Properties

Label 2592.2.p.a.2159.1
Level $2592$
Weight $2$
Character 2592.2159
Analytic conductor $20.697$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2592,2,Mod(431,2592)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2592, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2592.431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-12,0,0,0,0,0,12,0,0,0,0,0,16,0,0,0,0,0,-2,0,0,0, 0,0,-12,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(41)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6972242039\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2159.1
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2592.2159
Dual form 2592.2.p.a.431.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 2.12132i) q^{5} +(-3.00000 + 1.73205i) q^{7} +(2.44949 - 1.41421i) q^{11} +(3.00000 + 1.73205i) q^{13} +1.41421i q^{17} +4.00000 q^{19} +(-2.44949 + 4.24264i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(1.22474 + 2.12132i) q^{29} +(-3.00000 - 1.73205i) q^{31} -8.48528i q^{35} +(-1.22474 - 0.707107i) q^{41} +(4.00000 + 6.92820i) q^{43} +(2.44949 + 4.24264i) q^{47} +(2.50000 - 4.33013i) q^{49} -7.34847 q^{53} +6.92820i q^{55} +(-9.79796 - 5.65685i) q^{59} +(12.0000 - 6.92820i) q^{61} +(-7.34847 + 4.24264i) q^{65} +(-2.00000 + 3.46410i) q^{67} -14.6969 q^{71} -4.00000 q^{73} +(-4.89898 + 8.48528i) q^{77} +(-3.00000 + 1.73205i) q^{79} +(-12.2474 + 7.07107i) q^{83} +(-3.00000 - 1.73205i) q^{85} -7.07107i q^{89} -12.0000 q^{91} +(-4.89898 + 8.48528i) q^{95} +(-4.00000 - 6.92820i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{7} + 12 q^{13} + 16 q^{19} - 2 q^{25} - 12 q^{31} + 16 q^{43} + 10 q^{49} + 48 q^{61} - 8 q^{67} - 16 q^{73} - 12 q^{79} - 12 q^{85} - 48 q^{91} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.22474 + 2.12132i −0.547723 + 0.948683i 0.450708 + 0.892672i \(0.351172\pi\)
−0.998430 + 0.0560116i \(0.982162\pi\)
\(6\) 0 0
\(7\) −3.00000 + 1.73205i −1.13389 + 0.654654i −0.944911 0.327327i \(-0.893852\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.44949 1.41421i 0.738549 0.426401i −0.0829925 0.996550i \(-0.526448\pi\)
0.821541 + 0.570149i \(0.193114\pi\)
\(12\) 0 0
\(13\) 3.00000 + 1.73205i 0.832050 + 0.480384i 0.854554 0.519362i \(-0.173830\pi\)
−0.0225039 + 0.999747i \(0.507164\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.41421i 0.342997i 0.985184 + 0.171499i \(0.0548609\pi\)
−0.985184 + 0.171499i \(0.945139\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.44949 + 4.24264i −0.510754 + 0.884652i 0.489168 + 0.872189i \(0.337300\pi\)
−0.999922 + 0.0124624i \(0.996033\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.22474 + 2.12132i 0.227429 + 0.393919i 0.957046 0.289938i \(-0.0936346\pi\)
−0.729616 + 0.683857i \(0.760301\pi\)
\(30\) 0 0
\(31\) −3.00000 1.73205i −0.538816 0.311086i 0.205783 0.978598i \(-0.434026\pi\)
−0.744599 + 0.667512i \(0.767359\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.48528i 1.43427i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.22474 0.707107i −0.191273 0.110432i 0.401305 0.915944i \(-0.368557\pi\)
−0.592578 + 0.805513i \(0.701890\pi\)
\(42\) 0 0
\(43\) 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.44949 + 4.24264i 0.357295 + 0.618853i 0.987508 0.157569i \(-0.0503658\pi\)
−0.630213 + 0.776422i \(0.717032\pi\)
\(48\) 0 0
\(49\) 2.50000 4.33013i 0.357143 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.34847 −1.00939 −0.504695 0.863298i \(-0.668395\pi\)
−0.504695 + 0.863298i \(0.668395\pi\)
\(54\) 0 0
\(55\) 6.92820i 0.934199i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.79796 5.65685i −1.27559 0.736460i −0.299552 0.954080i \(-0.596837\pi\)
−0.976034 + 0.217620i \(0.930171\pi\)
\(60\) 0 0
\(61\) 12.0000 6.92820i 1.53644 0.887066i 0.537400 0.843328i \(-0.319407\pi\)
0.999043 0.0437377i \(-0.0139266\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.34847 + 4.24264i −0.911465 + 0.526235i
\(66\) 0 0
\(67\) −2.00000 + 3.46410i −0.244339 + 0.423207i −0.961946 0.273241i \(-0.911904\pi\)
0.717607 + 0.696449i \(0.245238\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.6969 −1.74421 −0.872103 0.489323i \(-0.837244\pi\)
−0.872103 + 0.489323i \(0.837244\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.89898 + 8.48528i −0.558291 + 0.966988i
\(78\) 0 0
\(79\) −3.00000 + 1.73205i −0.337526 + 0.194871i −0.659178 0.751987i \(-0.729095\pi\)
0.321651 + 0.946858i \(0.395762\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.2474 + 7.07107i −1.34433 + 0.776151i −0.987440 0.157995i \(-0.949497\pi\)
−0.356892 + 0.934146i \(0.616164\pi\)
\(84\) 0 0
