Properties

Label 720.2.by.c.49.3
Level $720$
Weight $2$
Character 720.49
Analytic conductor $5.749$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,2,Mod(49,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-4,0,0,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.3
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 720.49
Dual form 720.2.by.c.529.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.158919 - 1.72474i) q^{3} +(-1.30701 + 1.81431i) q^{5} +(0.389270 - 0.224745i) q^{7} +(-2.94949 - 0.548188i) q^{9} +(-1.72474 - 2.98735i) q^{11} +(2.12132 + 1.22474i) q^{13} +(2.92152 + 2.54258i) q^{15} -5.89898i q^{17} -5.44949 q^{19} +(-0.325765 - 0.707107i) q^{21} +(-5.97469 - 3.44949i) q^{23} +(-1.58346 - 4.74264i) q^{25} +(-1.41421 + 5.00000i) q^{27} +(-3.00000 - 5.19615i) q^{29} +(0.775255 - 1.34278i) q^{31} +(-5.42650 + 2.50000i) q^{33} +(-0.101021 + 1.00000i) q^{35} +8.00000i q^{37} +(2.44949 - 3.46410i) q^{39} +(0.500000 - 0.866025i) q^{41} +(2.20881 - 1.27526i) q^{43} +(4.84959 - 4.63481i) q^{45} +(3.85337 - 2.22474i) q^{47} +(-3.39898 + 5.88721i) q^{49} +(-10.1742 - 0.937458i) q^{51} -3.55051i q^{53} +(7.67423 + 0.775255i) q^{55} +(-0.866025 + 9.39898i) q^{57} +(-6.62372 + 11.4726i) q^{59} +(-2.22474 - 3.85337i) q^{61} +(-1.27135 + 0.449490i) q^{63} +(-4.99465 + 2.24799i) q^{65} +(3.94086 + 2.27526i) q^{67} +(-6.89898 + 9.75663i) q^{69} +2.44949 q^{71} -14.7980i q^{73} +(-8.43149 + 1.97738i) q^{75} +(-1.34278 - 0.775255i) q^{77} +(-3.67423 - 6.36396i) q^{79} +(8.39898 + 3.23375i) q^{81} +(-3.46410 + 2.00000i) q^{83} +(10.7026 + 7.71001i) q^{85} +(-9.43879 + 4.34847i) q^{87} -3.10102 q^{89} +1.10102 q^{91} +(-2.19275 - 1.55051i) q^{93} +(7.12252 - 9.88708i) q^{95} +(11.2583 - 6.50000i) q^{97} +(3.44949 + 9.75663i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{5} - 4 q^{9} - 4 q^{11} + 8 q^{15} - 24 q^{19} - 32 q^{21} - 24 q^{29} + 16 q^{31} - 40 q^{35} + 4 q^{41} + 20 q^{45} + 12 q^{49} - 52 q^{51} + 32 q^{55} - 4 q^{59} - 8 q^{61} - 12 q^{65} - 16 q^{69}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.158919 1.72474i 0.0917517 0.995782i
\(4\) 0 0
\(5\) −1.30701 + 1.81431i −0.584511 + 0.811386i
\(6\) 0 0
\(7\) 0.389270 0.224745i 0.147130 0.0849456i −0.424628 0.905368i \(-0.639595\pi\)
0.571758 + 0.820422i \(0.306262\pi\)
\(8\) 0 0
\(9\) −2.94949 0.548188i −0.983163 0.182729i
\(10\) 0 0
\(11\) −1.72474 2.98735i −0.520030 0.900719i −0.999729 0.0232854i \(-0.992587\pi\)
0.479699 0.877433i \(-0.340746\pi\)
\(12\) 0 0
\(13\) 2.12132 + 1.22474i 0.588348 + 0.339683i 0.764444 0.644690i \(-0.223014\pi\)
−0.176096 + 0.984373i \(0.556347\pi\)
\(14\) 0 0
\(15\) 2.92152 + 2.54258i 0.754333 + 0.656492i
\(16\) 0 0
\(17\) 5.89898i 1.43071i −0.698760 0.715356i \(-0.746264\pi\)
0.698760 0.715356i \(-0.253736\pi\)
\(18\) 0 0
\(19\) −5.44949 −1.25020 −0.625099 0.780545i \(-0.714942\pi\)
−0.625099 + 0.780545i \(0.714942\pi\)
\(20\) 0 0
\(21\) −0.325765 0.707107i −0.0710878 0.154303i
\(22\) 0 0
\(23\) −5.97469 3.44949i −1.24581 0.719268i −0.275538 0.961290i \(-0.588856\pi\)
−0.970271 + 0.242022i \(0.922189\pi\)
\(24\) 0 0
\(25\) −1.58346 4.74264i −0.316693 0.948528i
\(26\) 0 0
\(27\) −1.41421 + 5.00000i −0.272166 + 0.962250i
\(28\) 0 0
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 0 0
\(31\) 0.775255 1.34278i 0.139240 0.241171i −0.787969 0.615715i \(-0.788867\pi\)
0.927209 + 0.374544i \(0.122201\pi\)
\(32\) 0 0
\(33\) −5.42650 + 2.50000i −0.944633 + 0.435194i
\(34\) 0 0
\(35\) −0.101021 + 1.00000i −0.0170756 + 0.169031i
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 0 0
\(39\) 2.44949 3.46410i 0.392232 0.554700i
\(40\) 0 0
\(41\) 0.500000 0.866025i 0.0780869 0.135250i −0.824338 0.566099i \(-0.808452\pi\)
0.902424 + 0.430848i \(0.141786\pi\)
\(42\) 0 0
\(43\) 2.20881 1.27526i 0.336840 0.194475i −0.322034 0.946728i \(-0.604366\pi\)
0.658874 + 0.752254i \(0.271033\pi\)
\(44\) 0 0
\(45\) 4.84959 4.63481i 0.722934 0.690917i
\(46\) 0 0
\(47\) 3.85337 2.22474i 0.562072 0.324512i −0.191905 0.981414i \(-0.561466\pi\)
0.753977 + 0.656901i \(0.228133\pi\)
\(48\) 0 0
\(49\) −3.39898 + 5.88721i −0.485568 + 0.841029i
\(50\) 0 0
\(51\) −10.1742 0.937458i −1.42468 0.131270i
\(52\) 0 0
\(53\) 3.55051i 0.487700i −0.969813 0.243850i \(-0.921590\pi\)
0.969813 0.243850i \(-0.0784105\pi\)
\(54\) 0 0
\(55\) 7.67423 + 0.775255i 1.03479 + 0.104535i
\(56\) 0 0
\(57\) −0.866025 + 9.39898i −0.114708 + 1.24493i
\(58\) 0 0
\(59\) −6.62372 + 11.4726i −0.862335 + 1.49361i 0.00733331 + 0.999973i \(0.497666\pi\)
−0.869669 + 0.493636i \(0.835668\pi\)
\(60\) 0 0
\(61\) −2.22474 3.85337i −0.284849 0.493374i 0.687723 0.725973i \(-0.258610\pi\)
−0.972573 + 0.232599i \(0.925277\pi\)
\(62\) 0 0
\(63\) −1.27135 + 0.449490i −0.160175 + 0.0566304i
\(64\) 0 0
\(65\) −4.99465 + 2.24799i −0.619510 + 0.278829i
\(66\) 0 0
\(67\) 3.94086 + 2.27526i 0.481452 + 0.277967i 0.721022 0.692913i \(-0.243673\pi\)
−0.239569 + 0.970879i \(0.577006\pi\)
\(68\) 0 0
\(69\) −6.89898 + 9.75663i −0.830540 + 1.17456i
\(70\) 0 0
\(71\) 2.44949 0.290701 0.145350 0.989380i \(-0.453569\pi\)
0.145350 + 0.989380i \(0.453569\pi\)
\(72\) 0 0
\(73\) 14.7980i 1.73197i −0.500070 0.865985i \(-0.666692\pi\)
0.500070 0.865985i \(-0.333308\pi\)
\(74\) 0 0
\(75\) −8.43149 + 1.97738i −0.973584 + 0.228328i
\(76\) 0 0
\(77\) −1.34278 0.775255i −0.153024 0.0883485i
\(78\) 0 0
\(79\) −3.67423 6.36396i −0.413384 0.716002i 0.581874 0.813279i \(-0.302320\pi\)
−0.995257 + 0.0972777i \(0.968987\pi\)
\(80\) 0 0
