Properties

Label 450.2.e.n.151.1
Level $450$
Weight $2$
Character 450.151
Analytic conductor $3.593$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,2,Mod(151,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-2,-2,0,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 450.151
Dual form 450.2.e.n.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.72474 + 0.158919i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.724745 + 1.57313i) q^{6} +(0.224745 - 0.389270i) q^{7} -1.00000 q^{8} +(2.94949 - 0.548188i) q^{9} +(1.72474 - 2.98735i) q^{11} +(1.00000 + 1.41421i) q^{12} +(-1.22474 - 2.12132i) q^{13} +(-0.224745 - 0.389270i) q^{14} +(-0.500000 + 0.866025i) q^{16} -5.89898 q^{17} +(1.00000 - 2.82843i) q^{18} -5.44949 q^{19} +(-0.325765 + 0.707107i) q^{21} +(-1.72474 - 2.98735i) q^{22} +(-3.44949 - 5.97469i) q^{23} +(1.72474 - 0.158919i) q^{24} -2.44949 q^{26} +(-5.00000 + 1.41421i) q^{27} -0.449490 q^{28} +(3.00000 - 5.19615i) q^{29} +(-0.775255 - 1.34278i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-2.50000 + 5.42650i) q^{33} +(-2.94949 + 5.10867i) q^{34} +(-1.94949 - 2.28024i) q^{36} +8.00000 q^{37} +(-2.72474 + 4.71940i) q^{38} +(2.44949 + 3.46410i) q^{39} +(0.500000 + 0.866025i) q^{41} +(0.449490 + 0.635674i) q^{42} +(-1.27526 + 2.20881i) q^{43} -3.44949 q^{44} -6.89898 q^{46} +(2.22474 - 3.85337i) q^{47} +(0.724745 - 1.57313i) q^{48} +(3.39898 + 5.88721i) q^{49} +(10.1742 - 0.937458i) q^{51} +(-1.22474 + 2.12132i) q^{52} +3.55051 q^{53} +(-1.27526 + 5.03723i) q^{54} +(-0.224745 + 0.389270i) q^{56} +(9.39898 - 0.866025i) q^{57} +(-3.00000 - 5.19615i) q^{58} +(-6.62372 - 11.4726i) q^{59} +(-2.22474 + 3.85337i) q^{61} -1.55051 q^{62} +(0.449490 - 1.27135i) q^{63} +1.00000 q^{64} +(3.44949 + 4.87832i) q^{66} +(-2.27526 - 3.94086i) q^{67} +(2.94949 + 5.10867i) q^{68} +(6.89898 + 9.75663i) q^{69} -2.44949 q^{71} +(-2.94949 + 0.548188i) q^{72} +14.7980 q^{73} +(4.00000 - 6.92820i) q^{74} +(2.72474 + 4.71940i) q^{76} +(-0.775255 - 1.34278i) q^{77} +(4.22474 - 0.389270i) q^{78} +(-3.67423 + 6.36396i) q^{79} +(8.39898 - 3.23375i) q^{81} +1.00000 q^{82} +(2.00000 - 3.46410i) q^{83} +(0.775255 - 0.0714323i) q^{84} +(1.27526 + 2.20881i) q^{86} +(-4.34847 + 9.43879i) q^{87} +(-1.72474 + 2.98735i) q^{88} +3.10102 q^{89} -1.10102 q^{91} +(-3.44949 + 5.97469i) q^{92} +(1.55051 + 2.19275i) q^{93} +(-2.22474 - 3.85337i) q^{94} +(-1.00000 - 1.41421i) q^{96} +(-6.50000 + 11.2583i) q^{97} +6.79796 q^{98} +(3.44949 - 9.75663i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{6} - 4 q^{7} - 4 q^{8} + 2 q^{9} + 2 q^{11} + 4 q^{12} + 4 q^{14} - 2 q^{16} - 4 q^{17} + 4 q^{18} - 12 q^{19} - 16 q^{21} - 2 q^{22} - 4 q^{23} + 2 q^{24} - 20 q^{27}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.72474 + 0.158919i −0.995782 + 0.0917517i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −0.724745 + 1.57313i −0.295876 + 0.642229i
\(7\) 0.224745 0.389270i 0.0849456 0.147130i −0.820422 0.571758i \(-0.806262\pi\)
0.905368 + 0.424628i \(0.139595\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.94949 0.548188i 0.983163 0.182729i
\(10\) 0 0
\(11\) 1.72474 2.98735i 0.520030 0.900719i −0.479699 0.877433i \(-0.659254\pi\)
0.999729 0.0232854i \(-0.00741263\pi\)
\(12\) 1.00000 + 1.41421i 0.288675 + 0.408248i
\(13\) −1.22474 2.12132i −0.339683 0.588348i 0.644690 0.764444i \(-0.276986\pi\)
−0.984373 + 0.176096i \(0.943653\pi\)
\(14\) −0.224745 0.389270i −0.0600656 0.104037i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −5.89898 −1.43071 −0.715356 0.698760i \(-0.753736\pi\)
−0.715356 + 0.698760i \(0.753736\pi\)
\(18\) 1.00000 2.82843i 0.235702 0.666667i
\(19\) −5.44949 −1.25020 −0.625099 0.780545i \(-0.714942\pi\)
−0.625099 + 0.780545i \(0.714942\pi\)
\(20\) 0 0
\(21\) −0.325765 + 0.707107i −0.0710878 + 0.154303i
\(22\) −1.72474 2.98735i −0.367717 0.636904i
\(23\) −3.44949 5.97469i −0.719268 1.24581i −0.961290 0.275538i \(-0.911144\pi\)
0.242022 0.970271i \(-0.422189\pi\)
\(24\) 1.72474 0.158919i 0.352062 0.0324391i
\(25\) 0 0