\(85\) −3.00000 1.73205i −0.325396 0.187867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.07107i 0.749532i −0.927119 0.374766i \(-0.877723\pi\)
0.927119 0.374766i \(-0.122277\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.89898 + 8.48528i −0.502625 + 0.870572i
\(96\) 0 0
\(97\) −4.00000 6.92820i −0.406138 0.703452i 0.588315 0.808632i \(-0.299792\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.22474 + 2.12132i 0.121867 + 0.211079i 0.920504 0.390734i \(-0.127779\pi\)
−0.798637 + 0.601813i \(0.794445\pi\)
\(102\) 0 0
\(103\) −3.00000 1.73205i −0.295599 0.170664i 0.344865 0.938652i \(-0.387925\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.3137i 1.09374i 0.837218 + 0.546869i \(0.184180\pi\)
−0.837218 + 0.546869i \(0.815820\pi\)
\(108\) 0 0
\(109\) 10.3923i 0.995402i −0.867349 0.497701i \(-0.834178\pi\)
0.867349 0.497701i \(-0.165822\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15.9217 9.19239i −1.49779 0.864747i −0.497789 0.867298i \(-0.665855\pi\)
−0.999997 + 0.00255090i \(0.999188\pi\)
\(114\) 0 0
\(115\) −6.00000 10.3923i −0.559503 0.969087i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.44949 4.24264i −0.224544 0.388922i
\(120\) 0 0
\(121\) −1.50000 + 2.59808i −0.136364 + 0.236189i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.79796 −0.876356
\(126\) 0 0
\(127\) 10.3923i 0.922168i −0.887357 0.461084i \(-0.847461\pi\)
0.887357 0.461084i \(-0.152539\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.89898 + 2.82843i 0.428026 + 0.247121i 0.698505 0.715605i \(-0.253849\pi\)
−0.270479 + 0.962726i \(0.587182\pi\)
\(132\) 0 0
\(133\) −12.0000 + 6.92820i −1.04053 + 0.600751i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.57321 4.94975i 0.732459 0.422885i −0.0868620 0.996220i \(-0.527684\pi\)
0.819321 + 0.573335i \(0.194351\pi\)
\(138\) 0 0
\(139\) −2.00000 + 3.46410i −0.169638 + 0.293821i −0.938293 0.345843i \(-0.887593\pi\)
0.768655 + 0.639664i \(0.220926\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.79796 0.819346
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.57321 + 14.8492i −0.702345 + 1.21650i 0.265296 + 0.964167i \(0.414530\pi\)
−0.967641 + 0.252330i \(0.918803\pi\)
\(150\) 0 0
\(151\) −3.00000 + 1.73205i −0.244137 + 0.140952i −0.617076 0.786903i \(-0.711683\pi\)
0.372940 + 0.927855i \(0.378350\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.34847 4.24264i 0.590243 0.340777i
\(156\) 0 0
\(157\) 12.0000 + 6.92820i 0.957704 + 0.552931i 0.895466 0.445130i \(-0.146843\pi\)
0.0622385 + 0.998061i \(0.480176\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.9706i 1.33747i
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.79796 + 16.9706i −0.758189 + 1.31322i 0.185584 + 0.982628i \(0.440582\pi\)
−0.943773 + 0.330593i \(0.892751\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.22474 + 2.12132i 0.0931156 + 0.161281i 0.908821 0.417187i \(-0.136984\pi\)
−0.815705 + 0.578468i \(0.803651\pi\)
\(174\) 0 0
\(175\) 3.00000 + 1.73205i 0.226779 + 0.130931i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.65685i 0.422813i −0.977398 0.211407i \(-0.932196\pi\)
0.977398 0.211407i \(-0.0678044\pi\)
\(180\) 0 0
\(181\) 10.3923i 0.772454i 0.922404 + 0.386227i \(0.126222\pi\)
−0.922404 + 0.386227i \(0.873778\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000 + 3.46410i 0.146254 + 0.253320i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.79796 + 16.9706i 0.708955 + 1.22795i 0.965245 + 0.261347i \(0.0841666\pi\)
−0.256290 + 0.966600i \(0.582500\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.34847 0.523557 0.261778 0.965128i \(-0.415691\pi\)
0.261778 + 0.965128i \(0.415691\pi\)
\(198\) 0 0
\(199\) 10.3923i 0.736691i −0.929689 0.368345i \(-0.879924\pi\)
0.929689 0.368345i \(-0.120076\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.34847 4.24264i −0.515761 0.297775i
\(204\) 0 0
\(205\) 3.00000 1.73205i 0.209529 0.120972i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.79796 5.65685i 0.677739 0.391293i
\(210\) 0 0
\(211\) 10.0000 17.3205i 0.688428 1.19239i −0.283918 0.958849i \(-0.591634\pi\)
0.972346 0.233544i \(-0.0750324\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −19.5959 −1.33643
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.44949 + 4.24264i −0.164771 + 0.285391i
\(222\) 0 0
\(223\) 15.0000 8.66025i 1.00447 0.579934i 0.0949052 0.995486i \(-0.469745\pi\)
0.909569 + 0.415553i \(0.136412\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.44949 1.41421i 0.162578 0.0938647i −0.416503 0.909134i \(-0.636745\pi\)
0.579082 + 0.815270i \(0.303411\pi\)
\(228\) 0 0
\(229\) −15.0000 8.66025i −0.991228 0.572286i −0.0855868 0.996331i \(-0.527276\pi\)