\(81\) 8.39898 + 3.23375i 0.933220 + 0.359306i
\(82\) 0 0
\(83\) −3.46410 + 2.00000i −0.380235 + 0.219529i −0.677920 0.735135i \(-0.737119\pi\)
0.297686 + 0.954664i \(0.403785\pi\)
\(84\) 0 0
\(85\) 10.7026 + 7.71001i 1.16086 + 0.836268i
\(86\) 0 0
\(87\) −9.43879 + 4.34847i −1.01194 + 0.466205i
\(88\) 0 0
\(89\) −3.10102 −0.328708 −0.164354 0.986401i \(-0.552554\pi\)
−0.164354 + 0.986401i \(0.552554\pi\)
\(90\) 0 0
\(91\) 1.10102 0.115418
\(92\) 0 0
\(93\) −2.19275 1.55051i −0.227378 0.160780i
\(94\) 0 0
\(95\) 7.12252 9.88708i 0.730755 1.01439i
\(96\) 0 0
\(97\) 11.2583 6.50000i 1.14311 0.659975i 0.195911 0.980622i \(-0.437234\pi\)
0.947199 + 0.320647i \(0.103900\pi\)
\(98\) 0 0
\(99\) 3.44949 + 9.75663i 0.346687 + 0.980578i
\(100\) 0 0
\(101\) 4.00000 + 6.92820i 0.398015 + 0.689382i 0.993481 0.113998i \(-0.0363659\pi\)
−0.595466 + 0.803380i \(0.703033\pi\)
\(102\) 0 0
\(103\) 12.3387 + 7.12372i 1.21576 + 0.701921i 0.964009 0.265870i \(-0.0856591\pi\)
0.251755 + 0.967791i \(0.418992\pi\)
\(104\) 0 0
\(105\) 1.70869 + 0.333153i 0.166751 + 0.0325124i
\(106\) 0 0
\(107\) 16.3485i 1.58047i −0.612806 0.790233i \(-0.709959\pi\)
0.612806 0.790233i \(-0.290041\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 13.7980 + 1.27135i 1.30964 + 0.120671i
\(112\) 0 0
\(113\) −4.24264 2.44949i −0.399114 0.230429i 0.286988 0.957934i \(-0.407346\pi\)
−0.686102 + 0.727506i \(0.740679\pi\)
\(114\) 0 0
\(115\) 14.0674 6.33145i 1.31179 0.590411i
\(116\) 0 0
\(117\) −5.58542 4.77526i −0.516372 0.441472i
\(118\) 0 0
\(119\) −1.32577 2.29629i −0.121533 0.210501i
\(120\) 0 0
\(121\) −0.449490 + 0.778539i −0.0408627 + 0.0707763i
\(122\) 0 0
\(123\) −1.41421 1.00000i −0.127515 0.0901670i
\(124\) 0 0
\(125\) 10.6742 + 3.32577i 0.954733 + 0.297465i
\(126\) 0 0
\(127\) 6.89898i 0.612185i −0.952002 0.306093i \(-0.900978\pi\)
0.952002 0.306093i \(-0.0990218\pi\)
\(128\) 0 0
\(129\) −1.84847 4.01229i −0.162749 0.353262i
\(130\) 0 0
\(131\) 2.44949 4.24264i 0.214013 0.370681i −0.738954 0.673756i \(-0.764680\pi\)
0.952967 + 0.303075i \(0.0980132\pi\)
\(132\) 0 0
\(133\) −2.12132 + 1.22474i −0.183942 + 0.106199i
\(134\) 0 0
\(135\) −7.22318 9.10086i −0.621672 0.783278i
\(136\) 0 0
\(137\) 2.59808 1.50000i 0.221969 0.128154i −0.384893 0.922961i \(-0.625762\pi\)
0.606861 + 0.794808i \(0.292428\pi\)
\(138\) 0 0
\(139\) −6.62372 + 11.4726i −0.561817 + 0.973096i 0.435521 + 0.900179i \(0.356564\pi\)
−0.997338 + 0.0729170i \(0.976769\pi\)
\(140\) 0 0
\(141\) −3.22474 6.99964i −0.271573 0.589476i
\(142\) 0 0
\(143\) 8.44949i 0.706582i
\(144\) 0 0
\(145\) 13.3485 + 1.34847i 1.10853 + 0.111984i
\(146\) 0 0
\(147\) 9.61377 + 6.79796i 0.792930 + 0.560686i
\(148\) 0 0
\(149\) −4.12372 + 7.14250i −0.337829 + 0.585136i −0.984024 0.178036i \(-0.943026\pi\)
0.646195 + 0.763172i \(0.276359\pi\)
\(150\) 0 0
\(151\) 1.44949 + 2.51059i 0.117958 + 0.204309i 0.918958 0.394355i \(-0.129032\pi\)
−0.801000 + 0.598664i \(0.795699\pi\)
\(152\) 0 0
\(153\) −3.23375 + 17.3990i −0.261433 + 1.40662i
\(154\) 0 0
\(155\) 1.42296 + 3.16158i 0.114295 + 0.253944i
\(156\) 0 0
\(157\) −13.8564 8.00000i −1.10586 0.638470i −0.168107 0.985769i \(-0.553765\pi\)
−0.937754 + 0.347299i \(0.887099\pi\)
\(158\) 0 0
\(159\) −6.12372 0.564242i −0.485643 0.0447473i
\(160\) 0 0
\(161\) −3.10102 −0.244395
\(162\) 0 0
\(163\) 8.89898i 0.697022i 0.937305 + 0.348511i \(0.113313\pi\)
−0.937305 + 0.348511i \(0.886687\pi\)
\(164\) 0 0
\(165\) 2.55670 13.1129i 0.199039 1.02084i
\(166\) 0 0
\(167\) 0.214297 + 0.123724i 0.0165828 + 0.00957408i 0.508268 0.861199i \(-0.330286\pi\)
−0.491686 + 0.870773i \(0.663619\pi\)
\(168\) 0 0
\(169\) −3.50000 6.06218i −0.269231 0.466321i
\(170\) 0 0
\(171\) 16.0732 + 2.98735i 1.22915 + 0.228448i
\(172\) 0 0
\(173\) 10.2173 5.89898i 0.776809 0.448491i −0.0584890 0.998288i \(-0.518628\pi\)
0.835298 + 0.549797i \(0.185295\pi\)
\(174\) 0 0
\(175\) −1.68228 1.49029i −0.127168 0.112655i
\(176\) 0 0
\(177\) 18.7347 + 13.2474i 1.40819 + 0.995739i
\(178\) 0 0
\(179\) −0.898979 −0.0671929 −0.0335964 0.999435i \(-0.510696\pi\)
−0.0335964 + 0.999435i \(0.510696\pi\)
\(180\) 0 0
\(181\) 5.55051 0.412566 0.206283 0.978492i \(-0.433863\pi\)
0.206283 + 0.978492i \(0.433863\pi\)
\(182\) 0 0
\(183\) −6.99964 + 3.22474i −0.517428 + 0.238380i
\(184\) 0 0
\(185\) −14.5145 10.4561i −1.06713 0.768745i
\(186\) 0 0
\(187\) −17.6223 + 10.1742i −1.28867 + 0.744014i
\(188\) 0 0
\(189\) 0.573214 + 2.26418i 0.0416952 + 0.164695i
\(190\) 0 0
\(191\) 9.12372 + 15.8028i 0.660170 + 1.14345i 0.980571 + 0.196165i \(0.0628489\pi\)
−0.320401 + 0.947282i \(0.603818\pi\)
\(192\) 0 0
\(193\) 11.8619 + 6.84847i 0.853838 + 0.492964i 0.861944 0.507004i \(-0.169247\pi\)
−0.00810596 + 0.999967i \(0.502580\pi\)
\(194\) 0 0
\(195\) 3.08346 + 8.97175i 0.220811 + 0.642480i
\(196\) 0 0
\(197\) 8.00000i 0.569976i −0.958531 0.284988i \(-0.908010\pi\)
0.958531 0.284988i \(-0.0919897\pi\)
\(198\) 0 0
\(199\) 15.5505 1.10235 0.551173 0.834391i \(-0.314180\pi\)
0.551173 + 0.834391i \(0.314180\pi\)
\(200\) 0 0
\(201\) 4.55051 6.43539i 0.320968 0.453918i
\(202\) 0 0
\(203\) −2.33562 1.34847i −0.163928 0.0946440i
\(204\) 0 0
\(205\) 0.917738 + 2.03906i 0.0640976 + 0.142414i
\(206\) 0 0
\(207\) 15.7313 + 13.4495i 1.09340 + 0.934804i
\(208\) 0 0
\(209\) 9.39898 + 16.2795i 0.650141 + 1.12608i
\(210\) 0 0
\(211\) 1.89898 3.28913i 0.130731 0.226433i −0.793227 0.608925i \(-0.791601\pi\)
0.923959 + 0.382492i \(0.124934\pi\)
\(212\) 0 0
\(213\) 0.389270 4.22474i 0.0266723 0.289475i
\(214\) 0 0
