Properties

Label 648.2.l.a.539.1
Level $648$
Weight $2$
Character 648.539
Analytic conductor $5.174$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(107,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 539.1
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 648.539
Dual form 648.2.l.a.107.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +(1.22474 - 2.12132i) q^{5} +(-3.00000 + 1.73205i) q^{7} +2.82843i q^{8} +(-3.00000 - 1.73205i) q^{10} +(-2.44949 + 1.41421i) q^{11} +(-3.00000 - 1.73205i) q^{13} +(2.44949 + 4.24264i) q^{14} +4.00000 q^{16} +1.41421i q^{17} -4.00000 q^{19} +(-2.44949 + 4.24264i) q^{20} +(2.00000 + 3.46410i) q^{22} +(-2.44949 + 4.24264i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-2.44949 + 4.24264i) q^{26} +(6.00000 - 3.46410i) q^{28} +(-1.22474 - 2.12132i) q^{29} +(-3.00000 - 1.73205i) q^{31} -5.65685i q^{32} +2.00000 q^{34} +8.48528i q^{35} +5.65685i q^{38} +(6.00000 + 3.46410i) q^{40} +(-1.22474 - 0.707107i) q^{41} +(-4.00000 - 6.92820i) q^{43} +(4.89898 - 2.82843i) q^{44} +(6.00000 + 3.46410i) q^{46} +(2.44949 + 4.24264i) q^{47} +(2.50000 - 4.33013i) q^{49} +(-1.22474 + 0.707107i) q^{50} +(6.00000 + 3.46410i) q^{52} +7.34847 q^{53} +6.92820i q^{55} +(-4.89898 - 8.48528i) q^{56} +(-3.00000 + 1.73205i) q^{58} +(9.79796 + 5.65685i) q^{59} +(-12.0000 + 6.92820i) q^{61} +(-2.44949 + 4.24264i) q^{62} -8.00000 q^{64} +(-7.34847 + 4.24264i) q^{65} +(2.00000 - 3.46410i) q^{67} -2.82843i q^{68} +12.0000 q^{70} -14.6969 q^{71} -4.00000 q^{73} +8.00000 q^{76} +(4.89898 - 8.48528i) q^{77} +(-3.00000 + 1.73205i) q^{79} +(4.89898 - 8.48528i) q^{80} +(-1.00000 + 1.73205i) q^{82} +(12.2474 - 7.07107i) q^{83} +(3.00000 + 1.73205i) q^{85} +(-9.79796 + 5.65685i) q^{86} +(-4.00000 - 6.92820i) q^{88} -7.07107i q^{89} +12.0000 q^{91} +(4.89898 - 8.48528i) q^{92} +(6.00000 - 3.46410i) q^{94} +(-4.89898 + 8.48528i) q^{95} +(-4.00000 - 6.92820i) q^{97} +(-6.12372 - 3.53553i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} - 12 q^{7} - 12 q^{10} - 12 q^{13} + 16 q^{16} - 16 q^{19} + 8 q^{22} - 2 q^{25} + 24 q^{28} - 12 q^{31} + 8 q^{34} + 24 q^{40} - 16 q^{43} + 24 q^{46} + 10 q^{49} + 24 q^{52} - 12 q^{58}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 1.22474 2.12132i 0.547723 0.948683i −0.450708 0.892672i \(-0.648828\pi\)
0.998430 0.0560116i \(-0.0178384\pi\)
\(6\) 0 0
\(7\) −3.00000 + 1.73205i −1.13389 + 0.654654i −0.944911 0.327327i \(-0.893852\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) −3.00000 1.73205i −0.948683 0.547723i
\(11\) −2.44949 + 1.41421i −0.738549 + 0.426401i −0.821541 0.570149i \(-0.806886\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) 0 0
\(13\) −3.00000 1.73205i −0.832050 0.480384i 0.0225039 0.999747i \(-0.492836\pi\)
−0.854554 + 0.519362i \(0.826170\pi\)
\(14\) 2.44949 + 4.24264i 0.654654 + 1.13389i
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 1.41421i 0.342997i 0.985184 + 0.171499i \(0.0548609\pi\)
−0.985184 + 0.171499i \(0.945139\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) −2.44949 + 4.24264i −0.547723 + 0.948683i
\(21\) 0 0
\(22\) 2.00000 + 3.46410i 0.426401 + 0.738549i
\(23\) −2.44949 + 4.24264i −0.510754 + 0.884652i 0.489168 + 0.872189i \(0.337300\pi\)
−0.999922 + 0.0124624i \(0.996033\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −2.44949 + 4.24264i −0.480384 + 0.832050i
\(27\) 0 0
\(28\) 6.00000 3.46410i 1.13389 0.654654i
\(29\) −1.22474 2.12132i −0.227429 0.393919i 0.729616 0.683857i \(-0.239699\pi\)
−0.957046 + 0.289938i \(0.906365\pi\)
\(30\) 0 0
\(31\) −3.00000 1.73205i −0.538816 0.311086i 0.205783 0.978598i \(-0.434026\pi\)
−0.744599 + 0.667512i \(0.767359\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 8.48528i 1.43427i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 5.65685i 0.917663i
\(39\) 0 0
\(40\) 6.00000 + 3.46410i 0.948683 + 0.547723i
\(41\) −1.22474 0.707107i −0.191273 0.110432i 0.401305 0.915944i \(-0.368557\pi\)
−0.592578 + 0.805513i \(0.701890\pi\)
\(42\) 0 0
\(43\) −4.00000 6.92820i −0.609994 1.05654i −0.991241 0.132068i \(-0.957838\pi\)
0.381246 0.924473i \(-0.375495\pi\)
\(44\) 4.89898 2.82843i 0.738549 0.426401i
\(45\) 0 0
\(46\) 6.00000 + 3.46410i 0.884652 + 0.510754i
\(47\) 2.44949 + 4.24264i 0.357295 + 0.618853i 0.987508 0.157569i \(-0.0503658\pi\)
−0.630213 + 0.776422i \(0.717032\pi\)
\(48\) 0 0
\(49\) 2.50000 4.33013i 0.357143 0.618590i
\(50\) −1.22474 + 0.707107i −0.173205 + 0.100000i
\(51\) 0 0
\(52\) 6.00000 + 3.46410i 0.832050 + 0.480384i
\(53\) 7.34847 1.00939 0.504695 0.863298i \(-0.331605\pi\)
0.504695 + 0.863298i \(0.331605\pi\)
\(54\) 0 0
\(55\) 6.92820i 0.934199i
\(56\) −4.89898 8.48528i −0.654654 1.13389i
\(57\) 0 0
\(58\) −3.00000 + 1.73205i −0.393919 + 0.227429i
\(59\) 9.79796 + 5.65685i 1.27559 + 0.736460i 0.976034 0.217620i \(-0.0698294\pi\)
0.299552 + 0.954080i \(0.403163\pi\)
\(60\) 0 0
\(61\) −12.0000 + 6.92820i −1.53644 + 0.887066i −0.537400 + 0.843328i \(0.680593\pi\)
−0.999043 + 0.0437377i \(0.986073\pi\)
\(62\) −2.44949 + 4.24264i −0.311086 + 0.538816i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −7.34847 + 4.24264i −0.911465 + 0.526235i
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 2.82843i 0.342997i
\(69\) 0 0
\(70\) 12.0000 1.43427
\(71\) −14.6969 −1.74421 −0.872103 0.489323i \(-0.837244\pi\)
−0.872103 + 0.489323i \(0.837244\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) 4.89898 8.48528i 0.558291 0.966988i
\(78\) 0 0
\(79\) −3.00000 + 1.73205i −0.337526 + 0.194871i −0.659178 0.751987i \(-0.729095\pi\)
0.321651 + 0.946858i \(0.395762\pi\)
\(80\) 4.89898 8.48528i 0.547723 0.948683i
\(81\) 0 0
\(82\) −1.00000 + 1.73205i −0.110432 + 0.191273i
\(83\) 12.2474 7.07107i 1.34433 0.776151i 0.356892 0.934146i \(-0.383836\pi\)
0.987440 + 0.157995i \(0.0505030\pi\)
\(84\) 0 0
\(85\) 3.00000 + 1.73205i 0.325396 + 0.187867i
\(86\) −9.79796 + 5.65685i −1.05654 + 0.609994i
\(87\) 0 0
\(88\) −4.00000 6.92820i −0.426401 0.738549i