−0.905641 + 0.424045i \(0.860610\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.41421i 0.0926482i 0.998926 + 0.0463241i \(0.0147507\pi\)
−0.998926 + 0.0463241i \(0.985249\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.89898 8.48528i 0.316889 0.548867i −0.662949 0.748665i \(-0.730695\pi\)
0.979837 + 0.199798i \(0.0640285\pi\)
\(240\) 0 0
\(241\) 14.0000 + 24.2487i 0.901819 + 1.56200i 0.825131 + 0.564942i \(0.191101\pi\)
0.0766885 + 0.997055i \(0.475565\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.12372 + 10.6066i 0.391230 + 0.677631i
\(246\) 0 0
\(247\) 12.0000 + 6.92820i 0.763542 + 0.440831i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.1421i 0.892644i −0.894873 0.446322i \(-0.852734\pi\)
0.894873 0.446322i \(-0.147266\pi\)
\(252\) 0 0
\(253\) 13.8564i 0.871145i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.8207 + 12.0208i 1.29876 + 0.749838i 0.980189 0.198062i \(-0.0634648\pi\)
0.318568 + 0.947900i \(0.396798\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.89898 8.48528i −0.302084 0.523225i 0.674524 0.738253i \(-0.264349\pi\)
−0.976608 + 0.215028i \(0.931016\pi\)
\(264\) 0 0
\(265\) 9.00000 15.5885i 0.552866 0.957591i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.34847 −0.448044 −0.224022 0.974584i \(-0.571919\pi\)
−0.224022 + 0.974584i \(0.571919\pi\)
\(270\) 0 0
\(271\) 31.1769i 1.89386i 0.321436 + 0.946931i \(0.395835\pi\)
−0.321436 + 0.946931i \(0.604165\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.44949 1.41421i −0.147710 0.0852803i
\(276\) 0 0
\(277\) −15.0000 + 8.66025i −0.901263 + 0.520344i −0.877610 0.479376i \(-0.840863\pi\)
−0.0236530 + 0.999720i \(0.507530\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −20.8207 + 12.0208i −1.24206 + 0.717102i −0.969513 0.245042i \(-0.921198\pi\)
−0.272544 + 0.962143i \(0.587865\pi\)
\(282\) 0 0
\(283\) −8.00000 + 13.8564i −0.475551 + 0.823678i −0.999608 0.0280052i \(-0.991084\pi\)
0.524057 + 0.851683i \(0.324418\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.89898 0.289178
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.4722 23.3345i 0.787054 1.36322i −0.140710 0.990051i \(-0.544939\pi\)
0.927764 0.373167i \(-0.121728\pi\)
\(294\) 0 0
\(295\) 24.0000 13.8564i 1.39733 0.806751i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14.6969 + 8.48528i −0.849946 + 0.490716i
\(300\) 0 0
\(301\) −24.0000 13.8564i −1.38334 0.798670i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 33.9411i 1.94346i
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.89898 8.48528i 0.277796 0.481156i −0.693041 0.720898i \(-0.743730\pi\)
0.970837 + 0.239742i \(0.0770629\pi\)
\(312\) 0 0
\(313\) 5.00000 + 8.66025i 0.282617 + 0.489506i 0.972028 0.234863i \(-0.0754642\pi\)
−0.689412 + 0.724370i \(0.742131\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.12372 10.6066i −0.343943 0.595726i 0.641218 0.767358i \(-0.278429\pi\)
−0.985161 + 0.171632i \(0.945096\pi\)
\(318\) 0 0
\(319\) 6.00000 + 3.46410i 0.335936 + 0.193952i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.65685i 0.314756i
\(324\) 0 0
\(325\) 3.46410i 0.192154i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −14.6969 8.48528i −0.810268 0.467809i
\(330\) 0 0
\(331\) −2.00000 3.46410i −0.109930 0.190404i 0.805812 0.592172i \(-0.201729\pi\)
−0.915742 + 0.401768i \(0.868396\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.89898 8.48528i −0.267660 0.463600i
\(336\) 0 0
\(337\) 2.00000 3.46410i 0.108947 0.188702i −0.806397 0.591375i \(-0.798585\pi\)
0.915344 + 0.402673i \(0.131919\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.79796 −0.530589
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.2474 + 7.07107i 0.657477 + 0.379595i 0.791315 0.611408i \(-0.209397\pi\)
−0.133838 + 0.991003i \(0.542730\pi\)
\(348\) 0 0
\(349\) −24.0000 + 13.8564i −1.28469 + 0.741716i −0.977702 0.209997i \(-0.932655\pi\)
−0.306988 + 0.951713i \(0.599321\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.4722 + 7.77817i −0.717053 + 0.413990i −0.813667 0.581331i \(-0.802532\pi\)
0.0966144 + 0.995322i \(0.469199\pi\)
\(354\) 0 0
\(355\) 18.0000 31.1769i 0.955341 1.65470i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.6969 0.775675 0.387837 0.921728i \(-0.373222\pi\)
0.387837 + 0.921728i \(0.373222\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.89898 8.48528i 0.256424 0.444140i
\(366\) 0 0
\(367\) −21.0000 + 12.1244i −1.09619 + 0.632886i −0.935218 0.354073i \(-0.884797\pi\)
−0.160973 + 0.986959i \(0.551463\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 22.0454 12.7279i 1.14454 0.660801i
\(372\) 0 0