\(215\) −0.573214 + 5.67423i −0.0390929 + 0.386980i
\(216\) 0 0
\(217\) 0.696938i 0.0473113i
\(218\) 0 0
\(219\) −25.5227 2.35167i −1.72466 0.158911i
\(220\) 0 0
\(221\) 7.22474 12.5136i 0.485989 0.841758i
\(222\) 0 0
\(223\) 7.88171 4.55051i 0.527799 0.304725i −0.212321 0.977200i \(-0.568102\pi\)
0.740120 + 0.672475i \(0.234769\pi\)
\(224\) 0 0
\(225\) 2.07055 + 14.8564i 0.138037 + 0.990427i
\(226\) 0 0
\(227\) 2.98735 1.72474i 0.198277 0.114475i −0.397574 0.917570i \(-0.630148\pi\)
0.595852 + 0.803095i \(0.296815\pi\)
\(228\) 0 0
\(229\) −9.22474 + 15.9777i −0.609588 + 1.05584i 0.381720 + 0.924278i \(0.375332\pi\)
−0.991308 + 0.131560i \(0.958001\pi\)
\(230\) 0 0
\(231\) −1.55051 + 2.19275i −0.102016 + 0.144273i
\(232\) 0 0
\(233\) 13.6969i 0.897316i 0.893703 + 0.448658i \(0.148098\pi\)
−0.893703 + 0.448658i \(0.851902\pi\)
\(234\) 0 0
\(235\) −1.00000 + 9.89898i −0.0652328 + 0.645738i
\(236\) 0 0
\(237\) −11.5601 + 5.32577i −0.750910 + 0.345946i
\(238\) 0 0
\(239\) 0.348469 0.603566i 0.0225406 0.0390415i −0.854535 0.519394i \(-0.826158\pi\)
0.877076 + 0.480352i \(0.159491\pi\)
\(240\) 0 0
\(241\) −0.500000 0.866025i −0.0322078 0.0557856i 0.849472 0.527633i \(-0.176921\pi\)
−0.881680 + 0.471848i \(0.843587\pi\)
\(242\) 0 0
\(243\) 6.91215 13.9722i 0.443415 0.896317i
\(244\) 0 0
\(245\) −6.23874 13.8614i −0.398579 0.885574i
\(246\) 0 0
\(247\) −11.5601 6.67423i −0.735552 0.424671i
\(248\) 0 0
\(249\) 2.89898 + 6.29253i 0.183715 + 0.398773i
\(250\) 0 0
\(251\) −6.55051 −0.413465 −0.206732 0.978398i \(-0.566283\pi\)
−0.206732 + 0.978398i \(0.566283\pi\)
\(252\) 0 0
\(253\) 23.7980i 1.49616i
\(254\) 0 0
\(255\) 14.9986 17.2340i 0.939251 1.07923i
\(256\) 0 0
\(257\) −8.74774 5.05051i −0.545669 0.315042i 0.201704 0.979446i \(-0.435352\pi\)
−0.747373 + 0.664404i \(0.768685\pi\)
\(258\) 0 0
\(259\) 1.79796 + 3.11416i 0.111720 + 0.193504i
\(260\) 0 0
\(261\) 6.00000 + 16.9706i 0.371391 + 1.05045i
\(262\) 0 0
\(263\) −10.7816 + 6.22474i −0.664820 + 0.383834i −0.794111 0.607773i \(-0.792063\pi\)
0.129291 + 0.991607i \(0.458730\pi\)
\(264\) 0 0
\(265\) 6.44174 + 4.64054i 0.395713 + 0.285066i
\(266\) 0 0
\(267\) −0.492810 + 5.34847i −0.0301595 + 0.327321i
\(268\) 0 0
\(269\) −16.0454 −0.978306 −0.489153 0.872198i \(-0.662694\pi\)
−0.489153 + 0.872198i \(0.662694\pi\)
\(270\) 0 0
\(271\) 15.5959 0.947385 0.473692 0.880690i \(-0.342921\pi\)
0.473692 + 0.880690i \(0.342921\pi\)
\(272\) 0 0
\(273\) 0.174973 1.89898i 0.0105898 0.114931i
\(274\) 0 0
\(275\) −11.4368 + 12.9102i −0.689667 + 0.778514i
\(276\) 0 0
\(277\) −25.6308 + 14.7980i −1.54001 + 0.889123i −0.541169 + 0.840914i \(0.682018\pi\)
−0.998837 + 0.0482095i \(0.984648\pi\)
\(278\) 0 0
\(279\) −3.02270 + 3.53553i −0.180965 + 0.211667i
\(280\) 0 0
\(281\) −6.00000 10.3923i −0.357930 0.619953i 0.629685 0.776851i \(-0.283184\pi\)
−0.987615 + 0.156898i \(0.949851\pi\)
\(282\) 0 0
\(283\) −3.46410 2.00000i −0.205919 0.118888i 0.393494 0.919327i \(-0.371266\pi\)
−0.599414 + 0.800439i \(0.704600\pi\)
\(284\) 0 0
\(285\) −15.9208 13.8558i −0.943066 0.820745i
\(286\) 0 0
\(287\) 0.449490i 0.0265325i
\(288\) 0 0
\(289\) −17.7980 −1.04694
\(290\) 0 0
\(291\) −9.42168 20.4507i −0.552309 1.19884i
\(292\) 0 0
\(293\) 15.5885 + 9.00000i 0.910687 + 0.525786i 0.880652 0.473763i \(-0.157105\pi\)
0.0300351 + 0.999549i \(0.490438\pi\)
\(294\) 0 0
\(295\) −12.1577 27.0123i −0.707848 1.57272i
\(296\) 0 0
\(297\) 17.3759 4.39898i 1.00825 0.255255i
\(298\) 0 0
\(299\) −8.44949 14.6349i −0.488647 0.846361i
\(300\) 0 0
\(301\) 0.573214 0.992836i 0.0330395 0.0572261i
\(302\) 0 0
\(303\) 12.5851 5.79796i 0.722993 0.333084i
\(304\) 0 0
\(305\) 9.89898 + 1.00000i 0.566814 + 0.0572598i
\(306\) 0 0
\(307\) 29.9444i 1.70902i −0.519438 0.854508i \(-0.673859\pi\)
0.519438 0.854508i \(-0.326141\pi\)
\(308\) 0 0
\(309\) 14.2474 20.1489i 0.810509 1.14623i
\(310\) 0 0
\(311\) 6.55051 11.3458i 0.371445 0.643362i −0.618343 0.785909i \(-0.712196\pi\)
0.989788 + 0.142546i \(0.0455290\pi\)
\(312\) 0 0
\(313\) 18.7901 10.8485i 1.06208 0.613192i 0.136073 0.990699i \(-0.456552\pi\)
0.926007 + 0.377507i \(0.123219\pi\)
\(314\) 0 0
\(315\) 0.846147 2.89411i 0.0476750 0.163065i
\(316\) 0 0
\(317\) 19.8704 11.4722i 1.11603 0.644343i 0.175649 0.984453i \(-0.443798\pi\)
0.940386 + 0.340110i \(0.110464\pi\)
\(318\) 0 0
\(319\) −10.3485 + 17.9241i −0.579403 + 1.00356i
\(320\) 0 0
\(321\) −28.1969 2.59808i −1.57380 0.145010i
\(322\) 0 0
\(323\) 32.1464i 1.78868i
\(324\) 0 0
\(325\) 2.44949 12.0000i 0.135873 0.665640i
\(326\) 0 0
\(327\) 1.27135 13.7980i 0.0703058 0.763029i
\(328\) 0 0
\(329\) 1.00000 1.73205i 0.0551318 0.0954911i
\(330\) 0 0
\(331\) −12.6969 21.9917i −0.697887 1.20878i −0.969198 0.246284i \(-0.920790\pi\)
0.271311 0.962492i \(-0.412543\pi\)
\(332\) 0 0
\(333\) 4.38551 23.5959i 0.240324 1.29305i
\(334\) 0 0
\(335\) −9.27875 + 4.17617i −0.506953 + 0.228169i
\(336\) 0 0
\(337\) −16.1045 9.29796i −0.877270 0.506492i −0.00751272 0.999972i \(-0.502391\pi\)
−0.869757 + 0.493480i \(0.835725\pi\)
\(338\) 0 0
\(339\) −4.89898 + 6.92820i −0.266076 + 0.376288i
\(340\) 0 0
\(341\) −5.34847 −0.289636
\(342\) 0 0
\(343\) 6.20204i 0.334879i
\(344\) 0 0
\(345\) −8.68457 25.2689i −0.467561 1.36043i
\(346\) 0 0
\(347\) 8.00853 + 4.62372i 0.429920 + 0.248215i 0.699313 0.714816i \(-0.253490\pi\)
−0.269392 + 0.963030i \(0.586823\pi\)
\(348\) 0 0
\(349\) −13.7980 23.8988i −0.738588 1.27927i −0.953131 0.302557i \(-0.902160\pi\)
0.214543 0.976714i \(-0.431174\pi\)