\(89\) 7.07107i 0.749532i −0.927119 0.374766i \(-0.877723\pi\)
0.927119 0.374766i \(-0.122277\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 4.89898 8.48528i 0.510754 0.884652i
\(93\) 0 0
\(94\) 6.00000 3.46410i 0.618853 0.357295i
\(95\) −4.89898 + 8.48528i −0.502625 + 0.870572i
\(96\) 0 0
\(97\) −4.00000 6.92820i −0.406138 0.703452i 0.588315 0.808632i \(-0.299792\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(98\) −6.12372 3.53553i −0.618590 0.357143i
\(99\) 0 0
\(100\) 1.00000 + 1.73205i 0.100000 + 0.173205i
\(101\) −1.22474 2.12132i −0.121867 0.211079i 0.798637 0.601813i \(-0.205555\pi\)
−0.920504 + 0.390734i \(0.872221\pi\)
\(102\) 0 0
\(103\) −3.00000 1.73205i −0.295599 0.170664i 0.344865 0.938652i \(-0.387925\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 4.89898 8.48528i 0.480384 0.832050i
\(105\) 0 0
\(106\) 10.3923i 1.00939i
\(107\) 11.3137i 1.09374i −0.837218 0.546869i \(-0.815820\pi\)
0.837218 0.546869i \(-0.184180\pi\)
\(108\) 0 0
\(109\) 10.3923i 0.995402i 0.867349 + 0.497701i \(0.165822\pi\)
−0.867349 + 0.497701i \(0.834178\pi\)
\(110\) 9.79796 0.934199
\(111\) 0 0
\(112\) −12.0000 + 6.92820i −1.13389 + 0.654654i
\(113\) −15.9217 9.19239i −1.49779 0.864747i −0.497789 0.867298i \(-0.665855\pi\)
−0.999997 + 0.00255090i \(0.999188\pi\)
\(114\) 0 0
\(115\) 6.00000 + 10.3923i 0.559503 + 0.969087i
\(116\) 2.44949 + 4.24264i 0.227429 + 0.393919i
\(117\) 0 0
\(118\) 8.00000 13.8564i 0.736460 1.27559i
\(119\) −2.44949 4.24264i −0.224544 0.388922i
\(120\) 0 0
\(121\) −1.50000 + 2.59808i −0.136364 + 0.236189i
\(122\) 9.79796 + 16.9706i 0.887066 + 1.53644i
\(123\) 0 0
\(124\) 6.00000 + 3.46410i 0.538816 + 0.311086i
\(125\) 9.79796 0.876356
\(126\) 0 0
\(127\) 10.3923i 0.922168i −0.887357 0.461084i \(-0.847461\pi\)
0.887357 0.461084i \(-0.152539\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 0 0
\(130\) 6.00000 + 10.3923i 0.526235 + 0.911465i
\(131\) −4.89898 2.82843i −0.428026 0.247121i 0.270479 0.962726i \(-0.412818\pi\)
−0.698505 + 0.715605i \(0.746151\pi\)
\(132\) 0 0
\(133\) 12.0000 6.92820i 1.04053 0.600751i
\(134\) −4.89898 2.82843i −0.423207 0.244339i
\(135\) 0 0
\(136\) −4.00000 −0.342997
\(137\) 8.57321 4.94975i 0.732459 0.422885i −0.0868620 0.996220i \(-0.527684\pi\)
0.819321 + 0.573335i \(0.194351\pi\)
\(138\) 0 0
\(139\) 2.00000 3.46410i 0.169638 0.293821i −0.768655 0.639664i \(-0.779074\pi\)
0.938293 + 0.345843i \(0.112407\pi\)
\(140\) 16.9706i 1.43427i
\(141\) 0 0
\(142\) 20.7846i 1.74421i
\(143\) 9.79796 0.819346
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 5.65685i 0.468165i
\(147\) 0 0
\(148\) 0 0
\(149\) 8.57321 14.8492i 0.702345 1.21650i −0.265296 0.964167i \(-0.585470\pi\)
0.967641 0.252330i \(-0.0811970\pi\)
\(150\) 0 0
\(151\) −3.00000 + 1.73205i −0.244137 + 0.140952i −0.617076 0.786903i \(-0.711683\pi\)
0.372940 + 0.927855i \(0.378350\pi\)
\(152\) 11.3137i 0.917663i
\(153\) 0 0
\(154\) −12.0000 6.92820i −0.966988 0.558291i
\(155\) −7.34847 + 4.24264i −0.590243 + 0.340777i
\(156\) 0 0
\(157\) −12.0000 6.92820i −0.957704 0.552931i −0.0622385 0.998061i \(-0.519824\pi\)
−0.895466 + 0.445130i \(0.853157\pi\)
\(158\) 2.44949 + 4.24264i 0.194871 + 0.337526i
\(159\) 0 0
\(160\) −12.0000 6.92820i −0.948683 0.547723i
\(161\) 16.9706i 1.33747i
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 2.44949 + 1.41421i 0.191273 + 0.110432i
\(165\) 0 0
\(166\) −10.0000 17.3205i −0.776151 1.34433i
\(167\) −9.79796 + 16.9706i −0.758189 + 1.31322i 0.185584 + 0.982628i \(0.440582\pi\)
−0.943773 + 0.330593i \(0.892751\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 2.44949 4.24264i 0.187867 0.325396i
\(171\) 0 0
\(172\) 8.00000 + 13.8564i 0.609994 + 1.05654i
\(173\) −1.22474 2.12132i −0.0931156 0.161281i 0.815705 0.578468i \(-0.196349\pi\)
−0.908821 + 0.417187i \(0.863016\pi\)
\(174\) 0 0
\(175\) 3.00000 + 1.73205i 0.226779 + 0.130931i
\(176\) −9.79796 + 5.65685i −0.738549 + 0.426401i
\(177\) 0 0
\(178\) −10.0000 −0.749532
\(179\) 5.65685i 0.422813i 0.977398 + 0.211407i \(0.0678044\pi\)
−0.977398 + 0.211407i \(0.932196\pi\)
\(180\) 0 0
\(181\) 10.3923i 0.772454i −0.922404 0.386227i \(-0.873778\pi\)
0.922404 0.386227i \(-0.126222\pi\)
\(182\) 16.9706i 1.25794i
\(183\) 0 0
\(184\) −12.0000 6.92820i −0.884652 0.510754i
\(185\) 0 0
\(186\) 0 0
\(187\) −2.00000 3.46410i −0.146254 0.253320i
\(188\) −4.89898 8.48528i −0.357295 0.618853i
\(189\) 0 0
\(190\) 12.0000 + 6.92820i 0.870572 + 0.502625i
\(191\) 9.79796 + 16.9706i 0.708955 + 1.22795i 0.965245 + 0.261347i \(0.0841666\pi\)
−0.256290 + 0.966600i \(0.582500\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) −9.79796 + 5.65685i −0.703452 + 0.406138i
\(195\) 0 0
\(196\) −5.00000 + 8.66025i −0.357143 + 0.618590i
\(197\) −7.34847 −0.523557 −0.261778 0.965128i \(-0.584309\pi\)
−0.261778 + 0.965128i \(0.584309\pi\)
\(198\) 0 0
\(199\) 10.3923i 0.736691i −0.929689 0.368345i \(-0.879924\pi\)
0.929689 0.368345i \(-0.120076\pi\)
\(200\) 2.44949 1.41421i 0.173205 0.100000i
\(201\) 0 0
\(202\) −3.00000 + 1.73205i −0.211079 + 0.121867i
\(203\) 7.34847 + 4.24264i 0.515761 + 0.297775i
\(204\) 0 0
\(205\) −3.00000 + 1.73205i −0.209529 + 0.120972i
\(206\) −2.44949 + 4.24264i −0.170664 + 0.295599i
\(207\) 0 0
\(208\) −12.0000 6.92820i −0.832050 0.480384i
\(209\) 9.79796 5.65685i 0.677739 0.391293i
\(210\) 0 0
\(211\) −10.0000 + 17.3205i −0.688428 + 1.19239i 0.283918 + 0.958849i \(0.408366\pi\)
−0.972346 + 0.233544i \(0.924968\pi\)
\(212\) −14.6969 −1.00939
\(213\) 0 0
\(214\) −16.0000 −1.09374
\(215\) −19.5959 −1.33643
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) 14.6969 0.995402
\(219\) 0 0
\(220\) 13.8564i 0.934199i
\(221\) 2.44949 4.24264i 0.164771 0.285391i
\(222\) 0 0
\(223\) 15.0000 8.66025i 1.00447 0.579934i 0.0949052 0.995486i \(-0.469745\pi\)
0.909569 + 0.415553i \(0.136412\pi\)
\(224\) 9.79796 + 16.9706i 0.654654 + 1.13389i
\(225\) 0 0