\(26\) −2.44949 −0.480384
\(27\) −5.00000 + 1.41421i −0.962250 + 0.272166i
\(28\) −0.449490 −0.0849456
\(29\) 3.00000 5.19615i 0.557086 0.964901i −0.440652 0.897678i \(-0.645253\pi\)
0.997738 0.0672232i \(-0.0214140\pi\)
\(30\) 0 0
\(31\) −0.775255 1.34278i −0.139240 0.241171i 0.787969 0.615715i \(-0.211133\pi\)
−0.927209 + 0.374544i \(0.877799\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −2.50000 + 5.42650i −0.435194 + 0.944633i
\(34\) −2.94949 + 5.10867i −0.505833 + 0.876129i
\(35\) 0 0
\(36\) −1.94949 2.28024i −0.324915 0.380040i
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −2.72474 + 4.71940i −0.442012 + 0.765587i
\(39\) 2.44949 + 3.46410i 0.392232 + 0.554700i
\(40\) 0 0
\(41\) 0.500000 + 0.866025i 0.0780869 + 0.135250i 0.902424 0.430848i \(-0.141786\pi\)
−0.824338 + 0.566099i \(0.808452\pi\)
\(42\) 0.449490 + 0.635674i 0.0693578 + 0.0980867i
\(43\) −1.27526 + 2.20881i −0.194475 + 0.336840i −0.946728 0.322034i \(-0.895634\pi\)
0.752254 + 0.658874i \(0.228967\pi\)
\(44\) −3.44949 −0.520030
\(45\) 0 0
\(46\) −6.89898 −1.01720
\(47\) 2.22474 3.85337i 0.324512 0.562072i −0.656901 0.753977i \(-0.728133\pi\)
0.981414 + 0.191905i \(0.0614665\pi\)
\(48\) 0.724745 1.57313i 0.104608 0.227062i
\(49\) 3.39898 + 5.88721i 0.485568 + 0.841029i
\(50\) 0 0
\(51\) 10.1742 0.937458i 1.42468 0.131270i
\(52\) −1.22474 + 2.12132i −0.169842 + 0.294174i
\(53\) 3.55051 0.487700 0.243850 0.969813i \(-0.421590\pi\)
0.243850 + 0.969813i \(0.421590\pi\)
\(54\) −1.27526 + 5.03723i −0.173540 + 0.685481i
\(55\) 0 0
\(56\) −0.224745 + 0.389270i −0.0300328 + 0.0520183i
\(57\) 9.39898 0.866025i 1.24493 0.114708i
\(58\) −3.00000 5.19615i −0.393919 0.682288i
\(59\) −6.62372 11.4726i −0.862335 1.49361i −0.869669 0.493636i \(-0.835668\pi\)
0.00733331 0.999973i \(-0.497666\pi\)
\(60\) 0 0
\(61\) −2.22474 + 3.85337i −0.284849 + 0.493374i −0.972573 0.232599i \(-0.925277\pi\)
0.687723 + 0.725973i \(0.258610\pi\)
\(62\) −1.55051 −0.196915
\(63\) 0.449490 1.27135i 0.0566304 0.160175i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 3.44949 + 4.87832i 0.424603 + 0.600479i
\(67\) −2.27526 3.94086i −0.277967 0.481452i 0.692913 0.721022i \(-0.256327\pi\)
−0.970879 + 0.239569i \(0.922994\pi\)
\(68\) 2.94949 + 5.10867i 0.357678 + 0.619517i
\(69\) 6.89898 + 9.75663i 0.830540 + 1.17456i
\(70\) 0 0
\(71\) −2.44949 −0.290701 −0.145350 0.989380i \(-0.546431\pi\)
−0.145350 + 0.989380i \(0.546431\pi\)
\(72\) −2.94949 + 0.548188i −0.347601 + 0.0646046i
\(73\) 14.7980 1.73197 0.865985 0.500070i \(-0.166692\pi\)
0.865985 + 0.500070i \(0.166692\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) 0 0
\(76\) 2.72474 + 4.71940i 0.312550 + 0.541352i
\(77\) −0.775255 1.34278i −0.0883485 0.153024i
\(78\) 4.22474 0.389270i 0.478358 0.0440761i
\(79\) −3.67423 + 6.36396i −0.413384 + 0.716002i −0.995257 0.0972777i \(-0.968987\pi\)
0.581874 + 0.813279i \(0.302320\pi\)
\(80\) 0 0
\(81\) 8.39898 3.23375i 0.933220 0.359306i
\(82\) 1.00000 0.110432
\(83\) 2.00000 3.46410i 0.219529 0.380235i −0.735135 0.677920i \(-0.762881\pi\)
0.954664 + 0.297686i \(0.0962148\pi\)
\(84\) 0.775255 0.0714323i 0.0845873 0.00779390i
\(85\) 0 0
\(86\) 1.27526 + 2.20881i 0.137514 + 0.238182i
\(87\) −4.34847 + 9.43879i −0.466205 + 1.01194i
\(88\) −1.72474 + 2.98735i −0.183858 + 0.318452i
\(89\) 3.10102 0.328708 0.164354 0.986401i \(-0.447446\pi\)
0.164354 + 0.986401i \(0.447446\pi\)
\(90\) 0 0
\(91\) −1.10102 −0.115418
\(92\) −3.44949 + 5.97469i −0.359634 + 0.622905i
\(93\) 1.55051 + 2.19275i 0.160780 + 0.227378i
\(94\) −2.22474 3.85337i −0.229465 0.397445i
\(95\) 0 0
\(96\) −1.00000 1.41421i −0.102062 0.144338i
\(97\) −6.50000 + 11.2583i −0.659975 + 1.14311i 0.320647 + 0.947199i \(0.396100\pi\)
−0.980622 + 0.195911i \(0.937234\pi\)
\(98\) 6.79796 0.686698
\(99\) 3.44949 9.75663i 0.346687 0.980578i
\(100\) 0 0
\(101\) 4.00000 6.92820i 0.398015 0.689382i −0.595466 0.803380i \(-0.703033\pi\)
0.993481 + 0.113998i \(0.0363659\pi\)
\(102\) 4.27526 9.27987i 0.423313 0.918844i