\(350\) 0 0
\(351\) −9.12372 + 8.87455i −0.486988 + 0.473688i
\(352\) 0 0
\(353\) −28.2289 + 16.2980i −1.50247 + 0.867453i −0.502476 + 0.864591i \(0.667578\pi\)
−0.999996 + 0.00286194i \(0.999089\pi\)
\(354\) 0 0
\(355\) −3.20150 + 4.44414i −0.169918 + 0.235871i
\(356\) 0 0
\(357\) −4.17121 + 1.92168i −0.220764 + 0.101706i
\(358\) 0 0
\(359\) 3.55051 0.187389 0.0936944 0.995601i \(-0.470132\pi\)
0.0936944 + 0.995601i \(0.470132\pi\)
\(360\) 0 0
\(361\) 10.6969 0.562997
\(362\) 0 0
\(363\) 1.27135 + 0.898979i 0.0667285 + 0.0471842i
\(364\) 0 0
\(365\) 26.8481 + 19.3410i 1.40530 + 1.01236i
\(366\) 0 0
\(367\) −23.8988 + 13.7980i −1.24751 + 0.720248i −0.970611 0.240653i \(-0.922638\pi\)
−0.276894 + 0.960900i \(0.589305\pi\)
\(368\) 0 0
\(369\) −1.94949 + 2.28024i −0.101486 + 0.118704i
\(370\) 0 0
\(371\) −0.797959 1.38211i −0.0414280 0.0717553i
\(372\) 0 0
\(373\) −11.7744 6.79796i −0.609656 0.351985i 0.163175 0.986597i \(-0.447827\pi\)
−0.772831 + 0.634612i \(0.781160\pi\)
\(374\) 0 0
\(375\) 7.43243 17.8818i 0.383809 0.923412i
\(376\) 0 0
\(377\) 14.6969i 0.756931i
\(378\) 0 0
\(379\) 4.14643 0.212988 0.106494 0.994313i \(-0.466038\pi\)
0.106494 + 0.994313i \(0.466038\pi\)
\(380\) 0 0
\(381\) −11.8990 1.09638i −0.609603 0.0561691i
\(382\) 0 0
\(383\) 15.4135 + 8.89898i 0.787592 + 0.454717i 0.839114 0.543955i \(-0.183074\pi\)
−0.0515220 + 0.998672i \(0.516407\pi\)
\(384\) 0 0
\(385\) 3.16158 1.42296i 0.161129 0.0725208i
\(386\) 0 0
\(387\) −7.21393 + 2.55051i −0.366705 + 0.129650i
\(388\) 0 0
\(389\) 8.77526 + 15.1992i 0.444923 + 0.770629i 0.998047 0.0624697i \(-0.0198977\pi\)
−0.553124 + 0.833099i \(0.686564\pi\)
\(390\) 0 0
\(391\) −20.3485 + 35.2446i −1.02907 + 1.78240i
\(392\) 0 0
\(393\) −6.92820 4.89898i −0.349482 0.247121i
\(394\) 0 0
\(395\) 16.3485 + 1.65153i 0.822581 + 0.0830975i
\(396\) 0 0
\(397\) 1.79796i 0.0902370i −0.998982 0.0451185i \(-0.985633\pi\)
0.998982 0.0451185i \(-0.0143665\pi\)
\(398\) 0 0
\(399\) 1.77526 + 3.85337i 0.0888739 + 0.192910i
\(400\) 0 0
\(401\) −4.60102 + 7.96920i −0.229764 + 0.397963i −0.957738 0.287642i \(-0.907129\pi\)
0.727974 + 0.685605i \(0.240462\pi\)
\(402\) 0 0
\(403\) 3.28913 1.89898i 0.163843 0.0945949i
\(404\) 0 0
\(405\) −16.8446 + 11.0118i −0.837013 + 0.547183i
\(406\) 0 0
\(407\) 23.8988 13.7980i 1.18462 0.683939i
\(408\) 0 0
\(409\) 7.94949 13.7689i 0.393077 0.680829i −0.599777 0.800167i \(-0.704744\pi\)
0.992854 + 0.119338i \(0.0380773\pi\)
\(410\) 0 0
\(411\) −2.17423 4.71940i −0.107247 0.232791i
\(412\) 0 0
\(413\) 5.95459i 0.293006i
\(414\) 0 0
\(415\) 0.898979 8.89898i 0.0441292 0.436834i
\(416\) 0 0
\(417\) 18.7347 + 13.2474i 0.917443 + 0.648730i
\(418\) 0 0
\(419\) 4.44949 7.70674i 0.217372 0.376499i −0.736632 0.676294i \(-0.763585\pi\)
0.954004 + 0.299795i \(0.0969183\pi\)
\(420\) 0 0
\(421\) 5.77526 + 10.0030i 0.281469 + 0.487518i 0.971747 0.236026i \(-0.0758451\pi\)
−0.690278 + 0.723544i \(0.742512\pi\)
\(422\) 0 0
\(423\) −12.5851 + 4.44949i −0.611906 + 0.216342i
\(424\) 0 0
\(425\) −27.9767 + 9.34082i −1.35707 + 0.453097i
\(426\) 0 0
\(427\) −1.73205 1.00000i −0.0838198 0.0483934i
\(428\) 0 0
\(429\) −14.5732 1.34278i −0.703601 0.0648301i
\(430\) 0 0
\(431\) −38.2474 −1.84231 −0.921157 0.389190i \(-0.872755\pi\)
−0.921157 + 0.389190i \(0.872755\pi\)
\(432\) 0 0
\(433\) 23.0000i 1.10531i −0.833410 0.552655i \(-0.813615\pi\)
0.833410 0.552655i \(-0.186385\pi\)
\(434\) 0 0
\(435\) 4.44709 22.8084i 0.213221 1.09358i
\(436\) 0 0
\(437\) 32.5590 + 18.7980i 1.55751 + 0.899228i
\(438\) 0 0
\(439\) −11.0227 19.0919i −0.526085 0.911206i −0.999538 0.0303869i \(-0.990326\pi\)
0.473453 0.880819i \(-0.343007\pi\)
\(440\) 0 0
\(441\) 13.2526 15.5010i 0.631074 0.738141i
\(442\) 0 0
\(443\) 18.4008 10.6237i 0.874250 0.504748i 0.00549166 0.999985i \(-0.498252\pi\)
0.868758 + 0.495237i \(0.164919\pi\)
\(444\) 0 0
\(445\) 4.05306 5.62622i 0.192133 0.266709i
\(446\) 0 0
\(447\) 11.6637 + 8.24745i 0.551672 + 0.390091i
\(448\) 0 0
\(449\) −18.7980 −0.887131 −0.443565 0.896242i \(-0.646287\pi\)
−0.443565 + 0.896242i \(0.646287\pi\)
\(450\) 0 0
\(451\) −3.44949 −0.162430
\(452\) 0 0
\(453\) 4.56048 2.10102i 0.214270 0.0987146i
\(454\) 0 0
\(455\) −1.43904 + 1.99760i −0.0674633 + 0.0936487i
\(456\) 0 0
\(457\) −15.5010 + 8.94949i −0.725105 + 0.418639i −0.816629 0.577163i \(-0.804160\pi\)
0.0915238 + 0.995803i \(0.470826\pi\)
\(458\) 0 0
\(459\) 29.4949 + 8.34242i 1.37670 + 0.389391i
\(460\) 0 0
\(461\) 1.22474 + 2.12132i 0.0570421 + 0.0987997i 0.893136 0.449786i \(-0.148500\pi\)
−0.836094 + 0.548586i \(0.815166\pi\)
\(462\) 0 0
\(463\) −20.7846 12.0000i −0.965943 0.557687i −0.0679458 0.997689i \(-0.521644\pi\)
−0.897997 + 0.440002i \(0.854978\pi\)
\(464\) 0 0
\(465\) 5.67905 1.95181i 0.263360 0.0905131i
\(466\) 0 0
\(467\) 10.3485i 0.478870i 0.970912 + 0.239435i \(0.0769622\pi\)
−0.970912 + 0.239435i \(0.923038\pi\)
\(468\) 0 0
\(469\) 2.04541 0.0944482
\(470\) 0 0
\(471\) −16.0000 + 22.6274i −0.737241 + 1.04262i
\(472\) 0 0
\(473\) −7.61926 4.39898i −0.350334 0.202265i
\(474\) 0 0
\(475\) 8.62907 + 25.8450i 0.395929 + 1.18585i
\(476\) 0 0
\(477\) −1.94635 + 10.4722i −0.0891171 + 0.479489i
\(478\) 0 0
\(479\) −8.34847 14.4600i −0.381451 0.660693i 0.609819 0.792541i \(-0.291242\pi\)
−0.991270 + 0.131848i \(0.957909\pi\)
\(480\) 0 0
\(481\) −9.79796 + 16.9706i −0.446748 + 0.773791i
\(482\) 0 0
\(483\) −0.492810 + 5.34847i −0.0224236 + 0.243364i
\(484\) 0 0
\(485\) −2.92168 + 28.9217i −0.132667 + 1.31327i
\(486\) 0 0