\(226\) −13.0000 + 22.5167i −0.864747 + 1.49779i
\(227\) −2.44949 + 1.41421i −0.162578 + 0.0938647i −0.579082 0.815270i \(-0.696589\pi\)
0.416503 + 0.909134i \(0.363255\pi\)
\(228\) 0 0
\(229\) 15.0000 + 8.66025i 0.991228 + 0.572286i 0.905641 0.424045i \(-0.139390\pi\)
0.0855868 + 0.996331i \(0.472724\pi\)
\(230\) 14.6969 8.48528i 0.969087 0.559503i
\(231\) 0 0
\(232\) 6.00000 3.46410i 0.393919 0.227429i
\(233\) 1.41421i 0.0926482i 0.998926 + 0.0463241i \(0.0147507\pi\)
−0.998926 + 0.0463241i \(0.985249\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) −19.5959 11.3137i −1.27559 0.736460i
\(237\) 0 0
\(238\) −6.00000 + 3.46410i −0.388922 + 0.224544i
\(239\) 4.89898 8.48528i 0.316889 0.548867i −0.662949 0.748665i \(-0.730695\pi\)
0.979837 + 0.199798i \(0.0640285\pi\)
\(240\) 0 0
\(241\) 14.0000 + 24.2487i 0.901819 + 1.56200i 0.825131 + 0.564942i \(0.191101\pi\)
0.0766885 + 0.997055i \(0.475565\pi\)
\(242\) 3.67423 + 2.12132i 0.236189 + 0.136364i
\(243\) 0 0
\(244\) 24.0000 13.8564i 1.53644 0.887066i
\(245\) −6.12372 10.6066i −0.391230 0.677631i
\(246\) 0 0
\(247\) 12.0000 + 6.92820i 0.763542 + 0.440831i
\(248\) 4.89898 8.48528i 0.311086 0.538816i
\(249\) 0 0
\(250\) 13.8564i 0.876356i
\(251\) 14.1421i 0.892644i 0.894873 + 0.446322i \(0.147266\pi\)
−0.894873 + 0.446322i \(0.852734\pi\)
\(252\) 0 0
\(253\) 13.8564i 0.871145i
\(254\) −14.6969 −0.922168
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 20.8207 + 12.0208i 1.29876 + 0.749838i 0.980189 0.198062i \(-0.0634648\pi\)
0.318568 + 0.947900i \(0.396798\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 14.6969 8.48528i 0.911465 0.526235i
\(261\) 0 0
\(262\) −4.00000 + 6.92820i −0.247121 + 0.428026i
\(263\) −4.89898 8.48528i −0.302084 0.523225i 0.674524 0.738253i \(-0.264349\pi\)
−0.976608 + 0.215028i \(0.931016\pi\)
\(264\) 0 0
\(265\) 9.00000 15.5885i 0.552866 0.957591i
\(266\) −9.79796 16.9706i −0.600751 1.04053i
\(267\) 0 0
\(268\) −4.00000 + 6.92820i −0.244339 + 0.423207i
\(269\) 7.34847 0.448044 0.224022 0.974584i \(-0.428081\pi\)
0.224022 + 0.974584i \(0.428081\pi\)
\(270\) 0 0
\(271\) 31.1769i 1.89386i 0.321436 + 0.946931i \(0.395835\pi\)
−0.321436 + 0.946931i \(0.604165\pi\)
\(272\) 5.65685i 0.342997i
\(273\) 0 0
\(274\) −7.00000 12.1244i −0.422885 0.732459i
\(275\) 2.44949 + 1.41421i 0.147710 + 0.0852803i
\(276\) 0 0
\(277\) 15.0000 8.66025i 0.901263 0.520344i 0.0236530 0.999720i \(-0.492470\pi\)
0.877610 + 0.479376i \(0.159137\pi\)
\(278\) −4.89898 2.82843i −0.293821 0.169638i
\(279\) 0 0
\(280\) −24.0000 −1.43427
\(281\) −20.8207 + 12.0208i −1.24206 + 0.717102i −0.969513 0.245042i \(-0.921198\pi\)
−0.272544 + 0.962143i \(0.587865\pi\)
\(282\) 0 0
\(283\) 8.00000 13.8564i 0.475551 0.823678i −0.524057 0.851683i \(-0.675582\pi\)
0.999608 + 0.0280052i \(0.00891551\pi\)
\(284\) 29.3939 1.74421
\(285\) 0 0
\(286\) 13.8564i 0.819346i
\(287\) 4.89898 0.289178
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) 8.48528i 0.498273i
\(291\) 0 0
\(292\) 8.00000 0.468165
\(293\) −13.4722 + 23.3345i −0.787054 + 1.36322i 0.140710 + 0.990051i \(0.455061\pi\)
−0.927764 + 0.373167i \(0.878272\pi\)
\(294\) 0 0
\(295\) 24.0000 13.8564i 1.39733 0.806751i
\(296\) 0 0
\(297\) 0 0
\(298\) −21.0000 12.1244i −1.21650 0.702345i
\(299\) 14.6969 8.48528i 0.849946 0.490716i
\(300\) 0 0
\(301\) 24.0000 + 13.8564i 1.38334 + 0.798670i
\(302\) 2.44949 + 4.24264i 0.140952 + 0.244137i
\(303\) 0 0
\(304\) −16.0000 −0.917663
\(305\) 33.9411i 1.94346i
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) −9.79796 + 16.9706i −0.558291 + 0.966988i
\(309\) 0 0
\(310\) 6.00000 + 10.3923i 0.340777 + 0.590243i
\(311\) 4.89898 8.48528i 0.277796 0.481156i −0.693041 0.720898i \(-0.743730\pi\)
0.970837 + 0.239742i \(0.0770629\pi\)
\(312\) 0 0
\(313\) 5.00000 + 8.66025i 0.282617 + 0.489506i 0.972028 0.234863i \(-0.0754642\pi\)
−0.689412 + 0.724370i \(0.742131\pi\)
\(314\) −9.79796 + 16.9706i −0.552931 + 0.957704i
\(315\) 0 0
\(316\) 6.00000 3.46410i 0.337526 0.194871i
\(317\) 6.12372 + 10.6066i 0.343943 + 0.595726i 0.985161 0.171632i \(-0.0549041\pi\)
−0.641218 + 0.767358i \(0.721571\pi\)
\(318\) 0 0
\(319\) 6.00000 + 3.46410i 0.335936 + 0.193952i
\(320\) −9.79796 + 16.9706i −0.547723 + 0.948683i
\(321\) 0 0
\(322\) −24.0000 −1.33747
\(323\) 5.65685i 0.314756i
\(324\) 0 0
\(325\) 3.46410i 0.192154i
\(326\) 22.6274i 1.25322i
\(327\) 0 0
\(328\) 2.00000 3.46410i 0.110432 0.191273i
\(329\) −14.6969 8.48528i −0.810268 0.467809i
\(330\) 0 0
\(331\) 2.00000 + 3.46410i 0.109930 + 0.190404i 0.915742 0.401768i \(-0.131604\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(332\) −24.4949 + 14.1421i −1.34433 + 0.776151i
\(333\) 0 0
\(334\) 24.0000 + 13.8564i 1.31322 + 0.758189i
\(335\) −4.89898 8.48528i −0.267660 0.463600i
\(336\) 0 0
\(337\) 2.00000 3.46410i 0.108947 0.188702i −0.806397 0.591375i \(-0.798585\pi\)
0.915344 + 0.402673i \(0.131919\pi\)
\(338\) −1.22474 + 0.707107i −0.0666173 + 0.0384615i
\(339\) 0 0
\(340\) −6.00000 3.46410i −0.325396 0.187867i
\(341\) 9.79796 0.530589
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 19.5959 11.3137i 1.05654 0.609994i
\(345\) 0 0
\(346\) −3.00000 + 1.73205i −0.161281 + 0.0931156i
\(347\) −12.2474 7.07107i −0.657477 0.379595i 0.133838 0.991003i \(-0.457270\pi\)
−0.791315 + 0.611408i \(0.790603\pi\)
\(348\) 0 0
\(349\) 24.0000 13.8564i 1.28469 0.741716i 0.306988 0.951713i \(-0.400679\pi\)
0.977702 + 0.209997i \(0.0673454\pi\)
\(350\) 2.44949 4.24264i 0.130931 0.226779i
\(351\) 0 0
\(352\) 8.00000 + 13.8564i 0.426401 + 0.738549i
\(353\) −13.4722 + 7.77817i −0.717053 + 0.413990i −0.813667 0.581331i \(-0.802532\pi\)
0.0966144 + 0.995322i \(0.469199\pi\)
\(354\) 0 0
\(355\) −18.0000 + 31.1769i −0.955341 + 1.65470i
\(356\) 14.1421i 0.749532i
\(357\) 0 0
\(358\) 8.00000 0.422813
\(359\) 14.6969 0.775675 0.387837 0.921728i \(-0.373222\pi\)
0.387837 + 0.921728i \(0.373222\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −14.6969 −0.772454