\(103\) 7.12372 + 12.3387i 0.701921 + 1.21576i 0.967791 + 0.251755i \(0.0810076\pi\)
−0.265870 + 0.964009i \(0.585659\pi\)
\(104\) 1.22474 + 2.12132i 0.120096 + 0.208013i
\(105\) 0 0
\(106\) 1.77526 3.07483i 0.172428 0.298654i
\(107\) 16.3485 1.58047 0.790233 0.612806i \(-0.209959\pi\)
0.790233 + 0.612806i \(0.209959\pi\)
\(108\) 3.72474 + 3.62302i 0.358414 + 0.348625i
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) −13.7980 + 1.27135i −1.30964 + 0.120671i
\(112\) 0.224745 + 0.389270i 0.0212364 + 0.0367825i
\(113\) 2.44949 + 4.24264i 0.230429 + 0.399114i 0.957934 0.286988i \(-0.0926538\pi\)
−0.727506 + 0.686102i \(0.759321\pi\)
\(114\) 3.94949 8.57277i 0.369904 0.802913i
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) −4.77526 5.58542i −0.441472 0.516372i
\(118\) −13.2474 −1.21953
\(119\) −1.32577 + 2.29629i −0.121533 + 0.210501i
\(120\) 0 0
\(121\) −0.449490 0.778539i −0.0408627 0.0707763i
\(122\) 2.22474 + 3.85337i 0.201419 + 0.348868i
\(123\) −1.00000 1.41421i −0.0901670 0.127515i
\(124\) −0.775255 + 1.34278i −0.0696200 + 0.120585i
\(125\) 0 0
\(126\) −0.876276 1.02494i −0.0780648 0.0913093i
\(127\) 6.89898 0.612185 0.306093 0.952002i \(-0.400978\pi\)
0.306093 + 0.952002i \(0.400978\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 1.84847 4.01229i 0.162749 0.353262i
\(130\) 0 0
\(131\) −2.44949 4.24264i −0.214013 0.370681i 0.738954 0.673756i \(-0.235320\pi\)
−0.952967 + 0.303075i \(0.901987\pi\)
\(132\) 5.94949 0.548188i 0.517837 0.0477137i
\(133\) −1.22474 + 2.12132i −0.106199 + 0.183942i
\(134\) −4.55051 −0.393104
\(135\) 0 0
\(136\) 5.89898 0.505833
\(137\) −1.50000 + 2.59808i −0.128154 + 0.221969i −0.922961 0.384893i \(-0.874238\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(138\) 11.8990 1.09638i 1.01291 0.0933298i
\(139\) −6.62372 11.4726i −0.561817 0.973096i −0.997338 0.0729170i \(-0.976769\pi\)
0.435521 0.900179i \(-0.356564\pi\)
\(140\) 0 0
\(141\) −3.22474 + 6.99964i −0.271573 + 0.589476i
\(142\) −1.22474 + 2.12132i −0.102778 + 0.178017i
\(143\) −8.44949 −0.706582
\(144\) −1.00000 + 2.82843i −0.0833333 + 0.235702i
\(145\) 0 0
\(146\) 7.39898 12.8154i 0.612344 1.06061i
\(147\) −6.79796 9.61377i −0.560686 0.792930i
\(148\) −4.00000 6.92820i −0.328798 0.569495i
\(149\) 4.12372 + 7.14250i 0.337829 + 0.585136i 0.984024 0.178036i \(-0.0569742\pi\)
−0.646195 + 0.763172i \(0.723641\pi\)
\(150\) 0 0
\(151\) −1.44949 + 2.51059i −0.117958 + 0.204309i −0.918958 0.394355i \(-0.870968\pi\)
0.801000 + 0.598664i \(0.204301\pi\)
\(152\) 5.44949 0.442012
\(153\) −17.3990 + 3.23375i −1.40662 + 0.261433i
\(154\) −1.55051 −0.124944
\(155\) 0 0
\(156\) 1.77526 3.85337i 0.142134 0.308517i
\(157\) −8.00000 13.8564i −0.638470 1.10586i −0.985769 0.168107i \(-0.946235\pi\)
0.347299 0.937754i \(-0.387099\pi\)
\(158\) 3.67423 + 6.36396i 0.292306 + 0.506290i
\(159\) −6.12372 + 0.564242i −0.485643 + 0.0447473i
\(160\) 0 0
\(161\) −3.10102 −0.244395
\(162\) 1.39898 8.89060i 0.109914 0.698512i
\(163\) 8.89898 0.697022 0.348511 0.937305i \(-0.386687\pi\)
0.348511 + 0.937305i \(0.386687\pi\)
\(164\) 0.500000 0.866025i 0.0390434 0.0676252i
\(165\) 0 0
\(166\) −2.00000 3.46410i −0.155230 0.268866i
\(167\) −0.123724 0.214297i −0.00957408 0.0165828i 0.861199 0.508268i \(-0.169714\pi\)
−0.870773 + 0.491686i \(0.836381\pi\)
\(168\) 0.325765 0.707107i 0.0251333 0.0545545i
\(169\) 3.50000 6.06218i 0.269231 0.466321i
\(170\) 0 0
\(171\) −16.0732 + 2.98735i −1.22915 + 0.228448i
\(172\) 2.55051 0.194475
\(173\) 5.89898 10.2173i 0.448491 0.776809i −0.549797 0.835298i \(-0.685295\pi\)
0.998288 + 0.0584890i \(0.0186282\pi\)
\(174\) 6.00000 + 8.48528i 0.454859 + 0.643268i
\(175\) 0 0
\(176\) 1.72474 + 2.98735i 0.130008 + 0.225180i
\(177\) 13.2474 + 18.7347i 0.995739 + 1.40819i
\(178\) 1.55051 2.68556i 0.116216 0.201291i
\(179\) −0.898979 −0.0671929 −0.0335964 0.999435i \(-0.510696\pi\)
−0.0335964 + 0.999435i \(0.510696\pi\)
\(180\) 0 0
\(181\) 5.55051 0.412566 0.206283 0.978492i \(-0.433863\pi\)
0.206283 + 0.978492i \(0.433863\pi\)