\(487\) 25.1010i 1.13744i 0.822533 + 0.568718i \(0.192560\pi\)
−0.822533 + 0.568718i \(0.807440\pi\)
\(488\) 0 0
\(489\) 15.3485 + 1.41421i 0.694082 + 0.0639529i
\(490\) 0 0
\(491\) 9.27526 16.0652i 0.418586 0.725013i −0.577211 0.816595i \(-0.695859\pi\)
0.995798 + 0.0915820i \(0.0291924\pi\)
\(492\) 0 0
\(493\) −30.6520 + 17.6969i −1.38050 + 0.797030i
\(494\) 0 0
\(495\) −22.2101 6.49353i −0.998269 0.291863i
\(496\) 0 0
\(497\) 0.953512 0.550510i 0.0427708 0.0246938i
\(498\) 0 0
\(499\) 10.6237 18.4008i 0.475583 0.823734i −0.524026 0.851703i \(-0.675570\pi\)
0.999609 + 0.0279682i \(0.00890372\pi\)
\(500\) 0 0
\(501\) 0.247449 0.349945i 0.0110552 0.0156344i
\(502\) 0 0
\(503\) 14.4495i 0.644271i 0.946694 + 0.322135i \(0.104401\pi\)
−0.946694 + 0.322135i \(0.895599\pi\)
\(504\) 0 0
\(505\) −17.7980 1.79796i −0.791999 0.0800081i
\(506\) 0 0
\(507\) −11.0119 + 5.07321i −0.489057 + 0.225309i
\(508\) 0 0
\(509\) 15.7980 27.3629i 0.700232 1.21284i −0.268153 0.963376i \(-0.586413\pi\)
0.968385 0.249461i \(-0.0802535\pi\)
\(510\) 0 0
\(511\) −3.32577 5.76039i −0.147123 0.254825i
\(512\) 0 0
\(513\) 7.70674 27.2474i 0.340261 1.20300i
\(514\) 0 0
\(515\) −29.0514 + 13.0754i −1.28016 + 0.576172i
\(516\) 0 0
\(517\) −13.2922 7.67423i −0.584589 0.337512i
\(518\) 0 0
\(519\) −8.55051 18.5597i −0.375326 0.814683i
\(520\) 0 0
\(521\) 21.6969 0.950560 0.475280 0.879835i \(-0.342347\pi\)
0.475280 + 0.879835i \(0.342347\pi\)
\(522\) 0 0
\(523\) 10.2020i 0.446104i −0.974807 0.223052i \(-0.928398\pi\)
0.974807 0.223052i \(-0.0716020\pi\)
\(524\) 0 0
\(525\) −2.83772 + 2.66467i −0.123848 + 0.116296i
\(526\) 0 0
\(527\) −7.92104 4.57321i −0.345046 0.199212i
\(528\) 0 0
\(529\) 12.2980 + 21.3007i 0.534694 + 0.926117i
\(530\) 0 0
\(531\) 25.8258 30.2073i 1.12074 1.31089i
\(532\) 0 0
\(533\) 2.12132 1.22474i 0.0918846 0.0530496i
\(534\) 0 0
\(535\) 29.6612 + 21.3676i 1.28237 + 0.923800i
\(536\) 0 0
\(537\) −0.142865 + 1.55051i −0.00616506 + 0.0669095i
\(538\) 0 0
\(539\) 23.4495 1.01004
\(540\) 0 0
\(541\) −0.404082 −0.0173728 −0.00868642 0.999962i \(-0.502765\pi\)
−0.00868642 + 0.999962i \(0.502765\pi\)
\(542\) 0 0
\(543\) 0.882079 9.57321i 0.0378537 0.410826i
\(544\) 0 0
\(545\) −10.4561 + 14.5145i −0.447888 + 0.621733i
\(546\) 0 0
\(547\) −14.9367 + 8.62372i −0.638648 + 0.368724i −0.784094 0.620642i \(-0.786872\pi\)
0.145445 + 0.989366i \(0.453539\pi\)
\(548\) 0 0
\(549\) 4.44949 + 12.5851i 0.189900 + 0.537117i
\(550\) 0 0
\(551\) 16.3485 + 28.3164i 0.696468 + 1.20632i
\(552\) 0 0
\(553\) −2.86054 1.65153i −0.121642 0.0702302i
\(554\) 0 0
\(555\) −20.3407 + 23.3722i −0.863413 + 0.992093i
\(556\) 0 0
\(557\) 14.9444i 0.633214i 0.948557 + 0.316607i \(0.102544\pi\)
−0.948557 + 0.316607i \(0.897456\pi\)
\(558\) 0 0
\(559\) 6.24745 0.264239
\(560\) 0 0
\(561\) 14.7474 + 32.0108i 0.622638 + 1.35150i
\(562\) 0 0
\(563\) −1.60524 0.926786i −0.0676528 0.0390594i 0.465792 0.884894i \(-0.345769\pi\)
−0.533445 + 0.845835i \(0.679103\pi\)
\(564\) 0 0
\(565\) 9.98930 4.49598i 0.420253 0.189147i
\(566\) 0 0
\(567\) 3.99624 0.628827i 0.167826 0.0264082i
\(568\) 0 0
\(569\) −15.7474 27.2754i −0.660167 1.14344i −0.980571 0.196162i \(-0.937152\pi\)
0.320404 0.947281i \(-0.396181\pi\)
\(570\) 0 0
\(571\) 18.6237 32.2572i 0.779379 1.34992i −0.152922 0.988238i \(-0.548868\pi\)
0.932300 0.361685i \(-0.117798\pi\)
\(572\) 0 0
\(573\) 28.7056 13.2247i 1.19920 0.552472i
\(574\) 0 0
\(575\) −6.89898 + 33.7980i −0.287707 + 1.40947i
\(576\) 0 0
\(577\) 15.6969i 0.653472i −0.945116 0.326736i \(-0.894051\pi\)
0.945116 0.326736i \(-0.105949\pi\)
\(578\) 0 0
\(579\) 13.6969 19.3704i 0.569225 0.805006i
\(580\) 0 0
\(581\) −0.898979 + 1.55708i −0.0372960 + 0.0645985i
\(582\) 0 0
\(583\) −10.6066 + 6.12372i −0.439281 + 0.253619i
\(584\) 0 0
\(585\) 15.9640 3.89241i 0.660030 0.160931i
\(586\) 0 0
\(587\) 20.7364 11.9722i 0.855885 0.494145i −0.00674727 0.999977i \(-0.502148\pi\)
0.862632 + 0.505832i \(0.168814\pi\)
\(588\) 0 0
\(589\) −4.22474 + 7.31747i −0.174078 + 0.301511i
\(590\) 0 0
\(591\) −13.7980 1.27135i −0.567572 0.0522963i
\(592\) 0 0
\(593\) 17.3939i 0.714281i 0.934051 + 0.357140i \(0.116248\pi\)
−0.934051 + 0.357140i \(0.883752\pi\)
\(594\) 0 0
\(595\) 5.89898 + 0.595918i 0.241835 + 0.0244303i
\(596\) 0 0
\(597\) 2.47127 26.8207i 0.101142 1.09770i
\(598\) 0 0
\(599\) −16.8990 + 29.2699i −0.690474 + 1.19594i 0.281209 + 0.959646i \(0.409264\pi\)
−0.971683 + 0.236289i \(0.924069\pi\)
\(600\) 0 0
\(601\) −19.3990 33.6000i −0.791301 1.37057i −0.925162 0.379573i \(-0.876071\pi\)
0.133861 0.991000i \(-0.457262\pi\)
\(602\) 0 0
\(603\) −10.3763 8.87117i −0.422554 0.361262i
\(604\) 0 0
\(605\) −0.825027 1.83307i −0.0335421 0.0745249i
\(606\) 0 0
\(607\) −23.8988 13.7980i −0.970021 0.560042i −0.0707783 0.997492i \(-0.522548\pi\)
−0.899243 + 0.437450i \(0.855882\pi\)
\(608\) 0 0
\(609\) −2.69694 + 3.81405i −0.109285 + 0.154553i
\(610\) 0 0
\(611\) 10.8990 0.440926
\(612\) 0 0
\(613\) 36.9444i 1.49217i 0.665851 + 0.746085i \(0.268069\pi\)
−0.665851 + 0.746085i \(0.731931\pi\)
\(614\) 0 0
\(615\) 3.66270 1.25882i 0.147694 0.0507605i
\(616\) 0 0
\(617\) −7.19066 4.15153i −0.289485 0.167134i 0.348224 0.937411i \(-0.386785\pi\)
−0.637710 + 0.770277i \(0.720118\pi\)
\(618\) 0 0
\(619\) 14.2753 + 24.7255i 0.573771 + 0.993800i 0.996174 + 0.0873923i \(0.0278534\pi\)
−0.422403 + 0.906408i \(0.638813\pi\)
\(620\) 0 0
\(621\) 25.6969 24.9951i 1.03118 1.00302i
\(622\) 0 0
\(623\) −1.20713 + 0.696938i −0.0483628 + 0.0279222i