\(363\) 0 0
\(364\) −24.0000 −1.25794
\(365\) −4.89898 + 8.48528i −0.256424 + 0.444140i
\(366\) 0 0
\(367\) −21.0000 + 12.1244i −1.09619 + 0.632886i −0.935218 0.354073i \(-0.884797\pi\)
−0.160973 + 0.986959i \(0.551463\pi\)
\(368\) −9.79796 + 16.9706i −0.510754 + 0.884652i
\(369\) 0 0
\(370\) 0 0
\(371\) −22.0454 + 12.7279i −1.14454 + 0.660801i
\(372\) 0 0
\(373\) −12.0000 6.92820i −0.621336 0.358729i 0.156053 0.987749i \(-0.450123\pi\)
−0.777389 + 0.629020i \(0.783456\pi\)
\(374\) −4.89898 + 2.82843i −0.253320 + 0.146254i
\(375\) 0 0
\(376\) −12.0000 + 6.92820i −0.618853 + 0.357295i
\(377\) 8.48528i 0.437014i
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 9.79796 16.9706i 0.502625 0.870572i
\(381\) 0 0
\(382\) 24.0000 13.8564i 1.22795 0.708955i
\(383\) 4.89898 8.48528i 0.250326 0.433578i −0.713289 0.700870i \(-0.752795\pi\)
0.963616 + 0.267292i \(0.0861288\pi\)
\(384\) 0 0
\(385\) −12.0000 20.7846i −0.611577 1.05928i
\(386\) 17.1464 + 9.89949i 0.872730 + 0.503871i
\(387\) 0 0
\(388\) 8.00000 + 13.8564i 0.406138 + 0.703452i
\(389\) 13.4722 + 23.3345i 0.683067 + 1.18311i 0.974040 + 0.226376i \(0.0726878\pi\)
−0.290973 + 0.956731i \(0.593979\pi\)
\(390\) 0 0
\(391\) −6.00000 3.46410i −0.303433 0.175187i
\(392\) 12.2474 + 7.07107i 0.618590 + 0.357143i
\(393\) 0 0
\(394\) 10.3923i 0.523557i
\(395\) 8.48528i 0.426941i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −14.6969 −0.736691
\(399\) 0 0
\(400\) −2.00000 3.46410i −0.100000 0.173205i
\(401\) −1.22474 0.707107i −0.0611608 0.0353112i 0.469108 0.883141i \(-0.344576\pi\)
−0.530269 + 0.847830i \(0.677909\pi\)
\(402\) 0 0
\(403\) 6.00000 + 10.3923i 0.298881 + 0.517678i
\(404\) 2.44949 + 4.24264i 0.121867 + 0.211079i
\(405\) 0 0
\(406\) 6.00000 10.3923i 0.297775 0.515761i
\(407\) 0 0
\(408\) 0 0
\(409\) −16.0000 + 27.7128i −0.791149 + 1.37031i 0.134107 + 0.990967i \(0.457183\pi\)
−0.925256 + 0.379344i \(0.876150\pi\)
\(410\) 2.44949 + 4.24264i 0.120972 + 0.209529i
\(411\) 0 0
\(412\) 6.00000 + 3.46410i 0.295599 + 0.170664i
\(413\) −39.1918 −1.92850
\(414\) 0 0
\(415\) 34.6410i 1.70046i
\(416\) −9.79796 + 16.9706i −0.480384 + 0.832050i
\(417\) 0 0
\(418\) −8.00000 13.8564i −0.391293 0.677739i
\(419\) 17.1464 + 9.89949i 0.837658 + 0.483622i 0.856467 0.516201i \(-0.172654\pi\)
−0.0188096 + 0.999823i \(0.505988\pi\)
\(420\) 0 0
\(421\) −21.0000 + 12.1244i −1.02348 + 0.590905i −0.915109 0.403206i \(-0.867896\pi\)
−0.108368 + 0.994111i \(0.534563\pi\)
\(422\) 24.4949 + 14.1421i 1.19239 + 0.688428i
\(423\) 0 0
\(424\) 20.7846i 1.00939i
\(425\) 1.22474 0.707107i 0.0594089 0.0342997i
\(426\) 0 0
\(427\) 24.0000 41.5692i 1.16144 2.01168i
\(428\) 22.6274i 1.09374i
\(429\) 0 0
\(430\) 27.7128i 1.33643i
\(431\) 14.6969 0.707927 0.353963 0.935259i \(-0.384834\pi\)
0.353963 + 0.935259i \(0.384834\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 16.9706i 0.814613i
\(435\) 0 0
\(436\) 20.7846i 0.995402i
\(437\) 9.79796 16.9706i 0.468700 0.811812i
\(438\) 0 0
\(439\) −3.00000 + 1.73205i −0.143182 + 0.0826663i −0.569880 0.821728i \(-0.693010\pi\)
0.426698 + 0.904394i \(0.359677\pi\)
\(440\) −19.5959 −0.934199
\(441\) 0 0
\(442\) −6.00000 3.46410i −0.285391 0.164771i
\(443\) −2.44949 + 1.41421i −0.116379 + 0.0671913i −0.557059 0.830473i \(-0.688070\pi\)
0.440681 + 0.897664i \(0.354737\pi\)
\(444\) 0 0
\(445\) −15.0000 8.66025i −0.711068 0.410535i
\(446\) −12.2474 21.2132i −0.579934 1.00447i
\(447\) 0 0
\(448\) 24.0000 13.8564i 1.13389 0.654654i
\(449\) 24.0416i 1.13459i −0.823513 0.567297i \(-0.807989\pi\)
0.823513 0.567297i \(-0.192011\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 31.8434 + 18.3848i 1.49779 + 0.864747i
\(453\) 0 0
\(454\) 2.00000 + 3.46410i 0.0938647 + 0.162578i
\(455\) 14.6969 25.4558i 0.689003 1.19339i
\(456\) 0 0
\(457\) −4.00000 6.92820i −0.187112 0.324088i 0.757174 0.653213i \(-0.226579\pi\)
−0.944286 + 0.329125i \(0.893246\pi\)
\(458\) 12.2474 21.2132i 0.572286 0.991228i
\(459\) 0 0
\(460\) −12.0000 20.7846i −0.559503 0.969087i
\(461\) −8.57321 14.8492i −0.399294 0.691598i 0.594345 0.804210i \(-0.297412\pi\)
−0.993639 + 0.112612i \(0.964078\pi\)
\(462\) 0 0
\(463\) 15.0000 + 8.66025i 0.697109 + 0.402476i 0.806270 0.591548i \(-0.201483\pi\)
−0.109161 + 0.994024i \(0.534816\pi\)
\(464\) −4.89898 8.48528i −0.227429 0.393919i
\(465\) 0 0
\(466\) 2.00000 0.0926482
\(467\) 36.7696i 1.70149i −0.525577 0.850746i \(-0.676151\pi\)
0.525577 0.850746i \(-0.323849\pi\)
\(468\) 0 0
\(469\) 13.8564i 0.639829i
\(470\) 16.9706i 0.782794i
\(471\) 0 0
\(472\) −16.0000 + 27.7128i −0.736460 + 1.27559i
\(473\) 19.5959 + 11.3137i 0.901021 + 0.520205i
\(474\) 0 0
\(475\) 2.00000 + 3.46410i 0.0917663 + 0.158944i
\(476\) 4.89898 + 8.48528i 0.224544 + 0.388922i
\(477\) 0 0
\(478\) −12.0000 6.92820i −0.548867 0.316889i
\(479\) −12.2474 21.2132i −0.559600 0.969256i −0.997530 0.0702467i \(-0.977621\pi\)
0.437929 0.899009i \(-0.355712\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 34.2929 19.7990i 1.56200 0.901819i
\(483\) 0 0
\(484\) 3.00000 5.19615i 0.136364 0.236189i
\(485\) −19.5959 −0.889805
\(486\) 0 0
\(487\) 10.3923i 0.470920i −0.971884 0.235460i \(-0.924340\pi\)
0.971884 0.235460i \(-0.0756597\pi\)
\(488\) −19.5959 33.9411i −0.887066 1.53644i
\(489\) 0 0
\(490\) −15.0000 + 8.66025i −0.677631 + 0.391230i
\(491\) −34.2929 19.7990i −1.54761 0.893516i −0.998323 0.0578852i \(-0.981564\pi\)
−0.549292 0.835631i \(-0.685102\pi\)
\(492\) 0 0
\(493\) 3.00000 1.73205i 0.135113 0.0780076i
\(494\) 9.79796 16.9706i 0.440831 0.763542i
\(495\) 0 0
\(496\) −12.0000 6.92820i −0.538816 0.311086i
\(497\) 44.0908 25.4558i 1.97774 1.14185i
\(498\) 0 0
\(499\) −16.0000 + 27.7128i −0.716258 + 1.24060i 0.246214 + 0.969216i \(0.420813\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) −19.5959 −0.876356
\(501\) 0 0
\(502\) 20.0000 0.892644
\(503\) 14.6969 0.655304 0.327652 0.944798i \(-0.393743\pi\)