\(182\) −0.550510 + 0.953512i −0.0408065 + 0.0706790i
\(183\) 3.22474 6.99964i 0.238380 0.517428i
\(184\) 3.44949 + 5.97469i 0.254300 + 0.440460i
\(185\) 0 0
\(186\) 2.67423 0.246405i 0.196084 0.0180673i
\(187\) −10.1742 + 17.6223i −0.744014 + 1.28867i
\(188\) −4.44949 −0.324512
\(189\) −0.573214 + 2.26418i −0.0416952 + 0.164695i
\(190\) 0 0
\(191\) −9.12372 + 15.8028i −0.660170 + 1.14345i 0.320401 + 0.947282i \(0.396182\pi\)
−0.980571 + 0.196165i \(0.937151\pi\)
\(192\) −1.72474 + 0.158919i −0.124473 + 0.0114690i
\(193\) −6.84847 11.8619i −0.492964 0.853838i 0.507004 0.861944i \(-0.330753\pi\)
−0.999967 + 0.00810596i \(0.997420\pi\)
\(194\) 6.50000 + 11.2583i 0.466673 + 0.808301i
\(195\) 0 0
\(196\) 3.39898 5.88721i 0.242784 0.420515i
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) −6.72474 7.86566i −0.477907 0.558988i
\(199\) 15.5505 1.10235 0.551173 0.834391i \(-0.314180\pi\)
0.551173 + 0.834391i \(0.314180\pi\)
\(200\) 0 0
\(201\) 4.55051 + 6.43539i 0.320968 + 0.453918i
\(202\) −4.00000 6.92820i −0.281439 0.487467i
\(203\) −1.34847 2.33562i −0.0946440 0.163928i
\(204\) −5.89898 8.34242i −0.413011 0.584086i
\(205\) 0 0
\(206\) 14.2474 0.992667
\(207\) −13.4495 15.7313i −0.934804 1.09340i
\(208\) 2.44949 0.169842
\(209\) −9.39898 + 16.2795i −0.650141 + 1.12608i
\(210\) 0 0
\(211\) −1.89898 3.28913i −0.130731 0.226433i 0.793227 0.608925i \(-0.208399\pi\)
−0.923959 + 0.382492i \(0.875066\pi\)
\(212\) −1.77526 3.07483i −0.121925 0.211180i
\(213\) 4.22474 0.389270i 0.289475 0.0266723i
\(214\) 8.17423 14.1582i 0.558779 0.967834i
\(215\) 0 0
\(216\) 5.00000 1.41421i 0.340207 0.0962250i
\(217\) −0.696938 −0.0473113
\(218\) −4.00000 + 6.92820i −0.270914 + 0.469237i
\(219\) −25.5227 + 2.35167i −1.72466 + 0.158911i
\(220\) 0 0
\(221\) 7.22474 + 12.5136i 0.485989 + 0.841758i
\(222\) −5.79796 + 12.5851i −0.389134 + 0.844654i
\(223\) −4.55051 + 7.88171i −0.304725 + 0.527799i −0.977200 0.212321i \(-0.931898\pi\)
0.672475 + 0.740120i \(0.265231\pi\)
\(224\) 0.449490 0.0300328
\(225\) 0 0
\(226\) 4.89898 0.325875
\(227\) 1.72474 2.98735i 0.114475 0.198277i −0.803095 0.595852i \(-0.796815\pi\)
0.917570 + 0.397574i \(0.130148\pi\)
\(228\) −5.44949 7.70674i −0.360901 0.510391i
\(229\) 9.22474 + 15.9777i 0.609588 + 1.05584i 0.991308 + 0.131560i \(0.0419986\pi\)
−0.381720 + 0.924278i \(0.624668\pi\)
\(230\) 0 0
\(231\) 1.55051 + 2.19275i 0.102016 + 0.144273i
\(232\) −3.00000 + 5.19615i −0.196960 + 0.341144i
\(233\) −13.6969 −0.897316 −0.448658 0.893703i \(-0.648098\pi\)
−0.448658 + 0.893703i \(0.648098\pi\)
\(234\) −7.22474 + 1.34278i −0.472296 + 0.0877804i
\(235\) 0 0
\(236\) −6.62372 + 11.4726i −0.431168 + 0.746804i
\(237\) 5.32577 11.5601i 0.345946 0.750910i
\(238\) 1.32577 + 2.29629i 0.0859366 + 0.148847i
\(239\) 0.348469 + 0.603566i 0.0225406 + 0.0390415i 0.877076 0.480352i \(-0.159491\pi\)
−0.854535 + 0.519394i \(0.826158\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) −0.898979 −0.0577886
\(243\) −13.9722 + 6.91215i −0.896317 + 0.443415i
\(244\) 4.44949 0.284849
\(245\) 0 0
\(246\) −1.72474 + 0.158919i −0.109966 + 0.0101323i
\(247\) 6.67423 + 11.5601i 0.424671 + 0.735552i
\(248\) 0.775255 + 1.34278i 0.0492287 + 0.0852667i
\(249\) −2.89898 + 6.29253i −0.183715 + 0.398773i
\(250\) 0 0
\(251\) 6.55051 0.413465 0.206732 0.978398i \(-0.433717\pi\)
0.206732 + 0.978398i \(0.433717\pi\)
\(252\) −1.32577 + 0.246405i −0.0835154 + 0.0155221i
\(253\) −23.7980 −1.49616
\(254\) 3.44949 5.97469i 0.216440 0.374885i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −5.05051 8.74774i −0.315042 0.545669i 0.664404 0.747373i \(-0.268685\pi\)
−0.979446 + 0.201704i \(0.935352\pi\)
\(258\) −2.55051 3.60697i −0.158788 0.224560i
\(259\) 1.79796 3.11416i 0.111720 0.193504i
\(260\) 0 0
\(261\) 6.00000 16.9706i 0.371391 1.05045i
\(262\) −4.89898 −0.302660
\(263\) 6.22474 10.7816i 0.383834 0.664820i −0.607773 0.794111i \(-0.707937\pi\)
0.991607 + 0.129291i \(0.0412701\pi\)
\(264\) 2.50000 5.42650i 0.153864 0.333978i
\(265\) 0 0
\(266\) 1.22474 + 2.12132i 0.0750939 + 0.130066i