\(373\) 12.0000 + 6.92820i 0.621336 + 0.358729i 0.777389 0.629020i \(-0.216544\pi\)
−0.156053 + 0.987749i \(0.549877\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.48528i 0.437014i
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.89898 8.48528i 0.250326 0.433578i −0.713289 0.700870i \(-0.752795\pi\)
0.963616 + 0.267292i \(0.0861288\pi\)
\(384\) 0 0
\(385\) −12.0000 20.7846i −0.611577 1.05928i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.4722 23.3345i −0.683067 1.18311i −0.974040 0.226376i \(-0.927312\pi\)
0.290973 0.956731i \(-0.406021\pi\)
\(390\) 0 0
\(391\) −6.00000 3.46410i −0.303433 0.175187i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.48528i 0.426941i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.22474 0.707107i −0.0611608 0.0353112i 0.469108 0.883141i \(-0.344576\pi\)
−0.530269 + 0.847830i \(0.677909\pi\)
\(402\) 0 0
\(403\) −6.00000 10.3923i −0.298881 0.517678i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −16.0000 + 27.7128i −0.791149 + 1.37031i 0.134107 + 0.990967i \(0.457183\pi\)
−0.925256 + 0.379344i \(0.876150\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 39.1918 1.92850
\(414\) 0 0
\(415\) 34.6410i 1.70046i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.1464 9.89949i −0.837658 0.483622i 0.0188096 0.999823i \(-0.494012\pi\)
−0.856467 + 0.516201i \(0.827346\pi\)
\(420\) 0 0
\(421\) 21.0000 12.1244i 1.02348 0.590905i 0.108368 0.994111i \(-0.465437\pi\)
0.915109 + 0.403206i \(0.132104\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.22474 0.707107i 0.0594089 0.0342997i
\(426\) 0 0
\(427\) −24.0000 + 41.5692i −1.16144 + 2.01168i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.6969 0.707927 0.353963 0.935259i \(-0.384834\pi\)
0.353963 + 0.935259i \(0.384834\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9.79796 + 16.9706i −0.468700 + 0.811812i
\(438\) 0 0
\(439\) −3.00000 + 1.73205i −0.143182 + 0.0826663i −0.569880 0.821728i \(-0.693010\pi\)
0.426698 + 0.904394i \(0.359677\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.44949 1.41421i 0.116379 0.0671913i −0.440681 0.897664i \(-0.645263\pi\)
0.557059 + 0.830473i \(0.311930\pi\)
\(444\) 0 0
\(445\) 15.0000 + 8.66025i 0.711068 + 0.410535i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.0416i 1.13459i −0.823513 0.567297i \(-0.807989\pi\)
0.823513 0.567297i \(-0.192011\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.6969 25.4558i 0.689003 1.19339i
\(456\) 0 0
\(457\) −4.00000 6.92820i −0.187112 0.324088i 0.757174 0.653213i \(-0.226579\pi\)
−0.944286 + 0.329125i \(0.893246\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.57321 + 14.8492i 0.399294 + 0.691598i 0.993639 0.112612i \(-0.0359218\pi\)
−0.594345 + 0.804210i \(0.702588\pi\)
\(462\) 0 0
\(463\) 15.0000 + 8.66025i 0.697109 + 0.402476i 0.806270 0.591548i \(-0.201483\pi\)
−0.109161 + 0.994024i \(0.534816\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.7696i 1.70149i 0.525577 + 0.850746i \(0.323849\pi\)
−0.525577 + 0.850746i \(0.676151\pi\)
\(468\) 0 0
\(469\) 13.8564i 0.639829i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 19.5959 + 11.3137i 0.901021 + 0.520205i
\(474\) 0 0
\(475\) −2.00000 3.46410i −0.0917663 0.158944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.2474 21.2132i −0.559600 0.969256i −0.997530 0.0702467i \(-0.977621\pi\)
0.437929 0.899009i \(-0.355712\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.5959 0.889805
\(486\) 0 0
\(487\) 10.3923i 0.470920i −0.971884 0.235460i \(-0.924340\pi\)
0.971884 0.235460i \(-0.0756597\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 34.2929 + 19.7990i 1.54761 + 0.893516i 0.998323 + 0.0578852i \(0.0184357\pi\)
0.549292 + 0.835631i \(0.314898\pi\)
\(492\) 0 0
\(493\) −3.00000 + 1.73205i −0.135113 + 0.0780076i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 44.0908 25.4558i 1.97774 1.14185i
\(498\) 0 0
\(499\) 16.0000 27.7128i 0.716258 1.24060i −0.246214 0.969216i \(-0.579187\pi\)
0.962472 0.271380i \(-0.0874801\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.6969 0.655304 0.327652 0.944798i \(-0.393743\pi\)
0.327652 + 0.944798i \(0.393743\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.8207 36.0624i 0.922860 1.59844i 0.127892 0.991788i \(-0.459179\pi\)
0.794968 0.606652i \(-0.207488\pi\)
\(510\) 0 0
\(511\) 12.0000 6.92820i 0.530849 0.306486i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.34847 4.24264i 0.323812 0.186953i
\(516\) 0 0
\(517\) 12.0000 + 6.92820i 0.527759 + 0.304702i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.8701i 1.17720i 0.808425 + 0.588599i \(0.200320\pi\)
