879\) 0 0
\(880\) 0 0
\(881\) 43.8406i 1.47703i −0.674238 0.738514i \(-0.735528\pi\)
0.674238 0.738514i \(-0.264472\pi\)
\(882\) 0 0
\(883\) 40.0000i 1.34611i 0.739594 + 0.673054i \(0.235018\pi\)
−0.739594 + 0.673054i \(0.764982\pi\)
\(884\) 4.89898 8.48528i 0.164771 0.285391i
\(885\) 0 0
\(886\) 2.00000 + 3.46410i 0.0671913 + 0.116379i
\(887\) 9.79796i 0.328983i −0.986378 0.164492i \(-0.947402\pi\)
0.986378 0.164492i \(-0.0525984\pi\)
\(888\) 0 0
\(889\) 36.0000 1.20740
\(890\) 0 0
\(891\) 0 0
\(892\) 17.3205 30.0000i 0.579934 1.00447i
\(893\) 19.5959i 0.655752i
\(894\) 0 0
\(895\) 0 0
\(896\) −19.5959 33.9411i −0.654654 1.13389i
\(897\) 0 0
\(898\) 29.4449 17.0000i 0.982588 0.567297i
\(899\) 8.48528i 0.283000i
\(900\) 0 0
\(901\) 10.3923i 0.346218i
\(902\) 2.82843 + 4.89898i 0.0941763 + 0.163118i
\(903\) 0 0
\(904\) 52.0000 1.72949
\(905\) 0 0
\(906\) 0 0
\(907\) 8.00000i 0.265636i 0.991140 + 0.132818i \(0.0424025\pi\)
−0.991140 + 0.132818i \(0.957597\pi\)
\(908\) 2.82843 4.89898i 0.0938647 0.162578i
\(909\) 0 0
\(910\) 0 0
\(911\) 39.1918 1.29848 0.649242 0.760582i \(-0.275086\pi\)
0.649242 + 0.760582i \(0.275086\pi\)
\(912\) 0 0
\(913\) 40.0000i 1.32381i
\(914\) −9.79796 + 5.65685i −0.324088 + 0.187112i
\(915\) 0 0
\(916\) 30.0000 + 17.3205i 0.991228 + 0.572286i
\(917\) 19.5959i 0.647114i
\(918\) 0 0
\(919\) 10.3923i 0.342811i 0.985201 + 0.171405i \(0.0548307\pi\)
−0.985201 + 0.171405i \(0.945169\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 12.1244 + 21.0000i 0.399294 + 0.691598i
\(923\) 50.9117 1.67578
\(924\) 0 0
\(925\) 0 0
\(926\) 12.2474 + 21.2132i 0.402476 + 0.697109i
\(927\) 0 0
\(928\) −6.92820 + 12.0000i −0.227429 + 0.393919i
\(929\) 1.41421i 0.0463988i 0.999731 + 0.0231994i \(0.00738527\pi\)
−0.999731 + 0.0231994i \(0.992615\pi\)
\(930\) 0 0
\(931\) 20.0000 0.655474
\(932\) 1.41421 2.44949i 0.0463241 0.0802357i
\(933\) 0 0
\(934\) −26.0000 45.0333i −0.850746 1.47354i
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000i 0.0653372i 0.999466 + 0.0326686i \(0.0104006\pi\)
−0.999466 + 0.0326686i \(0.989599\pi\)
\(938\) −16.9706 + 9.79796i −0.554109 + 0.319915i
\(939\) 0 0
\(940\) 0 0
\(941\) −2.44949 −0.0798511 −0.0399255 0.999203i \(-0.512712\pi\)
−0.0399255 + 0.999203i \(0.512712\pi\)
\(942\) 0 0
\(943\) −6.92820 −0.225613
\(944\) −39.1918 + 22.6274i −1.27559 + 0.736460i
\(945\) 0 0
\(946\) 16.0000 + 27.7128i 0.520205 + 0.901021i
\(947\) 22.6274 0.735292 0.367646 0.929966i \(-0.380164\pi\)
0.367646 + 0.929966i \(0.380164\pi\)
\(948\) 0 0
\(949\) 13.8564i 0.449798i
\(950\) 0 0
\(951\) 0 0
\(952\) 13.8564 0.449089
\(953\) −26.8701 −0.870407 −0.435203 0.900332i \(-0.643323\pi\)