\(267\) −5.34847 + 0.492810i −0.327321 + 0.0301595i
\(268\) −2.27526 + 3.94086i −0.138983 + 0.240726i
\(269\) 16.0454 0.978306 0.489153 0.872198i \(-0.337306\pi\)
0.489153 + 0.872198i \(0.337306\pi\)
\(270\) 0 0
\(271\) −15.5959 −0.947385 −0.473692 0.880690i \(-0.657079\pi\)
−0.473692 + 0.880690i \(0.657079\pi\)
\(272\) 2.94949 5.10867i 0.178839 0.309758i
\(273\) 1.89898 0.174973i 0.114931 0.0105898i
\(274\) 1.50000 + 2.59808i 0.0906183 + 0.156956i
\(275\) 0 0
\(276\) 5.00000 10.8530i 0.300965 0.653274i
\(277\) 14.7980 25.6308i 0.889123 1.54001i 0.0482095 0.998837i \(-0.484648\pi\)
0.840914 0.541169i \(-0.182018\pi\)
\(278\) −13.2474 −0.794529
\(279\) −3.02270 3.53553i −0.180965 0.211667i
\(280\) 0 0
\(281\) −6.00000 + 10.3923i −0.357930 + 0.619953i −0.987615 0.156898i \(-0.949851\pi\)
0.629685 + 0.776851i \(0.283184\pi\)
\(282\) 4.44949 + 6.29253i 0.264963 + 0.374715i
\(283\) −2.00000 3.46410i −0.118888 0.205919i 0.800439 0.599414i \(-0.204600\pi\)
−0.919327 + 0.393494i \(0.871266\pi\)
\(284\) 1.22474 + 2.12132i 0.0726752 + 0.125877i
\(285\) 0 0
\(286\) −4.22474 + 7.31747i −0.249814 + 0.432691i
\(287\) 0.449490 0.0265325
\(288\) 1.94949 + 2.28024i 0.114875 + 0.134364i
\(289\) 17.7980 1.04694
\(290\) 0 0
\(291\) 9.42168 20.4507i 0.552309 1.19884i
\(292\) −7.39898 12.8154i −0.432993 0.749965i
\(293\) −9.00000 15.5885i −0.525786 0.910687i −0.999549 0.0300351i \(-0.990438\pi\)
0.473763 0.880652i \(-0.342895\pi\)
\(294\) −11.7247 + 1.08032i −0.683801 + 0.0630057i
\(295\) 0 0
\(296\) −8.00000 −0.464991
\(297\) −4.39898 + 17.3759i −0.255255 + 1.00825i
\(298\) 8.24745 0.477762
\(299\) −8.44949 + 14.6349i −0.488647 + 0.846361i
\(300\) 0 0
\(301\) 0.573214 + 0.992836i 0.0330395 + 0.0572261i
\(302\) 1.44949 + 2.51059i 0.0834088 + 0.144468i
\(303\) −5.79796 + 12.5851i −0.333084 + 0.722993i
\(304\) 2.72474 4.71940i 0.156275 0.270676i
\(305\) 0 0
\(306\) −5.89898 + 16.6848i −0.337222 + 0.953808i
\(307\) 29.9444 1.70902 0.854508 0.519438i \(-0.173859\pi\)
0.854508 + 0.519438i \(0.173859\pi\)
\(308\) −0.775255 + 1.34278i −0.0441743 + 0.0765121i
\(309\) −14.2474 20.1489i −0.810509 1.14623i
\(310\) 0 0
\(311\) −6.55051 11.3458i −0.371445 0.643362i 0.618343 0.785909i \(-0.287804\pi\)
−0.989788 + 0.142546i \(0.954471\pi\)
\(312\) −2.44949 3.46410i −0.138675 0.196116i
\(313\) 10.8485 18.7901i 0.613192 1.06208i −0.377507 0.926007i \(-0.623219\pi\)
0.990699 0.136073i \(-0.0434480\pi\)
\(314\) −16.0000 −0.902932
\(315\) 0 0
\(316\) 7.34847 0.413384
\(317\) −11.4722 + 19.8704i −0.644343 + 1.11603i 0.340110 + 0.940386i \(0.389536\pi\)
−0.984453 + 0.175649i \(0.943798\pi\)
\(318\) −2.57321 + 5.58542i −0.144299 + 0.313215i
\(319\) −10.3485 17.9241i −0.579403 1.00356i
\(320\) 0 0
\(321\) −28.1969 + 2.59808i −1.57380 + 0.145010i
\(322\) −1.55051 + 2.68556i −0.0864066 + 0.149661i
\(323\) 32.1464 1.78868
\(324\) −7.00000 5.65685i −0.388889 0.314270i
\(325\) 0 0
\(326\) 4.44949 7.70674i 0.246434 0.426837i
\(327\) 13.7980 1.27135i 0.763029 0.0703058i
\(328\) −0.500000 0.866025i −0.0276079 0.0478183i
\(329\) −1.00000 1.73205i −0.0551318 0.0954911i
\(330\) 0 0
\(331\) 12.6969 21.9917i 0.697887 1.20878i −0.271311 0.962492i \(-0.587457\pi\)
0.969198 0.246284i \(-0.0792095\pi\)
\(332\) −4.00000 −0.219529
\(333\) 23.5959 4.38551i 1.29305 0.240324i
\(334\) −0.247449 −0.0135398
\(335\) 0 0
\(336\) −0.449490 0.635674i −0.0245217 0.0346789i
\(337\) −9.29796 16.1045i −0.506492 0.877270i −0.999972 0.00751272i \(-0.997609\pi\)
0.493480 0.869757i \(-0.335725\pi\)
\(338\) −3.50000 6.06218i −0.190375 0.329739i
\(339\) −4.89898 6.92820i −0.266076 0.376288i
\(340\) 0 0
\(341\) −5.34847 −0.289636
\(342\) −5.44949 + 15.4135i −0.294675 + 0.833466i
\(343\) 6.20204 0.334879
\(344\) 1.27526 2.20881i 0.0687571 0.119091i
\(345\) 0 0
\(346\) −5.89898 10.2173i −0.317131 0.549287i
\(347\) −4.62372 8.00853i −0.248215 0.429920i 0.714816 0.699313i \(-0.246510\pi\)
−0.963030 + 0.269392i \(0.913177\pi\)
\(348\) 10.3485 0.953512i 0.554736 0.0511136i