−0.808425 + 0.588599i \(0.799680\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.44949 4.24264i 0.106701 0.184812i
\(528\) 0 0
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.44949 4.24264i −0.106099 0.183769i
\(534\) 0 0
\(535\) −24.0000 13.8564i −1.03761 0.599065i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.1421i 0.609145i
\(540\) 0 0
\(541\) 10.3923i 0.446800i −0.974727 0.223400i \(-0.928284\pi\)
0.974727 0.223400i \(-0.0717156\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 22.0454 + 12.7279i 0.944322 + 0.545204i
\(546\) 0 0
\(547\) 4.00000 + 6.92820i 0.171028 + 0.296229i 0.938779 0.344519i \(-0.111958\pi\)
−0.767752 + 0.640747i \(0.778625\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.89898 + 8.48528i 0.208704 + 0.361485i
\(552\) 0 0
\(553\) 6.00000 10.3923i 0.255146 0.441926i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.34847 −0.311365 −0.155682 0.987807i \(-0.549758\pi\)
−0.155682 + 0.987807i \(0.549758\pi\)
\(558\) 0 0
\(559\) 27.7128i 1.17213i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.2474 + 7.07107i 0.516168 + 0.298010i 0.735366 0.677671i \(-0.237010\pi\)
−0.219197 + 0.975681i \(0.570344\pi\)
\(564\) 0 0
\(565\) 39.0000 22.5167i 1.64074 0.947283i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.57321 4.94975i 0.359408 0.207504i −0.309413 0.950928i \(-0.600133\pi\)
0.668821 + 0.743423i \(0.266799\pi\)
\(570\) 0 0
\(571\) −20.0000 + 34.6410i −0.836974 + 1.44968i 0.0554391 + 0.998462i \(0.482344\pi\)
−0.892413 + 0.451219i \(0.850989\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.89898 0.204302
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.4949 42.4264i 1.01622 1.76014i
\(582\) 0 0
\(583\) −18.0000 + 10.3923i −0.745484 + 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.5959 + 11.3137i −0.808810 + 0.466967i −0.846542 0.532321i \(-0.821320\pi\)
0.0377324 + 0.999288i \(0.487987\pi\)
\(588\) 0 0
\(589\) −12.0000 6.92820i −0.494451 0.285472i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.07107i 0.290374i −0.989404 0.145187i \(-0.953622\pi\)
0.989404 0.145187i \(-0.0463784\pi\)
\(594\) 0 0
\(595\) 12.0000 0.491952
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.44949 + 4.24264i −0.100083 + 0.173350i −0.911719 0.410815i \(-0.865244\pi\)
0.811635 + 0.584164i \(0.198578\pi\)
\(600\) 0 0
\(601\) 5.00000 + 8.66025i 0.203954 + 0.353259i 0.949799 0.312861i \(-0.101287\pi\)
−0.745845 + 0.666120i \(0.767954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.67423 6.36396i −0.149379 0.258732i
\(606\) 0 0
\(607\) −39.0000 22.5167i −1.58296 0.913923i −0.994424 0.105453i \(-0.966371\pi\)
−0.588537 0.808470i \(-0.700296\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.9706i 0.686555i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.8207 + 12.0208i 0.838208 + 0.483940i 0.856655 0.515890i \(-0.172539\pi\)
−0.0184465 + 0.999830i \(0.505872\pi\)
\(618\) 0 0
\(619\) 4.00000 + 6.92820i 0.160774 + 0.278468i 0.935146 0.354262i \(-0.115268\pi\)
−0.774373 + 0.632730i \(0.781934\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.2474 + 21.2132i 0.490684 + 0.849889i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 31.1769i 1.24113i 0.784154 + 0.620567i \(0.213097\pi\)
−0.784154 + 0.620567i \(0.786903\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 22.0454 + 12.7279i 0.874845 + 0.505092i
\(636\) 0 0
\(637\) 15.0000 8.66025i 0.594322 0.343132i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.4722 + 7.77817i −0.532120 + 0.307219i −0.741879 0.670534i \(-0.766065\pi\)
0.209760 + 0.977753i \(0.432732\pi\)
\(642\) 0 0
\(643\) 16.0000 27.7128i 0.630978 1.09289i −0.356374 0.934344i \(-0.615987\pi\)
0.987352 0.158543i \(-0.0506797\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.6969 0.577796 0.288898 0.957360i \(-0.406711\pi\)
0.288898 + 0.957360i \(0.406711\pi\)
\(648\) 0 0
\(649\) −32.0000 −1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.57321 + 14.8492i −0.335496 + 0.581096i −0.983580 0.180473i \(-0.942237\pi\)
0.648084 + 0.761569i \(0.275570\pi\)
\(654\) 0 0
\(655\) −12.0000 + 6.92820i −0.468879 + 0.270707i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.79796 5.65685i 0.381674 0.220360i −0.296872 0.954917i \(-0.595944\pi\)
0.678546 + 0.734557i \(0.262610\pi\)
\(660\) 0 0
\(661\) 12.0000 + 6.92820i 0.466746 + 0.269476i 0.714877 0.699251i \(-0.246483\pi\)
−0.248131 + 0.968727i \(0.579816\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 33.9411i 1.31618i
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 19.5959 33.9411i 0.756492 1.31028i
\(672\) 0 0
\(673\) −7.00000 12.1244i −0.269830 0.467360i 0.698988 0.715134i \(-0.253634\pi\)