−0.435203 + 0.900332i \(0.643323\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −9.79796 + 16.9706i −0.316889 + 0.548867i
\(957\) 0 0
\(958\) −17.3205 30.0000i −0.559600 0.969256i
\(959\) −34.2929 −1.10737
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) 0 0
\(964\) 28.0000 48.4974i 0.901819 1.56200i
\(965\) 0 0
\(966\) 0 0
\(967\) 45.0333 1.44817 0.724087 0.689709i \(-0.242261\pi\)
0.724087 + 0.689709i \(0.242261\pi\)
\(968\) −8.48528 −0.272727
\(969\) 0 0
\(970\) 0 0
\(971\) 31.1127i 0.998454i −0.866471 0.499227i \(-0.833617\pi\)
0.866471 0.499227i \(-0.166383\pi\)
\(972\) 0 0
\(973\) −13.8564 −0.444216
\(974\) −7.34847 12.7279i −0.235460 0.407829i
\(975\) 0 0
\(976\) 48.0000 27.7128i 1.53644 0.887066i
\(977\) −24.0416 −0.769160 −0.384580 0.923092i \(-0.625654\pi\)
−0.384580 + 0.923092i \(0.625654\pi\)
\(978\) 0 0
\(979\) 20.0000 0.639203
\(980\) 0 0
\(981\) 0 0
\(982\) 48.4974 28.0000i 1.54761 0.893516i
\(983\) 48.9898i 1.56253i 0.624198 + 0.781266i \(0.285426\pi\)
−0.624198 + 0.781266i \(0.714574\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2.44949 4.24264i −0.0780076 0.135113i
\(987\) 0 0
\(988\) 13.8564 24.0000i 0.440831 0.763542i
\(989\) −39.1918 −1.24623
\(990\) 0 0
\(991\) 51.9615i 1.65061i 0.564686 + 0.825306i \(0.308997\pi\)
−0.564686 + 0.825306i \(0.691003\pi\)
\(992\) −16.9706 9.79796i −0.538816 0.311086i
\(993\) 0 0
\(994\) 36.0000 + 62.3538i 1.14185 + 1.97774i
\(995\) 0 0
\(996\) 0 0
\(997\) −13.8564 −0.438837 −0.219418 0.975631i \(-0.570416\pi\)
−0.219418 + 0.975631i \(0.570416\pi\)
\(998\) −22.6274 39.1918i −0.716258 1.24060i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.m.c.899.7 8
3.2 odd 2 inner 1800.2.m.c.899.1 8
4.3 odd 2 7200.2.m.c.3599.6 8
5.2 odd 4 1800.2.b.c.251.2 4
5.3 odd 4 72.2.f.a.35.3 yes 4
5.4 even 2 inner 1800.2.m.c.899.2 8
8.3 odd 2 inner 1800.2.m.c.899.6 8
8.5 even 2 7200.2.m.c.3599.2 8
12.11 even 2 7200.2.m.c.3599.7 8
15.2 even 4 1800.2.b.c.251.3 4
15.8 even 4 72.2.f.a.35.2 yes 4
15.14 odd 2 inner 1800.2.m.c.899.8 8
20.3 even 4 288.2.f.a.143.1 4
20.7 even 4 7200.2.b.c.4751.3 4
20.19 odd 2 7200.2.m.c.3599.1 8
24.5 odd 2 7200.2.m.c.3599.3 8
24.11 even 2 inner 1800.2.m.c.899.4 8
40.3 even 4 72.2.f.a.35.1 4
40.13 odd 4 288.2.f.a.143.4 4
40.19 odd 2 inner 1800.2.m.c.899.3 8
40.27 even 4 1800.2.b.c.251.4 4
40.29 even 2 7200.2.m.c.3599.5 8
40.37 odd 4 7200.2.b.c.4751.1 4
45.13 odd 12 648.2.l.a.107.2 4
45.23 even 12 648.2.l.a.107.1 4
45.38 even 12 648.2.l.c.539.2 4
45.43 odd 12 648.2.l.c.539.1 4
60.23 odd 4 288.2.f.a.143.3 4
60.47 odd 4 7200.2.b.c.4751.4 4
60.59 even 2 7200.2.m.c.3599.4 8
80.3 even 4 2304.2.c.i.2303.8 8
80.13 odd 4 2304.2.c.i.2303.6 8
80.43 even 4 2304.2.c.i.2303.3 8