0.327652 + 0.944798i \(0.393743\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) −19.5959 −0.871145
\(507\) 0 0
\(508\) 20.7846i 0.922168i
\(509\) −20.8207 + 36.0624i −0.922860 + 1.59844i −0.127892 + 0.991788i \(0.540821\pi\)
−0.794968 + 0.606652i \(0.792512\pi\)
\(510\) 0 0
\(511\) 12.0000 6.92820i 0.530849 0.306486i
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) 17.0000 29.4449i 0.749838 1.29876i
\(515\) −7.34847 + 4.24264i −0.323812 + 0.186953i
\(516\) 0 0
\(517\) −12.0000 6.92820i −0.527759 0.304702i
\(518\) 0 0
\(519\) 0 0
\(520\) −12.0000 20.7846i −0.526235 0.911465i
\(521\) 26.8701i 1.17720i 0.808425 + 0.588599i \(0.200320\pi\)
−0.808425 + 0.588599i \(0.799680\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 9.79796 + 5.65685i 0.428026 + 0.247121i
\(525\) 0 0
\(526\) −12.0000 + 6.92820i −0.523225 + 0.302084i
\(527\) 2.44949 4.24264i 0.106701 0.184812i
\(528\) 0 0
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) −22.0454 12.7279i −0.957591 0.552866i
\(531\) 0 0
\(532\) −24.0000 + 13.8564i −1.04053 + 0.600751i
\(533\) 2.44949 + 4.24264i 0.106099 + 0.183769i
\(534\) 0 0
\(535\) −24.0000 13.8564i −1.03761 0.599065i
\(536\) 9.79796 + 5.65685i 0.423207 + 0.244339i
\(537\) 0 0
\(538\) 10.3923i 0.448044i
\(539\) 14.1421i 0.609145i
\(540\) 0 0
\(541\) 10.3923i 0.446800i 0.974727 + 0.223400i \(0.0717156\pi\)
−0.974727 + 0.223400i \(0.928284\pi\)
\(542\) 44.0908 1.89386
\(543\) 0 0
\(544\) 8.00000 0.342997
\(545\) 22.0454 + 12.7279i 0.944322 + 0.545204i
\(546\) 0 0
\(547\) −4.00000 6.92820i −0.171028 0.296229i 0.767752 0.640747i \(-0.221375\pi\)
−0.938779 + 0.344519i \(0.888042\pi\)
\(548\) −17.1464 + 9.89949i −0.732459 + 0.422885i
\(549\) 0 0
\(550\) 2.00000 3.46410i 0.0852803 0.147710i
\(551\) 4.89898 + 8.48528i 0.208704 + 0.361485i
\(552\) 0 0
\(553\) 6.00000 10.3923i 0.255146 0.441926i
\(554\) −12.2474 21.2132i −0.520344 0.901263i
\(555\) 0 0
\(556\) −4.00000 + 6.92820i −0.169638 + 0.293821i
\(557\) 7.34847 0.311365 0.155682 0.987807i \(-0.450242\pi\)
0.155682 + 0.987807i \(0.450242\pi\)
\(558\) 0 0
\(559\) 27.7128i 1.17213i
\(560\) 33.9411i 1.43427i
\(561\) 0 0
\(562\) 17.0000 + 29.4449i 0.717102 + 1.24206i
\(563\) −12.2474 7.07107i −0.516168 0.298010i 0.219197 0.975681i \(-0.429656\pi\)
−0.735366 + 0.677671i \(0.762990\pi\)
\(564\) 0 0
\(565\) −39.0000 + 22.5167i −1.64074 + 0.947283i
\(566\) −19.5959 11.3137i −0.823678 0.475551i
\(567\) 0 0
\(568\) 41.5692i 1.74421i
\(569\) 8.57321 4.94975i 0.359408 0.207504i −0.309413 0.950928i \(-0.600133\pi\)
0.668821 + 0.743423i \(0.266799\pi\)
\(570\) 0 0
\(571\) 20.0000 34.6410i 0.836974 1.44968i −0.0554391 0.998462i \(-0.517656\pi\)
0.892413 0.451219i \(-0.149011\pi\)
\(572\) −19.5959 −0.819346
\(573\) 0 0
\(574\) 6.92820i 0.289178i
\(575\) 4.89898 0.204302
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 21.2132i 0.882353i
\(579\) 0 0
\(580\) 12.0000 0.498273
\(581\) −24.4949 + 42.4264i −1.01622 + 1.76014i
\(582\) 0 0
\(583\) −18.0000 + 10.3923i −0.745484 + 0.430405i
\(584\) 11.3137i 0.468165i
\(585\) 0 0
\(586\) 33.0000 + 19.0526i 1.36322 + 0.787054i
\(587\) 19.5959 11.3137i 0.808810 0.466967i −0.0377324 0.999288i \(-0.512013\pi\)
0.846542 + 0.532321i \(0.178680\pi\)
\(588\) 0 0
\(589\) 12.0000 + 6.92820i 0.494451 + 0.285472i
\(590\) −19.5959 33.9411i −0.806751 1.39733i
\(591\) 0 0
\(592\) 0 0
\(593\) 7.07107i 0.290374i −0.989404 0.145187i \(-0.953622\pi\)
0.989404 0.145187i \(-0.0463784\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) −17.1464 + 29.6985i −0.702345 + 1.21650i
\(597\) 0 0
\(598\) −12.0000 20.7846i −0.490716 0.849946i
\(599\) −2.44949 + 4.24264i −0.100083 + 0.173350i −0.911719 0.410815i \(-0.865244\pi\)
0.811635 + 0.584164i \(0.198578\pi\)
\(600\) 0 0
\(601\) 5.00000 + 8.66025i 0.203954 + 0.353259i 0.949799 0.312861i \(-0.101287\pi\)
−0.745845 + 0.666120i \(0.767954\pi\)
\(602\) 19.5959 33.9411i 0.798670 1.38334i
\(603\) 0 0
\(604\) 6.00000 3.46410i 0.244137 0.140952i
\(605\) 3.67423 + 6.36396i 0.149379 + 0.258732i
\(606\) 0 0
\(607\) −39.0000 22.5167i −1.58296 0.913923i −0.994424 0.105453i \(-0.966371\pi\)
−0.588537 0.808470i \(-0.700296\pi\)
\(608\) 22.6274i 0.917663i
\(609\) 0 0
\(610\) 48.0000 1.94346
\(611\) 16.9706i 0.686555i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 5.65685i 0.228292i
\(615\) 0 0
\(616\) 24.0000 + 13.8564i 0.966988 + 0.558291i
\(617\) 20.8207 + 12.0208i 0.838208 + 0.483940i 0.856655 0.515890i \(-0.172539\pi\)
−0.0184465 + 0.999830i \(0.505872\pi\)
\(618\) 0 0
\(619\) −4.00000 6.92820i −0.160774 0.278468i 0.774373 0.632730i \(-0.218066\pi\)
−0.935146 + 0.354262i \(0.884732\pi\)
\(620\) 14.6969 8.48528i 0.590243 0.340777i
\(621\) 0 0
\(622\) −12.0000 6.92820i −0.481156 0.277796i
\(623\) 12.2474 + 21.2132i 0.490684 + 0.849889i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 12.2474 7.07107i 0.489506 0.282617i
\(627\) 0 0
\(628\) 24.0000 + 13.8564i 0.957704 + 0.552931i
\(629\) 0 0
\(630\) 0 0
\(631\) 31.1769i 1.24113i 0.784154 + 0.620567i \(0.213097\pi\)
−0.784154 + 0.620567i \(0.786903\pi\)
\(632\) −4.89898 8.48528i −0.194871 0.337526i
\(633\) 0 0
\(634\) 15.0000 8.66025i 0.595726 0.343943i
\(635\) −22.0454 12.7279i −0.874845 0.505092i
\(636\) 0 0
\(637\) −15.0000 + 8.66025i −0.594322 + 0.343132i
\(638\) 4.89898 8.48528i 0.193952 0.335936i
\(639\) 0 0
\(640\) 24.0000 + 13.8564i 0.948683 + 0.547723i
\(641\) −13.4722 + 7.77817i −0.532120 + 0.307219i −0.741879 0.670534i \(-0.766065\pi\)
0.209760 + 0.977753i \(0.432732\pi\)
\(642\) 0 0
\(643\) −16.0000 + 27.7128i −0.630978 + 1.09289i 0.356374 + 0.934344i \(0.384013\pi\)
−0.987352 + 0.158543i \(0.949320\pi\)
\(644\) 33.9411i 1.33747i
\(645\) 0 0
\(646\) −8.00000 −0.314756
\(647\) 14.6969 0.577796 0.288898 0.957360i \(-0.406711\pi\)
0.288898 + 0.957360i \(0.406711\pi\)
\(648\) 0 0
\(649\) −32.0000 −1.25611
\(650\) 4.89898 0.192154
\(651\) 0 0
\(652\) 32.0000 1.25322
\(653\) 8.57321 14.8492i 0.335496 0.581096i −0.648084 0.761569i \(-0.724430\pi\)