−0.968818 + 0.247774i \(0.920301\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.57321 + 14.8492i 0.329495 + 0.570703i 0.982412 0.186727i \(-0.0597881\pi\)
−0.652916 + 0.757430i \(0.726455\pi\)
\(678\) 0 0
\(679\) 24.0000 + 13.8564i 0.921035 + 0.531760i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.7696i 1.40695i 0.710721 + 0.703474i \(0.248369\pi\)
−0.710721 + 0.703474i \(0.751631\pi\)
\(684\) 0 0
\(685\) 24.2487i 0.926496i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −22.0454 12.7279i −0.839863 0.484895i
\(690\) 0 0
\(691\) 16.0000 + 27.7128i 0.608669 + 1.05425i 0.991460 + 0.130410i \(0.0416295\pi\)
−0.382791 + 0.923835i \(0.625037\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.89898 8.48528i −0.185829 0.321865i
\(696\) 0 0
\(697\) 1.00000 1.73205i 0.0378777 0.0656061i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.34847 0.277548 0.138774 0.990324i \(-0.455684\pi\)
0.138774 + 0.990324i \(0.455684\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.34847 4.24264i −0.276368 0.159561i
\(708\) 0 0
\(709\) 3.00000 1.73205i 0.112667 0.0650485i −0.442607 0.896716i \(-0.645946\pi\)
0.555275 + 0.831667i \(0.312613\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.6969 8.48528i 0.550405 0.317776i
\(714\) 0 0
\(715\) −12.0000 + 20.7846i −0.448775 + 0.777300i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −44.0908 −1.64431 −0.822155 0.569264i \(-0.807228\pi\)
−0.822155 + 0.569264i \(0.807228\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.22474 2.12132i 0.0454859 0.0787839i
\(726\) 0 0
\(727\) −21.0000 + 12.1244i −0.778847 + 0.449667i −0.836021 0.548697i \(-0.815124\pi\)
0.0571746 + 0.998364i \(0.481791\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.79796 + 5.65685i −0.362391 + 0.209226i
\(732\) 0 0
\(733\) −33.0000 19.0526i −1.21888 0.703722i −0.254204 0.967151i \(-0.581813\pi\)
−0.964679 + 0.263428i \(0.915147\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.3137i 0.416746i
\(738\) 0 0
\(739\) 40.0000 1.47142 0.735712 0.677295i \(-0.236848\pi\)
0.735712 + 0.677295i \(0.236848\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.5959 33.9411i 0.718905 1.24518i −0.242530 0.970144i \(-0.577977\pi\)
0.961434 0.275035i \(-0.0886895\pi\)
\(744\) 0 0
\(745\) −21.0000 36.3731i −0.769380 1.33261i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19.5959 33.9411i −0.716019 1.24018i
\(750\) 0 0
\(751\) −3.00000 1.73205i −0.109472 0.0632034i 0.444265 0.895896i \(-0.353465\pi\)
−0.553736 + 0.832692i \(0.686798\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.48528i 0.308811i
\(756\) 0 0
\(757\) 10.3923i 0.377715i −0.982005 0.188857i \(-0.939522\pi\)
0.982005 0.188857i \(-0.0604784\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15.9217 9.19239i −0.577161 0.333224i 0.182844 0.983142i \(-0.441470\pi\)
−0.760004 + 0.649918i \(0.774803\pi\)
\(762\) 0 0
\(763\) 18.0000 + 31.1769i 0.651644 + 1.12868i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −19.5959 33.9411i −0.707568 1.22554i
\(768\) 0 0
\(769\) −1.00000 + 1.73205i −0.0360609 + 0.0624593i −0.883493 0.468445i \(-0.844814\pi\)
0.847432 + 0.530904i \(0.178148\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.0454 0.792918 0.396459 0.918052i \(-0.370239\pi\)
0.396459 + 0.918052i \(0.370239\pi\)
\(774\) 0 0
\(775\) 3.46410i 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.89898 2.82843i −0.175524 0.101339i
\(780\) 0 0
\(781\) −36.0000 + 20.7846i −1.28818 + 0.743732i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −29.3939 + 16.9706i −1.04911 + 0.605705i
\(786\) 0 0
\(787\) 10.0000 17.3205i 0.356462 0.617409i −0.630905 0.775860i \(-0.717316\pi\)
0.987367 + 0.158450i \(0.0506498\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 63.6867 2.26444
\(792\) 0 0
\(793\) 48.0000 1.70453
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.12372 10.6066i 0.216913 0.375705i −0.736949 0.675948i \(-0.763734\pi\)
0.953863 + 0.300243i \(0.0970677\pi\)
\(798\) 0 0
\(799\) −6.00000 + 3.46410i −0.212265 + 0.122551i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.79796 + 5.65685i −0.345762 + 0.199626i
\(804\) 0 0
\(805\) 36.0000 + 20.7846i 1.26883 + 0.732561i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.41421i 0.0497211i 0.999691 + 0.0248606i \(0.00791417\pi\)
−0.999691 + 0.0248606i \(0.992086\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −19.5959 + 33.9411i −0.686415 + 1.18891i
\(816\) 0 0
\(817\) 16.0000 + 27.7128i 0.559769 + 0.969549i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.22474 + 2.12132i 0.0427439 + 0.0740346i 0.886606 0.462526i \(-0.153057\pi\)
−0.843862 + 0.536560i \(0.819723\pi\)
\(822\) 0 0