\(624\) 0 0
\(625\) −19.9853 + 15.0196i −0.799411 + 0.600784i
\(626\) 0 0
\(627\) 29.5717 13.6237i 1.18098 0.544079i
\(628\) 0 0
\(629\) 47.1918 1.88166
\(630\) 0 0
\(631\) 11.3485 0.451775 0.225888 0.974153i \(-0.427472\pi\)
0.225888 + 0.974153i \(0.427472\pi\)
\(632\) 0 0
\(633\) −5.37113 3.79796i −0.213483 0.150955i
\(634\) 0 0
\(635\) 12.5169 + 9.01702i 0.496718 + 0.357829i
\(636\) 0 0
\(637\) −14.4206 + 8.32577i −0.571367 + 0.329879i
\(638\) 0 0
\(639\) −7.22474 1.34278i −0.285806 0.0531196i
\(640\) 0 0
\(641\) 18.5000 + 32.0429i 0.730706 + 1.26562i 0.956582 + 0.291464i \(0.0941423\pi\)
−0.225876 + 0.974156i \(0.572524\pi\)
\(642\) 0 0
\(643\) −13.2047 7.62372i −0.520742 0.300650i 0.216496 0.976283i \(-0.430537\pi\)
−0.737238 + 0.675633i \(0.763870\pi\)
\(644\) 0 0
\(645\) 9.69551 + 1.89039i 0.381760 + 0.0744340i
\(646\) 0 0
\(647\) 34.8990i 1.37202i −0.727592 0.686010i \(-0.759361\pi\)
0.727592 0.686010i \(-0.240639\pi\)
\(648\) 0 0
\(649\) 45.6969 1.79376
\(650\) 0 0
\(651\) −1.20204 0.110756i −0.0471117 0.00434089i
\(652\) 0 0
\(653\) −29.4449 17.0000i −1.15227 0.665261i −0.202828 0.979214i \(-0.565013\pi\)
−0.949439 + 0.313953i \(0.898347\pi\)
\(654\) 0 0
\(655\) 4.49598 + 9.98930i 0.175672 + 0.390314i
\(656\) 0 0
\(657\) −8.11207 + 43.6464i −0.316482 + 1.70281i
\(658\) 0 0
\(659\) 17.8990 + 31.0019i 0.697245 + 1.20766i 0.969418 + 0.245416i \(0.0789245\pi\)
−0.272173 + 0.962248i \(0.587742\pi\)
\(660\) 0 0
\(661\) −2.89898 + 5.02118i −0.112757 + 0.195301i −0.916881 0.399161i \(-0.869302\pi\)
0.804124 + 0.594462i \(0.202635\pi\)
\(662\) 0 0
\(663\) −20.4347 14.4495i −0.793617 0.561172i
\(664\) 0 0
\(665\) 0.550510 5.44949i 0.0213479 0.211322i
\(666\) 0 0
\(667\) 41.3939i 1.60278i
\(668\) 0 0
\(669\) −6.59592 14.3171i −0.255013 0.553531i
\(670\) 0 0
\(671\) −7.67423 + 13.2922i −0.296261 + 0.513138i
\(672\) 0 0
\(673\) 25.0273 14.4495i 0.964730 0.556987i 0.0671042 0.997746i \(-0.478624\pi\)
0.897625 + 0.440759i \(0.145291\pi\)
\(674\) 0 0
\(675\) 25.9526 1.21021i 0.998915 0.0465812i
\(676\) 0 0
\(677\) 34.2911 19.7980i 1.31791 0.760897i 0.334520 0.942389i \(-0.391426\pi\)
0.983393 + 0.181491i \(0.0580924\pi\)
\(678\) 0 0
\(679\) 2.92168 5.06050i 0.112124 0.194204i
\(680\) 0 0
\(681\) −2.50000 5.42650i −0.0958002 0.207944i
\(682\) 0 0
\(683\) 45.4495i 1.73908i −0.493866 0.869538i \(-0.664417\pi\)
0.493866 0.869538i \(-0.335583\pi\)
\(684\) 0 0
\(685\) −0.674235 + 6.67423i −0.0257612 + 0.255009i
\(686\) 0 0
\(687\) 26.0915 + 18.4495i 0.995454 + 0.703892i
\(688\) 0 0
\(689\) 4.34847 7.53177i 0.165663 0.286938i
\(690\) 0 0
\(691\) 8.79796 + 15.2385i 0.334690 + 0.579700i 0.983425 0.181314i \(-0.0580350\pi\)
−0.648735 + 0.761014i \(0.724702\pi\)
\(692\) 0 0
\(693\) 3.53553 + 3.02270i 0.134304 + 0.114823i
\(694\) 0 0
\(695\) −12.1577 27.0123i −0.461167 1.02464i
\(696\) 0 0
\(697\) −5.10867 2.94949i −0.193505 0.111720i
\(698\) 0 0
\(699\) 23.6237 + 2.17670i 0.893531 + 0.0823303i
\(700\) 0 0
\(701\) −39.3939 −1.48789 −0.743943 0.668243i \(-0.767047\pi\)
−0.743943 + 0.668243i \(0.767047\pi\)
\(702\) 0 0
\(703\) 43.5959i 1.64425i
\(704\) 0 0
\(705\) 16.9143 + 3.29788i 0.637029 + 0.124205i
\(706\) 0 0
\(707\) 3.11416 + 1.79796i 0.117120 + 0.0676192i
\(708\) 0 0
\(709\) 18.6742 + 32.3447i 0.701326 + 1.21473i 0.968001 + 0.250945i \(0.0807414\pi\)
−0.266676 + 0.963786i \(0.585925\pi\)
\(710\) 0 0
\(711\) 7.34847 + 20.7846i 0.275589 + 0.779484i
\(712\) 0 0
\(713\) −9.26382 + 5.34847i −0.346933 + 0.200302i
\(714\) 0 0
\(715\) 15.3300 + 11.0435i 0.573310 + 0.413005i
\(716\) 0 0
\(717\) −0.985620 0.696938i −0.0368086 0.0260276i
\(718\) 0 0
\(719\) 41.7980 1.55880 0.779400 0.626526i \(-0.215524\pi\)
0.779400 + 0.626526i \(0.215524\pi\)
\(720\) 0 0
\(721\) 6.40408 0.238500
\(722\) 0 0
\(723\) −1.57313 + 0.724745i −0.0585054 + 0.0269536i
\(724\) 0 0
\(725\) −19.8931 + 22.4558i −0.738811 + 0.833989i
\(726\) 0 0
\(727\) 21.9524 12.6742i 0.814170 0.470061i −0.0342318 0.999414i \(-0.510898\pi\)
0.848402 + 0.529353i \(0.177565\pi\)
\(728\) 0 0
\(729\) −23.0000 14.1421i −0.851852 0.523783i
\(730\) 0 0
\(731\) −7.52270 13.0297i −0.278237 0.481921i
\(732\) 0 0
\(733\) 18.3133 + 10.5732i 0.676419 + 0.390531i 0.798504 0.601989i \(-0.205625\pi\)
−0.122086 + 0.992520i \(0.538958\pi\)
\(734\) 0 0
\(735\) −24.8989 + 8.55740i −0.918409 + 0.315644i
\(736\) 0 0
\(737\) 15.6969i 0.578204i
\(738\) 0 0
\(739\) −17.2474 −0.634458 −0.317229 0.948349i \(-0.602752\pi\)
−0.317229 + 0.948349i \(0.602752\pi\)
\(740\) 0 0
\(741\) −13.3485 + 18.8776i −0.490368 + 0.693485i
\(742\) 0 0
\(743\) 19.8311 + 11.4495i 0.727532 + 0.420041i 0.817519 0.575902i \(-0.195349\pi\)
−0.0899863 + 0.995943i \(0.528682\pi\)
\(744\) 0 0
\(745\) −7.56899 16.8170i −0.277306 0.616128i
\(746\) 0 0
\(747\) 11.3137 4.00000i 0.413947 0.146352i
\(748\) 0 0
\(749\) −3.67423 6.36396i −0.134254 0.232534i
\(750\) 0 0
\(751\) −26.4949 + 45.8905i −0.966813 + 1.67457i −0.262148 + 0.965028i \(0.584431\pi\)
−0.704664 + 0.709541i \(0.748902\pi\)
\(752\) 0 0
\(753\) −1.04100 + 11.2980i −0.0379361 + 0.411721i
\(754\) 0 0
\(755\) −6.44949 0.651531i −0.234721 0.0237116i
\(756\) 0 0
\(757\) 10.0000i 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) 0 0
\(759\) 41.0454 + 3.78194i 1.48985 + 0.137276i
\(760\) 0 0
\(761\) −0.247449 + 0.428594i −0.00897001 + 0.0155365i −0.870476 0.492212i \(-0.836189\pi\)
0.861506 + 0.507748i \(0.169522\pi\)
\(762\) 0 0
\(763\) 3.11416 1.79796i 0.112740 0.0650905i
\(764\) 0 0
\(765\) −27.3407 28.6076i −0.988504 1.03431i