0.983580 + 0.180473i \(0.0577628\pi\)
\(654\) 0 0
\(655\) −12.0000 + 6.92820i −0.468879 + 0.270707i
\(656\) −4.89898 2.82843i −0.191273 0.110432i
\(657\) 0 0
\(658\) −12.0000 + 20.7846i −0.467809 + 0.810268i
\(659\) −9.79796 + 5.65685i −0.381674 + 0.220360i −0.678546 0.734557i \(-0.737390\pi\)
0.296872 + 0.954917i \(0.404056\pi\)
\(660\) 0 0
\(661\) −12.0000 6.92820i −0.466746 0.269476i 0.248131 0.968727i \(-0.420184\pi\)
−0.714877 + 0.699251i \(0.753517\pi\)
\(662\) 4.89898 2.82843i 0.190404 0.109930i
\(663\) 0 0
\(664\) 20.0000 + 34.6410i 0.776151 + 1.34433i
\(665\) 33.9411i 1.31618i
\(666\) 0 0
\(667\) 12.0000 0.464642
\(668\) 19.5959 33.9411i 0.758189 1.31322i
\(669\) 0 0
\(670\) −12.0000 + 6.92820i −0.463600 + 0.267660i
\(671\) 19.5959 33.9411i 0.756492 1.31028i
\(672\) 0 0
\(673\) −7.00000 12.1244i −0.269830 0.467360i 0.698988 0.715134i \(-0.253634\pi\)
−0.968818 + 0.247774i \(0.920301\pi\)
\(674\) −4.89898 2.82843i −0.188702 0.108947i
\(675\) 0 0
\(676\) 1.00000 + 1.73205i 0.0384615 + 0.0666173i
\(677\) −8.57321 14.8492i −0.329495 0.570703i 0.652916 0.757430i \(-0.273545\pi\)
−0.982412 + 0.186727i \(0.940212\pi\)
\(678\) 0 0
\(679\) 24.0000 + 13.8564i 0.921035 + 0.531760i
\(680\) −4.89898 + 8.48528i −0.187867 + 0.325396i
\(681\) 0 0
\(682\) 13.8564i 0.530589i
\(683\) 36.7696i 1.40695i −0.710721 0.703474i \(-0.751631\pi\)
0.710721 0.703474i \(-0.248369\pi\)
\(684\) 0 0
\(685\) 24.2487i 0.926496i
\(686\) −9.79796 −0.374088
\(687\) 0 0
\(688\) −16.0000 27.7128i −0.609994 1.05654i
\(689\) −22.0454 12.7279i −0.839863 0.484895i
\(690\) 0 0
\(691\) −16.0000 27.7128i −0.608669 1.05425i −0.991460 0.130410i \(-0.958371\pi\)
0.382791 0.923835i \(-0.374963\pi\)
\(692\) 2.44949 + 4.24264i 0.0931156 + 0.161281i
\(693\) 0 0
\(694\) −10.0000 + 17.3205i −0.379595 + 0.657477i
\(695\) −4.89898 8.48528i −0.185829 0.321865i
\(696\) 0 0
\(697\) 1.00000 1.73205i 0.0378777 0.0656061i
\(698\) −19.5959 33.9411i −0.741716 1.28469i
\(699\) 0 0
\(700\) −6.00000 3.46410i −0.226779 0.130931i
\(701\) −7.34847 −0.277548 −0.138774 0.990324i \(-0.544316\pi\)
−0.138774 + 0.990324i \(0.544316\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 19.5959 11.3137i 0.738549 0.426401i
\(705\) 0 0
\(706\) 11.0000 + 19.0526i 0.413990 + 0.717053i
\(707\) 7.34847 + 4.24264i 0.276368 + 0.159561i
\(708\) 0 0
\(709\) −3.00000 + 1.73205i −0.112667 + 0.0650485i −0.555275 0.831667i \(-0.687387\pi\)
0.442607 + 0.896716i \(0.354054\pi\)
\(710\) 44.0908 + 25.4558i 1.65470 + 0.955341i
\(711\) 0 0
\(712\) 20.0000 0.749532
\(713\) 14.6969 8.48528i 0.550405 0.317776i
\(714\) 0 0
\(715\) 12.0000 20.7846i 0.448775 0.777300i
\(716\) 11.3137i 0.422813i
\(717\) 0 0
\(718\) 20.7846i 0.775675i
\(719\) −44.0908 −1.64431 −0.822155 0.569264i \(-0.807228\pi\)
−0.822155 + 0.569264i \(0.807228\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 4.24264i 0.157895i
\(723\) 0 0
\(724\) 20.7846i 0.772454i
\(725\) −1.22474 + 2.12132i −0.0454859 + 0.0787839i
\(726\) 0 0
\(727\) −21.0000 + 12.1244i −0.778847 + 0.449667i −0.836021 0.548697i \(-0.815124\pi\)
0.0571746 + 0.998364i \(0.481791\pi\)
\(728\) 33.9411i 1.25794i
\(729\) 0 0
\(730\) 12.0000 + 6.92820i 0.444140 + 0.256424i
\(731\) 9.79796 5.65685i 0.362391 0.209226i
\(732\) 0 0
\(733\) 33.0000 + 19.0526i 1.21888 + 0.703722i 0.964679 0.263428i \(-0.0848533\pi\)
0.254204 + 0.967151i \(0.418187\pi\)
\(734\) 17.1464 + 29.6985i 0.632886 + 1.09619i
\(735\) 0 0
\(736\) 24.0000 + 13.8564i 0.884652 + 0.510754i
\(737\) 11.3137i 0.416746i
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 18.0000 + 31.1769i 0.660801 + 1.14454i
\(743\) 19.5959 33.9411i 0.718905 1.24518i −0.242530 0.970144i \(-0.577977\pi\)
0.961434 0.275035i \(-0.0886895\pi\)
\(744\) 0 0
\(745\) −21.0000 36.3731i −0.769380 1.33261i
\(746\) −9.79796 + 16.9706i −0.358729 + 0.621336i
\(747\) 0 0
\(748\) 4.00000 + 6.92820i 0.146254 + 0.253320i
\(749\) 19.5959 + 33.9411i 0.716019 + 1.24018i
\(750\) 0 0
\(751\) −3.00000 1.73205i −0.109472 0.0632034i 0.444265 0.895896i \(-0.353465\pi\)
−0.553736 + 0.832692i \(0.686798\pi\)
\(752\) 9.79796 + 16.9706i 0.357295 + 0.618853i
\(753\) 0 0
\(754\) 12.0000 0.437014
\(755\) 8.48528i 0.308811i
\(756\) 0 0
\(757\) 10.3923i 0.377715i 0.982005 + 0.188857i \(0.0604784\pi\)
−0.982005 + 0.188857i \(0.939522\pi\)
\(758\) 5.65685i 0.205466i
\(759\) 0 0
\(760\) −24.0000 13.8564i −0.870572 0.502625i
\(761\) −15.9217 9.19239i −0.577161 0.333224i 0.182844 0.983142i \(-0.441470\pi\)
−0.760004 + 0.649918i \(0.774803\pi\)
\(762\) 0 0
\(763\) −18.0000 31.1769i −0.651644 1.12868i
\(764\) −19.5959 33.9411i −0.708955 1.22795i
\(765\) 0 0
\(766\) −12.0000 6.92820i −0.433578 0.250326i
\(767\) −19.5959 33.9411i −0.707568 1.22554i
\(768\) 0 0
\(769\) −1.00000 + 1.73205i −0.0360609 + 0.0624593i −0.883493 0.468445i \(-0.844814\pi\)
0.847432 + 0.530904i \(0.178148\pi\)
\(770\) −29.3939 + 16.9706i −1.05928 + 0.611577i
\(771\) 0 0
\(772\) 14.0000 24.2487i 0.503871 0.872730i
\(773\) −22.0454 −0.792918 −0.396459 0.918052i \(-0.629761\pi\)
−0.396459 + 0.918052i \(0.629761\pi\)
\(774\) 0 0
\(775\) 3.46410i 0.124434i
\(776\) 19.5959 11.3137i 0.703452 0.406138i
\(777\) 0 0
\(778\) 33.0000 19.0526i 1.18311 0.683067i
\(779\) 4.89898 + 2.82843i 0.175524 + 0.101339i
\(780\) 0 0
\(781\) 36.0000 20.7846i 1.28818 0.743732i
\(782\) −4.89898 + 8.48528i −0.175187 + 0.303433i
\(783\) 0 0
\(784\) 10.0000 17.3205i 0.357143 0.618590i
\(785\) −29.3939 + 16.9706i −1.04911 + 0.605705i
\(786\) 0 0
\(787\) −10.0000 + 17.3205i −0.356462 + 0.617409i −0.987367 0.158450i \(-0.949350\pi\)
0.630905 + 0.775860i \(0.282684\pi\)
\(788\) 14.6969 0.523557
\(789\) 0 0
\(790\) 12.0000 0.426941
\(791\) 63.6867 2.26444
\(792\) 0 0
\(793\) 48.0000 1.70453
\(794\) 0 0
\(795\) 0 0
\(796\) 20.7846i 0.736691i
\(797\) −6.12372 + 10.6066i −0.216913 + 0.375705i −0.953863 0.300243i \(-0.902932\pi\)
0.736949 + 0.675948i \(0.236266\pi\)
\(798\) 0 0
\(799\) −6.00000 + 3.46410i −0.212265 + 0.122551i