80.53 odd 4 2304.2.c.i.2303.1 8
120.29 odd 2 7200.2.m.c.3599.8 8
120.53 even 4 288.2.f.a.143.2 4
120.59 even 2 inner 1800.2.m.c.899.5 8
120.77 even 4 7200.2.b.c.4751.2 4
120.83 odd 4 72.2.f.a.35.4 yes 4
120.107 odd 4 1800.2.b.c.251.1 4
180.23 odd 12 2592.2.p.c.431.1 4
180.43 even 12 2592.2.p.a.2159.2 4
180.83 odd 12 2592.2.p.a.2159.1 4
180.103 even 12 2592.2.p.c.431.2 4
240.53 even 4 2304.2.c.i.2303.5 8
240.83 odd 4 2304.2.c.i.2303.4 8
240.173 even 4 2304.2.c.i.2303.2 8
240.203 odd 4 2304.2.c.i.2303.7 8
360.13 odd 12 2592.2.p.a.431.1 4
360.43 even 12 648.2.l.a.539.2 4
360.83 odd 12 648.2.l.a.539.1 4
360.133 odd 12 2592.2.p.c.2159.1 4
360.173 even 12 2592.2.p.c.2159.2 4
360.203 odd 12 648.2.l.c.107.1 4
360.283 even 12 648.2.l.c.107.2 4
360.293 even 12 2592.2.p.a.431.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.f.a.35.1 4 40.3 even 4
72.2.f.a.35.2 yes 4 15.8 even 4
72.2.f.a.35.3 yes 4 5.3 odd 4
72.2.f.a.35.4 yes 4 120.83 odd 4
288.2.f.a.143.1 4 20.3 even 4
288.2.f.a.143.2 4 120.53 even 4
288.2.f.a.143.3 4 60.23 odd 4
288.2.f.a.143.4 4 40.13 odd 4
648.2.l.a.107.1 4 45.23 even 12
648.2.l.a.107.2 4 45.13 odd 12
648.2.l.a.539.1 4 360.83 odd 12
648.2.l.a.539.2 4 360.43 even 12
648.2.l.c.107.1 4 360.203 odd 12
648.2.l.c.107.2 4 360.283 even 12
648.2.l.c.539.1 4 45.43 odd 12
648.2.l.c.539.2 4 45.38 even 12
1800.2.b.c.251.1 4 120.107 odd 4
1800.2.b.c.251.2 4 5.2 odd 4
1800.2.b.c.251.3 4 15.2 even 4
1800.2.b.c.251.4 4 40.27 even 4
1800.2.m.c.899.1 8 3.2 odd 2 inner
1800.2.m.c.899.2 8 5.4 even 2 inner
1800.2.m.c.899.3 8 40.19 odd 2 inner
1800.2.m.c.899.4 8 24.11 even 2 inner
1800.2.m.c.899.5 8 120.59 even 2 inner
1800.2.m.c.899.6 8 8.3 odd 2 inner
1800.2.m.c.899.7 8 1.1 even 1 trivial
1800.2.m.c.899.8 8 15.14 odd 2 inner
2304.2.c.i.2303.1 8 80.53 odd 4
2304.2.c.i.2303.2 8 240.173 even 4
2304.2.c.i.2303.3 8 80.43 even 4
2304.2.c.i.2303.4 8 240.83 odd 4
2304.2.c.i.2303.5 8 240.53 even 4
2304.2.c.i.2303.6 8 80.13 odd 4
2304.2.c.i.2303.7 8 240.203 odd 4
2304.2.c.i.2303.8 8 80.3 even 4
2592.2.p.a.431.1 4 360.13 odd 12
2592.2.p.a.431.2 4 360.293 even 12
2592.2.p.a.2159.1 4 180.83 odd 12
2592.2.p.a.2159.2 4 180.43 even 12
2592.2.p.c.431.1 4 180.23 odd 12
2592.2.p.c.431.2 4 180.103 even 12
2592.2.p.c.2159.1 4 360.133 odd 12
2592.2.p.c.2159.2 4 360.173 even 12
7200.2.b.c.4751.1 4 40.37 odd 4
7200.2.b.c.4751.2 4 120.77 even 4
7200.2.b.c.4751.3 4 20.7 even 4
7200.2.b.c.4751.4 4 60.47 odd 4
7200.2.m.c.3599.1 8 20.19 odd 2
7200.2.m.c.3599.2 8 8.5 even 2
7200.2.m.c.3599.3 8 24.5 odd 2
7200.2.m.c.3599.4 8 60.59 even 2
7200.2.m.c.3599.5 8 40.29 even 2
7200.2.m.c.3599.6 8 4.3 odd 2
7200.2.m.c.3599.7 8 12.11 even 2
7200.2.m.c.3599.8 8 120.29 odd 2