\(766\) 0 0
\(767\) −28.1021 + 16.2247i −1.01471 + 0.585842i
\(768\) 0 0
\(769\) 12.2474 21.2132i 0.441654 0.764968i −0.556158 0.831076i \(-0.687725\pi\)
0.997812 + 0.0661088i \(0.0210584\pi\)
\(770\) 0 0
\(771\) −10.1010 + 14.2850i −0.363779 + 0.514462i
\(772\) 0 0
\(773\) 35.3939i 1.27303i −0.771265 0.636515i \(-0.780375\pi\)
0.771265 0.636515i \(-0.219625\pi\)
\(774\) 0 0
\(775\) −7.59592 1.55051i −0.272853 0.0556960i
\(776\) 0 0
\(777\) 5.65685 2.60612i 0.202939 0.0934941i
\(778\) 0 0
\(779\) −2.72474 + 4.71940i −0.0976241 + 0.169090i
\(780\) 0 0
\(781\) −4.22474 7.31747i −0.151173 0.261840i
\(782\) 0 0
\(783\) 30.2234 7.65153i 1.08010 0.273443i
\(784\) 0 0
\(785\) 32.6249 14.6838i 1.16443 0.524087i
\(786\) 0 0
\(787\) −44.5084 25.6969i −1.58655 0.915997i −0.993869 0.110562i \(-0.964735\pi\)
−0.592684 0.805435i \(-0.701932\pi\)
\(788\) 0 0
\(789\) 9.02270 + 19.5847i 0.321217 + 0.697234i
\(790\) 0 0
\(791\) −2.20204 −0.0782956
\(792\) 0 0
\(793\) 10.8990i 0.387034i
\(794\) 0 0
\(795\) 9.02746 10.3729i 0.320171 0.367888i
\(796\) 0 0
\(797\) −3.11416 1.79796i −0.110309 0.0636870i 0.443830 0.896111i \(-0.353619\pi\)
−0.554139 + 0.832424i \(0.686953\pi\)
\(798\) 0 0
\(799\) −13.1237 22.7310i −0.464284 0.804163i
\(800\) 0 0
\(801\) 9.14643 + 1.69994i 0.323173 + 0.0600645i
\(802\) 0 0
\(803\) −44.2066 + 25.5227i −1.56002 + 0.900677i
\(804\) 0 0
\(805\) 4.05306 5.62622i 0.142851 0.198298i
\(806\) 0 0
\(807\) −2.54991 + 27.6742i −0.0897612 + 0.974179i
\(808\) 0 0
\(809\) 41.0908 1.44468 0.722338 0.691540i \(-0.243067\pi\)
0.722338 + 0.691540i \(0.243067\pi\)
\(810\) 0 0
\(811\) −7.24745 −0.254492 −0.127246 0.991871i \(-0.540614\pi\)
−0.127246 + 0.991871i \(0.540614\pi\)
\(812\) 0 0
\(813\) 2.47848 26.8990i 0.0869242 0.943388i
\(814\) 0 0
\(815\) −16.1455 11.6310i −0.565553 0.407417i
\(816\) 0 0
\(817\) −12.0369 + 6.94949i −0.421117 + 0.243132i
\(818\) 0 0
\(819\) −3.24745 0.603566i −0.113475 0.0210903i
\(820\) 0 0
\(821\) −1.02270 1.77138i −0.0356926 0.0618214i 0.847627 0.530592i \(-0.178030\pi\)
−0.883320 + 0.468771i \(0.844697\pi\)
\(822\) 0 0
\(823\) 27.3629 + 15.7980i 0.953810 + 0.550682i 0.894262 0.447543i \(-0.147701\pi\)
0.0595473 + 0.998225i \(0.481034\pi\)
\(824\) 0 0
\(825\) 20.4493 + 21.7773i 0.711952 + 0.758188i
\(826\) 0 0
\(827\) 5.79796i 0.201615i −0.994906 0.100807i \(-0.967857\pi\)
0.994906 0.100807i \(-0.0321426\pi\)
\(828\) 0 0
\(829\) 26.4495 0.918629 0.459314 0.888274i \(-0.348095\pi\)
0.459314 + 0.888274i \(0.348095\pi\)
\(830\) 0 0
\(831\) 21.4495 + 46.5583i 0.744075 + 1.61509i
\(832\) 0 0
\(833\) 34.7285 + 20.0505i 1.20327 + 0.694709i
\(834\) 0 0
\(835\) −0.504562 + 0.227093i −0.0174611 + 0.00785888i
\(836\) 0 0
\(837\) 5.61753 + 5.77526i 0.194170 + 0.199622i
\(838\) 0 0
\(839\) −20.1237 34.8553i −0.694748 1.20334i −0.970266 0.242043i \(-0.922183\pi\)
0.275517 0.961296i \(-0.411151\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) −18.8776 + 8.69694i −0.650179 + 0.299538i
\(844\) 0 0
\(845\) 15.5732 + 1.57321i 0.535735 + 0.0541202i
\(846\) 0 0
\(847\) 0.404082i 0.0138844i
\(848\) 0 0
\(849\) −4.00000 + 5.65685i −0.137280 + 0.194143i
\(850\) 0 0
\(851\) 27.5959 47.7975i 0.945976 1.63848i
\(852\) 0 0
\(853\) −7.92104 + 4.57321i −0.271211 + 0.156584i −0.629438 0.777051i \(-0.716715\pi\)
0.358227 + 0.933635i \(0.383381\pi\)
\(854\) 0 0
\(855\) −26.4278 + 25.2574i −0.903811 + 0.863784i
\(856\) 0 0
\(857\) 4.67123 2.69694i 0.159566 0.0921257i −0.418091 0.908405i \(-0.637301\pi\)
0.577657 + 0.816280i \(0.303967\pi\)
\(858\) 0 0
\(859\) 18.8712 32.6858i 0.643876 1.11523i −0.340684 0.940178i \(-0.610659\pi\)
0.984560 0.175048i \(-0.0560081\pi\)
\(860\) 0 0
\(861\) −0.775255 0.0714323i −0.0264206 0.00243441i
\(862\) 0 0
\(863\) 26.4495i 0.900351i 0.892940 + 0.450176i \(0.148639\pi\)
−0.892940 + 0.450176i \(0.851361\pi\)
\(864\) 0 0
\(865\) −2.65153 + 26.2474i −0.0901548 + 0.892440i
\(866\) 0 0
\(867\) −2.82843 + 30.6969i −0.0960584 + 1.04252i
\(868\) 0 0
\(869\) −12.6742 + 21.9524i −0.429944 + 0.744685i
\(870\) 0 0
\(871\) 5.57321 + 9.65309i 0.188841 + 0.327082i
\(872\) 0 0
\(873\) −36.7696 + 13.0000i −1.24446 + 0.439983i
\(874\) 0 0
\(875\) 4.90260 1.10436i 0.165738 0.0373342i
\(876\) 0 0
\(877\) 18.0597 + 10.4268i 0.609834 + 0.352088i 0.772900 0.634527i \(-0.218805\pi\)
−0.163067 + 0.986615i \(0.552139\pi\)
\(878\) 0 0
\(879\) 18.0000 25.4558i 0.607125 0.858604i
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 6.55051i 0.220442i −0.993907 0.110221i \(-0.964844\pi\)
0.993907 0.110221i \(-0.0351559\pi\)
\(884\) 0 0
\(885\) −48.5214 + 16.6761i −1.63103 + 0.560562i
\(886\) 0 0
\(887\) 16.7563 + 9.67423i 0.562620 + 0.324829i 0.754197 0.656649i \(-0.228027\pi\)
−0.191576 + 0.981478i \(0.561360\pi\)
\(888\) 0 0
\(889\) −1.55051 2.68556i −0.0520024 0.0900709i
\(890\) 0 0
\(891\) −4.82577 30.6681i −0.161669 1.02742i
\(892\) 0 0
\(893\) −20.9989 + 12.1237i −0.702702 + 0.405705i
\(894\) 0 0
\(895\) 1.17497 1.63103i 0.0392750 0.0545193i
\(896\) 0 0
\(897\) −26.5843 + 12.2474i −0.887625 + 0.408930i
\(898\) 0 0
\(899\) −9.30306 −0.310274
\(900\) 0 0
\(901\) −20.9444 −0.697759
\(902\) 0 0
\(903\) −1.62129 1.14643i −0.0539533 0.0381507i
\(904\) 0 0
\(905\) −7.25456 + 10.0704i −0.241150 + 0.334750i
\(906\) 0 0
\(907\) 34.4179 19.8712i 1.14283 0.659811i 0.195698 0.980664i \(-0.437303\pi\)
0.947129 + 0.320853i \(0.103969\pi\)
\(908\) 0 0
\(909\) −8.00000 22.6274i −0.265343 0.750504i
\(910\) 0 0
\(911\) 12.1237 + 20.9989i 0.401677 + 0.695725i 0.993928 0.110028i \(-0.0350942\pi\)