\(800\) −4.89898 + 2.82843i −0.173205 + 0.100000i
\(801\) 0 0
\(802\) −1.00000 + 1.73205i −0.0353112 + 0.0611608i
\(803\) 9.79796 5.65685i 0.345762 0.199626i
\(804\) 0 0
\(805\) −36.0000 20.7846i −1.26883 0.732561i
\(806\) 14.6969 8.48528i 0.517678 0.298881i
\(807\) 0 0
\(808\) 6.00000 3.46410i 0.211079 0.121867i
\(809\) 1.41421i 0.0497211i 0.999691 + 0.0248606i \(0.00791417\pi\)
−0.999691 + 0.0248606i \(0.992086\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) −14.6969 8.48528i −0.515761 0.297775i
\(813\) 0 0
\(814\) 0 0
\(815\) −19.5959 + 33.9411i −0.686415 + 1.18891i
\(816\) 0 0
\(817\) 16.0000 + 27.7128i 0.559769 + 0.969549i
\(818\) 39.1918 + 22.6274i 1.37031 + 0.791149i
\(819\) 0 0
\(820\) 6.00000 3.46410i 0.209529 0.120972i
\(821\) −1.22474 2.12132i −0.0427439 0.0740346i 0.843862 0.536560i \(-0.180277\pi\)
−0.886606 + 0.462526i \(0.846943\pi\)
\(822\) 0 0
\(823\) 15.0000 + 8.66025i 0.522867 + 0.301877i 0.738107 0.674684i \(-0.235720\pi\)
−0.215240 + 0.976561i \(0.569053\pi\)
\(824\) 4.89898 8.48528i 0.170664 0.295599i
\(825\) 0 0
\(826\) 55.4256i 1.92850i
\(827\) 5.65685i 0.196708i 0.995151 + 0.0983540i \(0.0313578\pi\)
−0.995151 + 0.0983540i \(0.968642\pi\)
\(828\) 0 0
\(829\) 10.3923i 0.360940i 0.983581 + 0.180470i \(0.0577618\pi\)
−0.983581 + 0.180470i \(0.942238\pi\)
\(830\) −48.9898 −1.70046
\(831\) 0 0
\(832\) 24.0000 + 13.8564i 0.832050 + 0.480384i
\(833\) 6.12372 + 3.53553i 0.212174 + 0.122499i
\(834\) 0 0
\(835\) 24.0000 + 41.5692i 0.830554 + 1.43856i
\(836\) −19.5959 + 11.3137i −0.677739 + 0.391293i
\(837\) 0 0
\(838\) 14.0000 24.2487i 0.483622 0.837658i
\(839\) 2.44949 + 4.24264i 0.0845658 + 0.146472i 0.905206 0.424973i \(-0.139716\pi\)
−0.820640 + 0.571445i \(0.806383\pi\)
\(840\) 0 0
\(841\) 11.5000 19.9186i 0.396552 0.686848i
\(842\) 17.1464 + 29.6985i 0.590905 + 1.02348i
\(843\) 0 0
\(844\) 20.0000 34.6410i 0.688428 1.19239i
\(845\) −2.44949 −0.0842650
\(846\) 0 0
\(847\) 10.3923i 0.357084i
\(848\) 29.3939 1.00939
\(849\) 0 0
\(850\) −1.00000 1.73205i −0.0342997 0.0594089i
\(851\) 0 0
\(852\) 0 0
\(853\) −12.0000 + 6.92820i −0.410872 + 0.237217i −0.691164 0.722698i \(-0.742902\pi\)
0.280292 + 0.959915i \(0.409569\pi\)
\(854\) −58.7878 33.9411i −2.01168 1.16144i
\(855\) 0 0
\(856\) 32.0000 1.09374
\(857\) 1.22474 0.707107i 0.0418365 0.0241543i −0.478936 0.877850i \(-0.658977\pi\)
0.520772 + 0.853696i \(0.325644\pi\)
\(858\) 0 0
\(859\) 20.0000 34.6410i 0.682391 1.18194i −0.291858 0.956462i \(-0.594273\pi\)
0.974249 0.225475i \(-0.0723932\pi\)
\(860\) 39.1918 1.33643
\(861\) 0 0
\(862\) 20.7846i 0.707927i
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 31.1127i 1.05725i
\(867\) 0 0
\(868\) −24.0000 −0.814613
\(869\) 4.89898 8.48528i 0.166186 0.287843i
\(870\) 0 0
\(871\) −12.0000 + 6.92820i −0.406604 + 0.234753i
\(872\) −29.3939 −0.995402
\(873\) 0 0
\(874\) −24.0000 13.8564i −0.811812 0.468700i
\(875\) −29.3939 + 16.9706i −0.993694 + 0.573710i
\(876\) 0 0
\(877\) −48.0000 27.7128i −1.62084 0.935795i −0.986694 0.162585i \(-0.948017\pi\)
−0.634150 0.773210i \(-0.718650\pi\)
\(878\) 2.44949 + 4.24264i 0.0826663 + 0.143182i
\(879\) 0 0
\(880\) 27.7128i 0.934199i
\(881\) 43.8406i 1.47703i 0.674238 + 0.738514i \(0.264472\pi\)
−0.674238 + 0.738514i \(0.735528\pi\)
\(882\) 0 0
\(883\) −40.0000 −1.34611 −0.673054 0.739594i \(-0.735018\pi\)
−0.673054 + 0.739594i \(0.735018\pi\)
\(884\) −4.89898 + 8.48528i −0.164771 + 0.285391i
\(885\) 0 0
\(886\) 2.00000 + 3.46410i 0.0671913 + 0.116379i
\(887\) 4.89898 8.48528i 0.164492 0.284908i −0.771983 0.635643i \(-0.780735\pi\)
0.936475 + 0.350735i \(0.114068\pi\)
\(888\) 0 0
\(889\) 18.0000 + 31.1769i 0.603701 + 1.04564i
\(890\) −12.2474 + 21.2132i −0.410535 + 0.711068i
\(891\) 0 0
\(892\) −30.0000 + 17.3205i −1.00447 + 0.579934i
\(893\) −9.79796 16.9706i −0.327876 0.567898i
\(894\) 0 0
\(895\) 12.0000 + 6.92820i 0.401116 + 0.231584i
\(896\) −19.5959 33.9411i −0.654654 1.13389i
\(897\) 0 0
\(898\) −34.0000 −1.13459
\(899\) 8.48528i 0.283000i
\(900\) 0 0
\(901\) 10.3923i 0.346218i
\(902\) 5.65685i 0.188353i
\(903\) 0 0
\(904\) 26.0000 45.0333i 0.864747 1.49779i
\(905\) −22.0454 12.7279i −0.732814 0.423090i
\(906\) 0 0
\(907\) −4.00000 6.92820i −0.132818 0.230047i 0.791944 0.610594i \(-0.209069\pi\)
−0.924762 + 0.380547i \(0.875736\pi\)
\(908\) 4.89898 2.82843i 0.162578 0.0938647i
\(909\) 0 0
\(910\) −36.0000 20.7846i −1.19339 0.689003i
\(911\) −19.5959 33.9411i −0.649242 1.12452i −0.983304 0.181969i \(-0.941753\pi\)
0.334063 0.942551i \(-0.391580\pi\)
\(912\) 0 0
\(913\) −20.0000 + 34.6410i −0.661903 + 1.14645i
\(914\) −9.79796 + 5.65685i −0.324088 + 0.187112i
\(915\) 0 0
\(916\) −30.0000 17.3205i −0.991228 0.572286i
\(917\) 19.5959 0.647114
\(918\) 0 0
\(919\) 10.3923i 0.342811i 0.985201 + 0.171405i \(0.0548307\pi\)
−0.985201 + 0.171405i \(0.945169\pi\)
\(920\) −29.3939 + 16.9706i −0.969087 + 0.559503i
\(921\) 0 0
\(922\) −21.0000 + 12.1244i −0.691598 + 0.399294i
\(923\) 44.0908 + 25.4558i 1.45127 + 0.837889i
\(924\) 0 0
\(925\) 0 0
\(926\) 12.2474 21.2132i 0.402476 0.697109i
\(927\) 0 0
\(928\) −12.0000 + 6.92820i −0.393919 + 0.227429i
\(929\) 1.22474 0.707107i 0.0401826 0.0231994i −0.479774 0.877392i \(-0.659281\pi\)
0.519957 + 0.854193i \(0.325948\pi\)
\(930\) 0 0
\(931\) −10.0000 + 17.3205i −0.327737 + 0.567657i
\(932\) 2.82843i 0.0926482i
\(933\) 0 0
\(934\) −52.0000 −1.70149
\(935\) −9.79796 −0.320428
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 19.5959 0.639829
\(939\) 0 0
\(940\) −24.0000 −0.782794
\(941\) 1.22474 2.12132i 0.0399255 0.0691531i −0.845372 0.534178i \(-0.820621\pi\)
0.885298 + 0.465025i \(0.153955\pi\)
\(942\) 0 0
\(943\) 6.00000 3.46410i 0.195387 0.112807i
\(944\) 39.1918 + 22.6274i 1.27559 + 0.736460i
\(945\) 0 0
\(946\) 16.0000 27.7128i 0.520205 0.901021i
\(947\) 19.5959 11.3137i 0.636782 0.367646i −0.146592 0.989197i \(-0.546830\pi\)
0.783374 + 0.621551i \(0.213497\pi\)
