Defining parameters
Level: | \( N \) | \(=\) | \( 2592 = 2^{5} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2592.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(864\) | ||
Trace bound: | \(41\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(41\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2592, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 960 | 100 | 860 |
Cusp forms | 768 | 92 | 676 |
Eisenstein series | 192 | 8 | 184 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2592, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2592, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2592, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(648, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)