\(349\) 13.7980 23.8988i 0.738588 1.27927i −0.214543 0.976714i \(-0.568826\pi\)
0.953131 0.302557i \(-0.0978403\pi\)
\(350\) 0 0
\(351\) 9.12372 + 8.87455i 0.486988 + 0.473688i
\(352\) 3.44949 0.183858
\(353\) −16.2980 + 28.2289i −0.867453 + 1.50247i −0.00286194 + 0.999996i \(0.500911\pi\)
−0.864591 + 0.502476i \(0.832422\pi\)
\(354\) 22.8485 2.10527i 1.21438 0.111894i
\(355\) 0 0
\(356\) −1.55051 2.68556i −0.0821769 0.142335i
\(357\) 1.92168 4.17121i 0.101706 0.220764i
\(358\) −0.449490 + 0.778539i −0.0237563 + 0.0411471i
\(359\) 3.55051 0.187389 0.0936944 0.995601i \(-0.470132\pi\)
0.0936944 + 0.995601i \(0.470132\pi\)
\(360\) 0 0
\(361\) 10.6969 0.562997
\(362\) 2.77526 4.80688i 0.145864 0.252644i
\(363\) 0.898979 + 1.27135i 0.0471842 + 0.0667285i
\(364\) 0.550510 + 0.953512i 0.0288546 + 0.0499776i
\(365\) 0 0
\(366\) −4.44949 6.29253i −0.232579 0.328916i
\(367\) −13.7980 + 23.8988i −0.720248 + 1.24751i 0.240653 + 0.970611i \(0.422638\pi\)
−0.960900 + 0.276894i \(0.910695\pi\)
\(368\) 6.89898 0.359634
\(369\) 1.94949 + 2.28024i 0.101486 + 0.118704i
\(370\) 0 0
\(371\) 0.797959 1.38211i 0.0414280 0.0717553i
\(372\) 1.12372 2.43916i 0.0582624 0.126464i
\(373\) 6.79796 + 11.7744i 0.351985 + 0.609656i 0.986597 0.163175i \(-0.0521735\pi\)
−0.634612 + 0.772831i \(0.718840\pi\)
\(374\) 10.1742 + 17.6223i 0.526097 + 0.911227i
\(375\) 0 0
\(376\) −2.22474 + 3.85337i −0.114732 + 0.198722i
\(377\) −14.6969 −0.756931
\(378\) 1.67423 + 1.62851i 0.0861133 + 0.0837615i
\(379\) 4.14643 0.212988 0.106494 0.994313i \(-0.466038\pi\)
0.106494 + 0.994313i \(0.466038\pi\)
\(380\) 0 0
\(381\) −11.8990 + 1.09638i −0.609603 + 0.0561691i
\(382\) 9.12372 + 15.8028i 0.466810 + 0.808539i
\(383\) 8.89898 + 15.4135i 0.454717 + 0.787592i 0.998672 0.0515220i \(-0.0164072\pi\)
−0.543955 + 0.839114i \(0.683074\pi\)
\(384\) −0.724745 + 1.57313i −0.0369845 + 0.0802786i
\(385\) 0 0
\(386\) −13.6969 −0.697156
\(387\) −2.55051 + 7.21393i −0.129650 + 0.366705i
\(388\) 13.0000 0.659975
\(389\) −8.77526 + 15.1992i −0.444923 + 0.770629i −0.998047 0.0624697i \(-0.980102\pi\)
0.553124 + 0.833099i \(0.313436\pi\)
\(390\) 0 0
\(391\) 20.3485 + 35.2446i 1.02907 + 1.78240i
\(392\) −3.39898 5.88721i −0.171674 0.297349i
\(393\) 4.89898 + 6.92820i 0.247121 + 0.349482i
\(394\) −4.00000 + 6.92820i −0.201517 + 0.349038i
\(395\) 0 0
\(396\) −10.1742 + 1.89097i −0.511275 + 0.0950248i
\(397\) −1.79796 −0.0902370 −0.0451185 0.998982i \(-0.514367\pi\)
−0.0451185 + 0.998982i \(0.514367\pi\)
\(398\) 7.77526 13.4671i 0.389738 0.675047i
\(399\) 1.77526 3.85337i 0.0888739 0.192910i
\(400\) 0 0
\(401\) −4.60102 7.96920i −0.229764 0.397963i 0.727974 0.685605i \(-0.240462\pi\)
−0.957738 + 0.287642i \(0.907129\pi\)
\(402\) 7.84847 0.723161i 0.391446 0.0360680i
\(403\) −1.89898 + 3.28913i −0.0945949 + 0.163843i
\(404\) −8.00000 −0.398015
\(405\) 0 0
\(406\) −2.69694 −0.133847
\(407\) 13.7980 23.8988i 0.683939 1.18462i
\(408\) −10.1742 + 0.937458i −0.503700 + 0.0464111i
\(409\) −7.94949 13.7689i −0.393077 0.680829i 0.599777 0.800167i \(-0.295256\pi\)
−0.992854 + 0.119338i \(0.961923\pi\)
\(410\) 0 0
\(411\) 2.17423 4.71940i 0.107247 0.232791i
\(412\) 7.12372 12.3387i 0.350961 0.607882i
\(413\) −5.95459 −0.293006
\(414\) −20.3485 + 3.78194i −1.00007 + 0.185872i
\(415\) 0 0
\(416\) 1.22474 2.12132i 0.0600481 0.104006i
\(417\) 13.2474 + 18.7347i 0.648730 + 0.917443i
\(418\) 9.39898 + 16.2795i 0.459719 + 0.796257i
\(419\) 4.44949 + 7.70674i 0.217372 + 0.376499i 0.954004 0.299795i \(-0.0969183\pi\)
−0.736632 + 0.676294i \(0.763585\pi\)
\(420\) 0 0
\(421\) 5.77526 10.0030i 0.281469 0.487518i −0.690278 0.723544i \(-0.742512\pi\)
0.971747 + 0.236026i \(0.0758451\pi\)
\(422\) −3.79796 −0.184882
\(423\) 4.44949 12.5851i 0.216342 0.611906i
\(424\) −3.55051 −0.172428
\(425\) 0 0
\(426\) 1.77526 3.85337i 0.0860114 0.186696i
\(427\) 1.00000 + 1.73205i 0.0483934 + 0.0838198i
\(428\) −8.17423 14.1582i −0.395117 0.684362i
\(429\) 14.5732 1.34278i 0.703601 0.0648301i
\(430\) 0 0
\(431\) 38.2474 1.84231 0.921157 0.389190i \(-0.127245\pi\)