−0.592252 + 0.805753i \(0.701761\pi\)
\(912\) 0 0
\(913\) 11.9494 + 6.89898i 0.395467 + 0.228323i
\(914\) 0 0
\(915\) 3.29788 16.9143i 0.109024 0.559169i
\(916\) 0 0
\(917\) 2.20204i 0.0727178i
\(918\) 0 0
\(919\) 1.10102 0.0363193 0.0181597 0.999835i \(-0.494219\pi\)
0.0181597 + 0.999835i \(0.494219\pi\)
\(920\) 0 0
\(921\) −51.6464 4.75872i −1.70181 0.156805i
\(922\) 0 0
\(923\) 5.19615 + 3.00000i 0.171033 + 0.0987462i
\(924\) 0 0
\(925\) 37.9411 12.6677i 1.24750 0.416512i
\(926\) 0 0
\(927\) −32.4876 27.7753i −1.06703 0.912259i
\(928\) 0 0
\(929\) −8.20204 14.2064i −0.269100 0.466095i 0.699529 0.714604i \(-0.253393\pi\)
−0.968630 + 0.248508i \(0.920060\pi\)
\(930\) 0 0
\(931\) 18.5227 32.0823i 0.607057 1.05145i
\(932\) 0 0
\(933\) −18.5276 13.1010i −0.606568 0.428908i
\(934\) 0 0
\(935\) 4.57321 45.2702i 0.149560 1.48049i
\(936\) 0 0
\(937\) 0.404082i 0.0132008i −0.999978 0.00660039i \(-0.997899\pi\)
0.999978 0.00660039i \(-0.00210099\pi\)
\(938\) 0 0
\(939\) −15.7247 34.1322i −0.513158 1.11386i
\(940\) 0 0
\(941\) 15.1010 26.1557i 0.492279 0.852653i −0.507681 0.861545i \(-0.669497\pi\)
0.999960 + 0.00889239i \(0.00283057\pi\)
\(942\) 0 0
\(943\) −5.97469 + 3.44949i −0.194563 + 0.112331i
\(944\) 0 0
\(945\) −4.85714 1.91932i −0.158003 0.0624354i
\(946\) 0 0
\(947\) −2.81237 + 1.62372i −0.0913898 + 0.0527640i −0.544998 0.838437i \(-0.683470\pi\)
0.453609 + 0.891201i \(0.350136\pi\)
\(948\) 0 0
\(949\) 18.1237 31.3912i 0.588321 1.01900i
\(950\) 0 0
\(951\) −16.6288 36.0946i −0.539227 1.17045i
\(952\) 0 0
\(953\) 31.2020i 1.01073i 0.862905 + 0.505367i \(0.168643\pi\)
−0.862905 + 0.505367i \(0.831357\pi\)
\(954\) 0 0
\(955\) −40.5959 4.10102i −1.31365 0.132706i
\(956\) 0 0
\(957\) 29.2699 + 20.6969i 0.946161 + 0.669037i
\(958\) 0 0
\(959\) 0.674235 1.16781i 0.0217722 0.0377105i
\(960\) 0 0
\(961\) 14.2980 + 24.7648i 0.461224 + 0.798864i
\(962\) 0 0
\(963\) −8.96204 + 48.2196i −0.288798 + 1.55386i
\(964\) 0 0
\(965\) −27.9289 + 12.5702i −0.899062 + 0.404649i
\(966\) 0 0
\(967\) 0.603566 + 0.348469i 0.0194094 + 0.0112060i 0.509673 0.860368i \(-0.329766\pi\)
−0.490264 + 0.871574i \(0.663100\pi\)
\(968\) 0 0
\(969\) 55.4444 + 5.10867i 1.78113 + 0.164114i
\(970\) 0 0
\(971\) −35.3939 −1.13584 −0.567922 0.823083i \(-0.692252\pi\)
−0.567922 + 0.823083i \(0.692252\pi\)
\(972\) 0 0
\(973\) 5.95459i 0.190895i
\(974\) 0 0
\(975\) −20.3077 6.13177i −0.650366 0.196374i
\(976\) 0 0
\(977\) −24.3362 14.0505i −0.778584 0.449516i 0.0573443 0.998354i \(-0.481737\pi\)
−0.835928 + 0.548839i \(0.815070\pi\)
\(978\) 0 0
\(979\) 5.34847 + 9.26382i 0.170938 + 0.296073i
\(980\) 0 0
\(981\) −23.5959 4.38551i −0.753360 0.140018i
\(982\) 0 0
\(983\) 18.5276 10.6969i 0.590940 0.341179i −0.174529 0.984652i \(-0.555840\pi\)
0.765469 + 0.643473i \(0.222507\pi\)
\(984\) 0 0
\(985\) 14.5145 + 10.4561i 0.462471 + 0.333158i
\(986\) 0 0
\(987\) −2.82843 2.00000i −0.0900298 0.0636607i
\(988\) 0 0
\(989\) −17.5959 −0.559518
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 0 0
\(993\) −39.9479 + 18.4041i −1.26771 + 0.584036i
\(994\) 0 0
\(995\) −20.3246 + 28.2135i −0.644334 + 0.894428i
\(996\) 0 0
\(997\) 18.1384 10.4722i 0.574448 0.331658i −0.184476 0.982837i \(-0.559059\pi\)
0.758924 + 0.651179i \(0.225725\pi\)
\(998\) 0 0
\(999\) −40.0000 11.3137i −1.26554 0.357950i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.by.c.49.3 8
3.2 odd 2 2160.2.by.d.1009.3 8
4.3 odd 2 90.2.i.b.49.2 8
5.4 even 2 inner 720.2.by.c.49.2 8
9.2 odd 6 2160.2.by.d.289.2 8
9.7 even 3 inner 720.2.by.c.529.2 8
12.11 even 2 270.2.i.b.199.4 8
15.14 odd 2 2160.2.by.d.1009.2 8
20.3 even 4 450.2.e.n.301.1 4
20.7 even 4 450.2.e.k.301.2 4
20.19 odd 2 90.2.i.b.49.3 yes 8
36.7 odd 6 90.2.i.b.79.3 yes 8
36.11 even 6 270.2.i.b.19.1 8
36.23 even 6 810.2.c.e.649.3 4
36.31 odd 6 810.2.c.f.649.2 4
45.29 odd 6 2160.2.by.d.289.3 8
45.34 even 6 inner 720.2.by.c.529.3 8
60.23 odd 4 1350.2.e.j.901.2 4
60.47 odd 4 1350.2.e.m.901.1 4
60.59 even 2 270.2.i.b.199.1 8
180.7 even 12 450.2.e.k.151.2 4
180.23 odd 12 4050.2.a.bz.1.1 2
180.43 even 12 450.2.e.n.151.1 4
180.47 odd 12 1350.2.e.m.451.1 4
180.59 even 6 810.2.c.e.649.1 4
180.67 even 12 4050.2.a.bs.1.2 2
180.79 odd 6 90.2.i.b.79.2 yes 8
180.83 odd 12 1350.2.e.j.451.2 4
180.103 even 12 4050.2.a.bq.1.1 2
180.119 even 6 270.2.i.b.19.4 8
180.139 odd 6 810.2.c.f.649.4 4
180.167 odd 12 4050.2.a.bm.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.b.49.2 8 4.3 odd 2
90.2.i.b.49.3 yes 8 20.19 odd 2
90.2.i.b.79.2 yes 8 180.79 odd 6
90.2.i.b.79.3 yes 8 36.7 odd 6
270.2.i.b.19.1 8 36.11 even 6
270.2.i.b.19.4 8 180.119 even 6
270.2.i.b.199.1 8 60.59 even 2
270.2.i.b.199.4 8 12.11 even 2
450.2.e.k.151.2 4 180.7 even 12
450.2.e.k.301.2 4 20.7 even 4
450.2.e.n.151.1 4 180.43 even 12
450.2.e.n.301.1 4 20.3 even 4
720.2.by.c.49.2 8 5.4 even 2 inner
720.2.by.c.49.3 8 1.1 even 1 trivial
720.2.by.c.529.2 8 9.7 even 3 inner
720.2.by.c.529.3 8 45.34 even 6 inner
810.2.c.e.649.1 4 180.59 even 6
810.2.c.e.649.3 4 36.23 even 6
810.2.c.f.649.2 4 36.31 odd 6
810.2.c.f.649.4 4 180.139 odd 6
1350.2.e.j.451.2 4 180.83 odd 12
1350.2.e.j.901.2 4 60.23 odd 4
1350.2.e.m.451.1 4 180.47 odd 12
1350.2.e.m.901.1 4 60.47 odd 4
2160.2.by.d.289.2 8 9.2 odd 6
2160.2.by.d.289.3 8 45.29 odd 6
2160.2.by.d.1009.2 8 15.14 odd 2
2160.2.by.d.1009.3 8 3.2 odd 2
4050.2.a.bm.1.2 2 180.167 odd 12
4050.2.a.bq.1.1 2 180.103 even 12
4050.2.a.bs.1.2 2 180.67 even 12
4050.2.a.bz.1.1 2 180.23 odd 12