\(823\) 15.0000 + 8.66025i 0.522867 + 0.301877i 0.738107 0.674684i \(-0.235720\pi\)
−0.215240 + 0.976561i \(0.569053\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.65685i 0.196708i −0.995151 0.0983540i \(-0.968642\pi\)
0.995151 0.0983540i \(-0.0313578\pi\)
\(828\) 0 0
\(829\) 10.3923i 0.360940i −0.983581 0.180470i \(-0.942238\pi\)
0.983581 0.180470i \(-0.0577618\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.12372 + 3.53553i 0.212174 + 0.122499i
\(834\) 0 0
\(835\) −24.0000 41.5692i −0.830554 1.43856i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.44949 + 4.24264i 0.0845658 + 0.146472i 0.905206 0.424973i \(-0.139716\pi\)
−0.820640 + 0.571445i \(0.806383\pi\)
\(840\) 0 0
\(841\) 11.5000 19.9186i 0.396552 0.686848i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.44949 0.0842650
\(846\) 0 0
\(847\) 10.3923i 0.357084i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 12.0000 6.92820i 0.410872 0.237217i −0.280292 0.959915i \(-0.590431\pi\)
0.691164 + 0.722698i \(0.257098\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.22474 0.707107i 0.0418365 0.0241543i −0.478936 0.877850i \(-0.658977\pi\)
0.520772 + 0.853696i \(0.325644\pi\)
\(858\) 0 0
\(859\) −20.0000 + 34.6410i −0.682391 + 1.18194i 0.291858 + 0.956462i \(0.405727\pi\)
−0.974249 + 0.225475i \(0.927607\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.89898 + 8.48528i −0.166186 + 0.287843i
\(870\) 0 0
\(871\) −12.0000 + 6.92820i −0.406604 + 0.234753i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 29.3939 16.9706i 0.993694 0.573710i
\(876\) 0 0
\(877\) 48.0000 + 27.7128i 1.62084 + 0.935795i 0.986694 + 0.162585i \(0.0519833\pi\)
0.634150 + 0.773210i \(0.281350\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 43.8406i 1.47703i 0.674238 + 0.738514i \(0.264472\pi\)
−0.674238 + 0.738514i \(0.735528\pi\)
\(882\) 0 0
\(883\) 40.0000 1.34611 0.673054 0.739594i \(-0.264982\pi\)
0.673054 + 0.739594i \(0.264982\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.89898 8.48528i 0.164492 0.284908i −0.771983 0.635643i \(-0.780735\pi\)
0.936475 + 0.350735i \(0.114068\pi\)
\(888\) 0 0
\(889\) 18.0000 + 31.1769i 0.603701 + 1.04564i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.79796 + 16.9706i 0.327876 + 0.567898i
\(894\) 0 0
\(895\) 12.0000 + 6.92820i 0.401116 + 0.231584i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.48528i 0.283000i
\(900\) 0 0
\(901\) 10.3923i 0.346218i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −22.0454 12.7279i −0.732814 0.423090i
\(906\) 0 0
\(907\) 4.00000 + 6.92820i 0.132818 + 0.230047i 0.924762 0.380547i \(-0.124264\pi\)
−0.791944 + 0.610594i \(0.790931\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −19.5959 33.9411i −0.649242 1.12452i −0.983304 0.181969i \(-0.941753\pi\)
0.334063 0.942551i \(-0.391580\pi\)
\(912\) 0 0
\(913\) −20.0000 + 34.6410i −0.661903 + 1.14645i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.5959 −0.647114
\(918\) 0 0
\(919\) 10.3923i 0.342811i 0.985201 + 0.171405i \(0.0548307\pi\)
−0.985201 + 0.171405i \(0.945169\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −44.0908 25.4558i −1.45127 0.837889i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.22474 0.707107i 0.0401826 0.0231994i −0.479774 0.877392i \(-0.659281\pi\)
0.519957 + 0.854193i \(0.325948\pi\)
\(930\) 0 0
\(931\) 10.0000 17.3205i 0.327737 0.567657i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9.79796 −0.320428
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.22474 + 2.12132i −0.0399255 + 0.0691531i −0.885298 0.465025i \(-0.846045\pi\)
0.845372 + 0.534178i \(0.179379\pi\)
\(942\) 0 0
\(943\) 6.00000 3.46410i 0.195387 0.112807i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.5959 + 11.3137i −0.636782 + 0.367646i −0.783374 0.621551i \(-0.786503\pi\)
0.146592 + 0.989197i \(0.453170\pi\)
\(948\) 0 0
\(949\) −12.0000 6.92820i −0.389536 0.224899i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 26.8701i 0.870407i 0.900332 + 0.435203i \(0.143323\pi\)
−0.900332 + 0.435203i \(0.856677\pi\)
\(954\) 0 0
\(955\) −48.0000 −1.55324
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −17.1464 + 29.6985i −0.553687 + 0.959014i
\(960\) 0 0
\(961\) −9.50000 16.4545i −0.306452 0.530790i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −17.1464 29.6985i −0.551963 0.956028i
\(966\) 0 0
\(967\) −39.0000 22.5167i −1.25416 0.724087i −0.282223 0.959349i \(-0.591072\pi\)
−0.971932 + 0.235262i \(0.924405\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.1127i 0.998454i −0.866471 0.499227i \(-0.833617\pi\)
0.866471 0.499227i \(-0.166383\pi\)
\(972\) 0 0