0.921157 + 0.389190i \(0.127245\pi\)
\(432\) 1.27526 5.03723i 0.0613557 0.242354i
\(433\) 23.0000 1.10531 0.552655 0.833410i \(-0.313615\pi\)
0.552655 + 0.833410i \(0.313615\pi\)
\(434\) −0.348469 + 0.603566i −0.0167271 + 0.0289721i
\(435\) 0 0
\(436\) 4.00000 + 6.92820i 0.191565 + 0.331801i
\(437\) 18.7980 + 32.5590i 0.899228 + 1.55751i
\(438\) −10.7247 + 23.2791i −0.512448 + 1.11232i
\(439\) −11.0227 + 19.0919i −0.526085 + 0.911206i 0.473453 + 0.880819i \(0.343007\pi\)
−0.999538 + 0.0303869i \(0.990326\pi\)
\(440\) 0 0
\(441\) 13.2526 + 15.5010i 0.631074 + 0.738141i
\(442\) 14.4495 0.687292
\(443\) −10.6237 + 18.4008i −0.504748 + 0.874250i 0.495237 + 0.868758i \(0.335081\pi\)
−0.999985 + 0.00549166i \(0.998252\pi\)
\(444\) 8.00000 + 11.3137i 0.379663 + 0.536925i
\(445\) 0 0
\(446\) 4.55051 + 7.88171i 0.215473 + 0.373210i
\(447\) −8.24745 11.6637i −0.390091 0.551672i
\(448\) 0.224745 0.389270i 0.0106182 0.0183913i
\(449\) 18.7980 0.887131 0.443565 0.896242i \(-0.353713\pi\)
0.443565 + 0.896242i \(0.353713\pi\)
\(450\) 0 0
\(451\) 3.44949 0.162430
\(452\) 2.44949 4.24264i 0.115214 0.199557i
\(453\) 2.10102 4.56048i 0.0987146 0.214270i
\(454\) −1.72474 2.98735i −0.0809463 0.140203i
\(455\) 0 0
\(456\) −9.39898 + 0.866025i −0.440148 + 0.0405554i
\(457\) 8.94949 15.5010i 0.418639 0.725105i −0.577163 0.816629i \(-0.695840\pi\)
0.995803 + 0.0915238i \(0.0291738\pi\)
\(458\) 18.4495 0.862088
\(459\) 29.4949 8.34242i 1.37670 0.389391i
\(460\) 0 0
\(461\) 1.22474 2.12132i 0.0570421 0.0987997i −0.836094 0.548586i \(-0.815166\pi\)
0.893136 + 0.449786i \(0.148500\pi\)
\(462\) 2.67423 0.246405i 0.124417 0.0114638i
\(463\) −12.0000 20.7846i −0.557687 0.965943i −0.997689 0.0679458i \(-0.978356\pi\)
0.440002 0.897997i \(-0.354978\pi\)
\(464\) 3.00000 + 5.19615i 0.139272 + 0.241225i
\(465\) 0 0
\(466\) −6.84847 + 11.8619i −0.317249 + 0.549492i
\(467\) −10.3485 −0.478870 −0.239435 0.970912i \(-0.576962\pi\)
−0.239435 + 0.970912i \(0.576962\pi\)
\(468\) −2.44949 + 6.92820i −0.113228 + 0.320256i
\(469\) −2.04541 −0.0944482
\(470\) 0 0
\(471\) 16.0000 + 22.6274i 0.737241 + 1.04262i
\(472\) 6.62372 + 11.4726i 0.304882 + 0.528070i
\(473\) 4.39898 + 7.61926i 0.202265 + 0.350334i
\(474\) −7.34847 10.3923i −0.337526 0.477334i
\(475\) 0 0
\(476\) 2.65153 0.121533
\(477\) 10.4722 1.94635i 0.479489 0.0891171i
\(478\) 0.696938 0.0318772
\(479\) −8.34847 + 14.4600i −0.381451 + 0.660693i −0.991270 0.131848i \(-0.957909\pi\)
0.609819 + 0.792541i \(0.291242\pi\)
\(480\) 0 0
\(481\) −9.79796 16.9706i −0.446748 0.773791i
\(482\) 0.500000 + 0.866025i 0.0227744 + 0.0394464i
\(483\) 5.34847 0.492810i 0.243364 0.0224236i
\(484\) −0.449490 + 0.778539i −0.0204314 + 0.0353881i
\(485\) 0 0
\(486\) −1.00000 + 15.5563i −0.0453609 + 0.705650i
\(487\) −25.1010 −1.13744 −0.568718 0.822533i \(-0.692560\pi\)
−0.568718 + 0.822533i \(0.692560\pi\)
\(488\) 2.22474 3.85337i 0.100709 0.174434i
\(489\) −15.3485 + 1.41421i −0.694082 + 0.0639529i
\(490\) 0 0
\(491\) −9.27526 16.0652i −0.418586 0.725013i 0.577211 0.816595i \(-0.304141\pi\)
−0.995798 + 0.0915820i \(0.970808\pi\)
\(492\) −0.724745 + 1.57313i −0.0326740 + 0.0709223i
\(493\) −17.6969 + 30.6520i −0.797030 + 1.38050i
\(494\) 13.3485 0.600576
\(495\) 0 0
\(496\) 1.55051 0.0696200
\(497\) −0.550510 + 0.953512i −0.0246938 + 0.0427708i
\(498\) 4.00000 + 5.65685i 0.179244 + 0.253490i
\(499\) 10.6237 + 18.4008i 0.475583 + 0.823734i 0.999609 0.0279682i \(-0.00890372\pi\)
−0.524026 + 0.851703i \(0.675570\pi\)
\(500\) 0 0
\(501\) 0.247449 + 0.349945i 0.0110552 + 0.0156344i
\(502\) 3.27526 5.67291i 0.146182 0.253194i
\(503\) 14.4495 0.644271 0.322135 0.946694i \(-0.395599\pi\)
0.322135 + 0.946694i \(0.395599\pi\)
\(504\) −0.449490 + 1.27135i −0.0200219 + 0.0566304i
\(505\) 0 0
\(506\) −11.8990 + 20.6096i −0.528974 + 0.916210i
\(507\) −5.07321 + 11.0119i −0.225309 + 0.489057i
\(508\) −3.44949 5.97469i −0.153046 0.265084i
\(509\) −15.7980 27.3629i −0.700232 1.21284i −0.968385 0.249461i \(-0.919746\pi\)
0.268153 0.963376i \(-0.413587\pi\)