\(948\) 0 0
\(949\) 12.0000 + 6.92820i 0.389536 + 0.224899i
\(950\) 4.89898 2.82843i 0.158944 0.0917663i
\(951\) 0 0
\(952\) 12.0000 6.92820i 0.388922 0.224544i
\(953\) 26.8701i 0.870407i 0.900332 + 0.435203i \(0.143323\pi\)
−0.900332 + 0.435203i \(0.856677\pi\)
\(954\) 0 0
\(955\) 48.0000 1.55324
\(956\) −9.79796 + 16.9706i −0.316889 + 0.548867i
\(957\) 0 0
\(958\) −30.0000 + 17.3205i −0.969256 + 0.559600i
\(959\) −17.1464 + 29.6985i −0.553687 + 0.959014i
\(960\) 0 0
\(961\) −9.50000 16.4545i −0.306452 0.530790i
\(962\) 0 0
\(963\) 0 0
\(964\) −28.0000 48.4974i −0.901819 1.56200i
\(965\) 17.1464 + 29.6985i 0.551963 + 0.956028i
\(966\) 0 0
\(967\) −39.0000 22.5167i −1.25416 0.724087i −0.282223 0.959349i \(-0.591072\pi\)
−0.971932 + 0.235262i \(0.924405\pi\)
\(968\) −7.34847 4.24264i −0.236189 0.136364i
\(969\) 0 0
\(970\) 27.7128i 0.889805i
\(971\) 31.1127i 0.998454i 0.866471 + 0.499227i \(0.166383\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 0 0
\(973\) 13.8564i 0.444216i
\(974\) −14.6969 −0.470920
\(975\) 0 0
\(976\) −48.0000 + 27.7128i −1.53644 + 0.887066i
\(977\) 20.8207 + 12.0208i 0.666112 + 0.384580i 0.794602 0.607131i \(-0.207680\pi\)
−0.128490 + 0.991711i \(0.541013\pi\)
\(978\) 0 0
\(979\) 10.0000 + 17.3205i 0.319601 + 0.553566i
\(980\) 12.2474 + 21.2132i 0.391230 + 0.677631i
\(981\) 0 0
\(982\) −28.0000 + 48.4974i −0.893516 + 1.54761i
\(983\) 24.4949 + 42.4264i 0.781266 + 1.35319i 0.931205 + 0.364497i \(0.118759\pi\)
−0.149939 + 0.988695i \(0.547908\pi\)
\(984\) 0 0
\(985\) −9.00000 + 15.5885i −0.286764 + 0.496690i
\(986\) −2.44949 4.24264i −0.0780076 0.135113i
\(987\) 0 0
\(988\) −24.0000 13.8564i −0.763542 0.440831i
\(989\) 39.1918 1.24623
\(990\) 0 0
\(991\) 51.9615i 1.65061i −0.564686 0.825306i \(-0.691003\pi\)
0.564686 0.825306i \(-0.308997\pi\)
\(992\) −9.79796 + 16.9706i −0.311086 + 0.538816i
\(993\) 0 0
\(994\) −36.0000 62.3538i −1.14185 1.97774i
\(995\) −22.0454 12.7279i −0.698886 0.403502i
\(996\) 0 0
\(997\) −12.0000 + 6.92820i −0.380044 + 0.219418i −0.677837 0.735212i \(-0.737083\pi\)
0.297794 + 0.954630i \(0.403749\pi\)
\(998\) 39.1918 + 22.6274i 1.24060 + 0.716258i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.l.a.539.1 4
3.2 odd 2 inner 648.2.l.a.539.2 4
4.3 odd 2 2592.2.p.c.2159.2 4
8.3 odd 2 648.2.l.c.539.2 4
8.5 even 2 2592.2.p.a.2159.1 4
9.2 odd 6 648.2.l.c.107.2 4
9.4 even 3 72.2.f.a.35.4 yes 4
9.5 odd 6 72.2.f.a.35.1 4
9.7 even 3 648.2.l.c.107.1 4
12.11 even 2 2592.2.p.c.2159.1 4
24.5 odd 2 2592.2.p.a.2159.2 4
24.11 even 2 648.2.l.c.539.1 4
36.7 odd 6 2592.2.p.a.431.2 4
36.11 even 6 2592.2.p.a.431.1 4
36.23 even 6 288.2.f.a.143.4 4
36.31 odd 6 288.2.f.a.143.2 4
45.4 even 6 1800.2.b.c.251.1 4
45.13 odd 12 1800.2.m.c.899.5 8
45.14 odd 6 1800.2.b.c.251.4 4
45.22 odd 12 1800.2.m.c.899.4 8
45.23 even 12 1800.2.m.c.899.3 8
45.32 even 12 1800.2.m.c.899.6 8
72.5 odd 6 288.2.f.a.143.1 4
72.11 even 6 inner 648.2.l.a.107.2 4
72.13 even 6 288.2.f.a.143.3 4
72.29 odd 6 2592.2.p.c.431.2 4
72.43 odd 6 inner 648.2.l.a.107.1 4
72.59 even 6 72.2.f.a.35.3 yes 4
72.61 even 6 2592.2.p.c.431.1 4
72.67 odd 6 72.2.f.a.35.2 yes 4
144.5 odd 12 2304.2.c.i.2303.8 8
144.13 even 12 2304.2.c.i.2303.7 8
144.59 even 12 2304.2.c.i.2303.6 8
144.67 odd 12 2304.2.c.i.2303.5 8
144.77 odd 12 2304.2.c.i.2303.3 8
144.85 even 12 2304.2.c.i.2303.4 8
144.131 even 12 2304.2.c.i.2303.1 8
144.139 odd 12 2304.2.c.i.2303.2 8
180.23 odd 12 7200.2.m.c.3599.5 8
180.59 even 6 7200.2.b.c.4751.1 4
180.67 even 12 7200.2.m.c.3599.3 8
180.103 even 12 7200.2.m.c.3599.8 8
180.139 odd 6 7200.2.b.c.4751.2 4
180.167 odd 12 7200.2.m.c.3599.2 8
360.13 odd 12 7200.2.m.c.3599.4 8
360.59 even 6 1800.2.b.c.251.2 4
360.67 even 12 1800.2.m.c.899.1 8
360.77 even 12 7200.2.m.c.3599.6 8
360.139 odd 6 1800.2.b.c.251.3 4
360.149 odd 6 7200.2.b.c.4751.3 4
360.157 odd 12 7200.2.m.c.3599.7 8
360.203 odd 12 1800.2.m.c.899.2 8
360.229 even 6 7200.2.b.c.4751.4 4
360.283 even 12 1800.2.m.c.899.8 8
360.293 even 12 7200.2.m.c.3599.1 8
360.347 odd 12 1800.2.m.c.899.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.f.a.35.1 4 9.5 odd 6
72.2.f.a.35.2 yes 4 72.67 odd 6
72.2.f.a.35.3 yes 4 72.59 even 6
72.2.f.a.35.4 yes 4 9.4 even 3
288.2.f.a.143.1 4 72.5 odd 6
288.2.f.a.143.2 4 36.31 odd 6
288.2.f.a.143.3 4 72.13 even 6
288.2.f.a.143.4 4 36.23 even 6
648.2.l.a.107.1 4 72.43 odd 6 inner
648.2.l.a.107.2 4 72.11 even 6 inner
648.2.l.a.539.1 4 1.1 even 1 trivial
648.2.l.a.539.2 4 3.2 odd 2 inner
648.2.l.c.107.1 4 9.7 even 3
648.2.l.c.107.2 4 9.2 odd 6
648.2.l.c.539.1 4 24.11 even 2
648.2.l.c.539.2 4 8.3 odd 2
1800.2.b.c.251.1 4 45.4 even 6
1800.2.b.c.251.2 4 360.59 even 6
1800.2.b.c.251.3 4 360.139 odd 6
1800.2.b.c.251.4 4 45.14 odd 6
1800.2.m.c.899.1 8 360.67 even 12
1800.2.m.c.899.2 8 360.203 odd 12
1800.2.m.c.899.3 8 45.23 even 12
1800.2.m.c.899.4 8 45.22 odd 12
1800.2.m.c.899.5 8 45.13 odd 12
1800.2.m.c.899.6 8 45.32 even 12
1800.2.m.c.899.7 8 360.347 odd 12
1800.2.m.c.899.8 8 360.283 even 12
2304.2.c.i.2303.1 8 144.131 even 12
2304.2.c.i.2303.2 8 144.139 odd 12
2304.2.c.i.2303.3 8 144.77 odd 12
2304.2.c.i.2303.4 8 144.85 even 12
2304.2.c.i.2303.5 8 144.67 odd 12
2304.2.c.i.2303.6 8 144.59 even 12
2304.2.c.i.2303.7 8 144.13 even 12
2304.2.c.i.2303.8 8 144.5 odd 12
2592.2.p.a.431.1 4 36.11 even 6
2592.2.p.a.431.2 4 36.7 odd 6
2592.2.p.a.2159.1 4 8.5 even 2
2592.2.p.a.2159.2 4 24.5 odd 2
2592.2.p.c.431.1 4 72.61 even 6
2592.2.p.c.431.2 4 72.29 odd 6
2592.2.p.c.2159.1 4 12.11 even 2
2592.2.p.c.2159.2 4 4.3 odd 2
7200.2.b.c.4751.1 4 180.59 even 6
7200.2.b.c.4751.2 4 180.139 odd 6
7200.2.b.c.4751.3 4 360.149 odd 6
7200.2.b.c.4751.4 4 360.229 even 6
7200.2.m.c.3599.1 8 360.293 even 12
7200.2.m.c.3599.2 8 180.167 odd 12
7200.2.m.c.3599.3 8 180.67 even 12
7200.2.m.c.3599.4 8 360.13 odd 12
7200.2.m.c.3599.5 8 180.23 odd 12
7200.2.m.c.3599.6 8 360.77 even 12
7200.2.m.c.3599.7 8 360.157 odd 12
7200.2.m.c.3599.8 8 180.103 even 12