\(973\) 13.8564i 0.444216i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.8207 + 12.0208i 0.666112 + 0.384580i 0.794602 0.607131i \(-0.207680\pi\)
−0.128490 + 0.991711i \(0.541013\pi\)
\(978\) 0 0
\(979\) −10.0000 17.3205i −0.319601 0.553566i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.4949 + 42.4264i 0.781266 + 1.35319i 0.931205 + 0.364497i \(0.118759\pi\)
−0.149939 + 0.988695i \(0.547908\pi\)
\(984\) 0 0
\(985\) −9.00000 + 15.5885i −0.286764 + 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −39.1918 −1.24623
\(990\) 0 0
\(991\) 51.9615i 1.65061i −0.564686 0.825306i \(-0.691003\pi\)
0.564686 0.825306i \(-0.308997\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22.0454 + 12.7279i 0.698886 + 0.403502i
\(996\) 0 0
\(997\) 12.0000 6.92820i 0.380044 0.219418i −0.297794 0.954630i \(-0.596251\pi\)
0.677837 + 0.735212i \(0.262917\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.2.p.a.2159.1 4
3.2 odd 2 inner 2592.2.p.a.2159.2 4
4.3 odd 2 648.2.l.c.539.2 4
8.3 odd 2 2592.2.p.c.2159.2 4
8.5 even 2 648.2.l.a.539.1 4
9.2 odd 6 2592.2.p.c.431.2 4
9.4 even 3 288.2.f.a.143.3 4
9.5 odd 6 288.2.f.a.143.1 4
9.7 even 3 2592.2.p.c.431.1 4
12.11 even 2 648.2.l.c.539.1 4
24.5 odd 2 648.2.l.a.539.2 4
24.11 even 2 2592.2.p.c.2159.1 4
36.7 odd 6 648.2.l.a.107.1 4
36.11 even 6 648.2.l.a.107.2 4
36.23 even 6 72.2.f.a.35.3 yes 4
36.31 odd 6 72.2.f.a.35.2 yes 4
45.4 even 6 7200.2.b.c.4751.4 4
45.13 odd 12 7200.2.m.c.3599.4 8
45.14 odd 6 7200.2.b.c.4751.3 4
45.22 odd 12 7200.2.m.c.3599.7 8
45.23 even 12 7200.2.m.c.3599.1 8
45.32 even 12 7200.2.m.c.3599.6 8
72.5 odd 6 72.2.f.a.35.1 4
72.11 even 6 inner 2592.2.p.a.431.1 4
72.13 even 6 72.2.f.a.35.4 yes 4
72.29 odd 6 648.2.l.c.107.2 4
72.43 odd 6 inner 2592.2.p.a.431.2 4
72.59 even 6 288.2.f.a.143.4 4
72.61 even 6 648.2.l.c.107.1 4
72.67 odd 6 288.2.f.a.143.2 4
144.5 odd 12 2304.2.c.i.2303.3 8
144.13 even 12 2304.2.c.i.2303.4 8
144.59 even 12 2304.2.c.i.2303.1 8
144.67 odd 12 2304.2.c.i.2303.2 8
144.77 odd 12 2304.2.c.i.2303.8 8
144.85 even 12 2304.2.c.i.2303.7 8
144.131 even 12 2304.2.c.i.2303.6 8
144.139 odd 12 2304.2.c.i.2303.5 8
180.23 odd 12 1800.2.m.c.899.2 8
180.59 even 6 1800.2.b.c.251.2 4
180.67 even 12 1800.2.m.c.899.1 8
180.103 even 12 1800.2.m.c.899.8 8
180.139 odd 6 1800.2.b.c.251.3 4
180.167 odd 12 1800.2.m.c.899.7 8
360.13 odd 12 1800.2.m.c.899.5 8
360.59 even 6 7200.2.b.c.4751.1 4
360.67 even 12 7200.2.m.c.3599.3 8
360.77 even 12 1800.2.m.c.899.6 8
360.139 odd 6 7200.2.b.c.4751.2 4
360.149 odd 6 1800.2.b.c.251.4 4
360.157 odd 12 1800.2.m.c.899.4 8
360.203 odd 12 7200.2.m.c.3599.5 8
360.229 even 6 1800.2.b.c.251.1 4
360.283 even 12 7200.2.m.c.3599.8 8
360.293 even 12 1800.2.m.c.899.3 8
360.347 odd 12 7200.2.m.c.3599.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.f.a.35.1 4 72.5 odd 6
72.2.f.a.35.2 yes 4 36.31 odd 6
72.2.f.a.35.3 yes 4 36.23 even 6
72.2.f.a.35.4 yes 4 72.13 even 6
288.2.f.a.143.1 4 9.5 odd 6
288.2.f.a.143.2 4 72.67 odd 6
288.2.f.a.143.3 4 9.4 even 3
288.2.f.a.143.4 4 72.59 even 6
648.2.l.a.107.1 4 36.7 odd 6
648.2.l.a.107.2 4 36.11 even 6
648.2.l.a.539.1 4 8.5 even 2
648.2.l.a.539.2 4 24.5 odd 2
648.2.l.c.107.1 4 72.61 even 6
648.2.l.c.107.2 4 72.29 odd 6
648.2.l.c.539.1 4 12.11 even 2
648.2.l.c.539.2 4 4.3 odd 2
1800.2.b.c.251.1 4 360.229 even 6
1800.2.b.c.251.2 4 180.59 even 6
1800.2.b.c.251.3 4 180.139 odd 6
1800.2.b.c.251.4 4 360.149 odd 6
1800.2.m.c.899.1 8 180.67 even 12
1800.2.m.c.899.2 8 180.23 odd 12
1800.2.m.c.899.3 8 360.293 even 12
1800.2.m.c.899.4 8 360.157 odd 12
1800.2.m.c.899.5 8 360.13 odd 12
1800.2.m.c.899.6 8 360.77 even 12
1800.2.m.c.899.7 8 180.167 odd 12
1800.2.m.c.899.8 8 180.103 even 12
2304.2.c.i.2303.1 8 144.59 even 12
2304.2.c.i.2303.2 8 144.67 odd 12
2304.2.c.i.2303.3 8 144.5 odd 12
2304.2.c.i.2303.4 8 144.13 even 12
2304.2.c.i.2303.5 8 144.139 odd 12
2304.2.c.i.2303.6 8 144.131 even 12
2304.2.c.i.2303.7 8 144.85 even 12
2304.2.c.i.2303.8 8 144.77 odd 12
2592.2.p.a.431.1 4 72.11 even 6 inner
2592.2.p.a.431.2 4 72.43 odd 6 inner
2592.2.p.a.2159.1 4 1.1 even 1 trivial
2592.2.p.a.2159.2 4 3.2 odd 2 inner
2592.2.p.c.431.1 4 9.7 even 3
2592.2.p.c.431.2 4 9.2 odd 6
2592.2.p.c.2159.1 4 24.11 even 2
2592.2.p.c.2159.2 4 8.3 odd 2
7200.2.b.c.4751.1 4 360.59 even 6
7200.2.b.c.4751.2 4 360.139 odd 6
7200.2.b.c.4751.3 4 45.14 odd 6
7200.2.b.c.4751.4 4 45.4 even 6
7200.2.m.c.3599.1 8 45.23 even 12
7200.2.m.c.3599.2 8 360.347 odd 12
7200.2.m.c.3599.3 8 360.67 even 12
7200.2.m.c.3599.4 8 45.13 odd 12
7200.2.m.c.3599.5 8 360.203 odd 12
7200.2.m.c.3599.6 8 45.32 even 12
7200.2.m.c.3599.7 8 45.22 odd 12
7200.2.m.c.3599.8 8 360.283 even 12