\(510\) 0 0
\(511\) 3.32577 5.76039i 0.147123 0.254825i
\(512\) −1.00000 −0.0441942
\(513\) 27.2474 7.70674i 1.20300 0.340261i
\(514\) −10.1010 −0.445537
\(515\) 0 0
\(516\) −4.39898 + 0.405324i −0.193654 + 0.0178434i
\(517\) −7.67423 13.2922i −0.337512 0.584589i
\(518\) −1.79796 3.11416i −0.0789978 0.136828i
\(519\) −8.55051 + 18.5597i −0.375326 + 0.814683i
\(520\) 0 0
\(521\) 21.6969 0.950560 0.475280 0.879835i \(-0.342347\pi\)
0.475280 + 0.879835i \(0.342347\pi\)
\(522\) −11.6969 13.6814i −0.511961 0.598820i
\(523\) −10.2020 −0.446104 −0.223052 0.974807i \(-0.571602\pi\)
−0.223052 + 0.974807i \(0.571602\pi\)
\(524\) −2.44949 + 4.24264i −0.107006 + 0.185341i
\(525\) 0 0
\(526\) −6.22474 10.7816i −0.271412 0.470099i
\(527\) 4.57321 + 7.92104i 0.199212 + 0.345046i
\(528\) −3.44949 4.87832i −0.150120 0.212301i
\(529\) −12.2980 + 21.3007i −0.534694 + 0.926117i
\(530\) 0 0
\(531\) −25.8258 30.2073i −1.12074 1.31089i
\(532\) 2.44949 0.106199
\(533\) 1.22474 2.12132i 0.0530496 0.0918846i
\(534\) −2.24745 + 4.87832i −0.0972566 + 0.211105i
\(535\) 0 0
\(536\) 2.27526 + 3.94086i 0.0982761 + 0.170219i
\(537\) 1.55051 0.142865i 0.0669095 0.00616506i
\(538\) 8.02270 13.8957i 0.345883 0.599087i
\(539\) 23.4495 1.01004
\(540\) 0 0
\(541\) −0.404082 −0.0173728 −0.00868642 0.999962i \(-0.502765\pi\)
−0.00868642 + 0.999962i \(0.502765\pi\)
\(542\) −7.79796 + 13.5065i −0.334951 + 0.580152i
\(543\) −9.57321 + 0.882079i −0.410826 + 0.0378537i
\(544\) −2.94949 5.10867i −0.126458 0.219032i
\(545\) 0 0
\(546\) 0.797959 1.73205i 0.0341495 0.0741249i
\(547\) −8.62372 + 14.9367i −0.368724 + 0.638648i −0.989366 0.145445i \(-0.953539\pi\)
0.620642 + 0.784094i \(0.286872\pi\)
\(548\) 3.00000 0.128154
\(549\) −4.44949 + 12.5851i −0.189900 + 0.537117i
\(550\) 0 0
\(551\) −16.3485 + 28.3164i −0.696468 + 1.20632i
\(552\) −6.89898 9.75663i −0.293640 0.415270i
\(553\) 1.65153 + 2.86054i 0.0702302 + 0.121642i
\(554\) −14.7980 25.6308i −0.628705 1.08895i
\(555\) 0 0
\(556\) −6.62372 + 11.4726i −0.280908 + 0.486548i
\(557\) 14.9444 0.633214 0.316607 0.948557i \(-0.397456\pi\)
0.316607 + 0.948557i \(0.397456\pi\)
\(558\) −4.57321 + 0.849971i −0.193600 + 0.0359822i
\(559\) 6.24745 0.264239
\(560\) 0 0
\(561\) 14.7474 32.0108i 0.622638 1.35150i
\(562\) 6.00000 + 10.3923i 0.253095 + 0.438373i
\(563\) −0.926786 1.60524i −0.0390594 0.0676528i 0.845835 0.533445i \(-0.179103\pi\)
−0.884894 + 0.465792i \(0.845769\pi\)
\(564\) 7.67423 0.707107i 0.323144 0.0297746i
\(565\) 0 0
\(566\) −4.00000 −0.168133
\(567\) 0.628827 3.99624i 0.0264082 0.167826i
\(568\) 2.44949 0.102778
\(569\) 15.7474 27.2754i 0.660167 1.14344i −0.320404 0.947281i \(-0.603819\pi\)
0.980571 0.196162i \(-0.0628480\pi\)
\(570\) 0 0
\(571\) −18.6237 32.2572i −0.779379 1.34992i −0.932300 0.361685i \(-0.882202\pi\)
0.152922 0.988238i \(-0.451132\pi\)
\(572\) 4.22474 + 7.31747i 0.176645 + 0.305959i
\(573\) 13.2247 28.7056i 0.552472 1.19920i
\(574\) 0.224745 0.389270i 0.00938067 0.0162478i
\(575\) 0 0
\(576\) 2.94949 0.548188i 0.122895 0.0228412i
\(577\) −15.6969 −0.653472 −0.326736 0.945116i \(-0.605949\pi\)
−0.326736 + 0.945116i \(0.605949\pi\)
\(578\) 8.89898 15.4135i 0.370149 0.641116i
\(579\) 13.6969 + 19.3704i 0.569225 + 0.805006i
\(580\) 0 0
\(581\) −0.898979 1.55708i −0.0372960 0.0645985i
\(582\) −13.0000 18.3848i −0.538867 0.762073i
\(583\) 6.12372 10.6066i 0.253619 0.439281i
\(584\) −14.7980 −0.612344
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 11.9722 20.7364i 0.494145 0.855885i −0.505832 0.862632i \(-0.668814\pi\)
0.999977 + 0.00674727i \(0.00214774\pi\)
\(588\) −4.92679 + 10.6941i −0.203177 + 0.441017i
\(589\) 4.22474 + 7.31747i 0.174078 + 0.301511i
\(590\) 0 0
\(591\) 13.7980 1.27135i 0.567572 0.0522963i
\(592\) −4.00000 + 6.92820i −0.164399 + 0.284747i
\(593\) −17.3939 −0.714281 −0.357140 0.934051i \(-0.616248\pi\)
−0.357140 + 0.934051i \(0.616248\pi\)
\(594\) 12.8485 + 12.4976i 0.527179 + 0.512782i
\(595\) 0 0
\(596\) 4.12372 7.14250i 0.168914 0.292568i
\(597\) −26.8207 + 2.47127i −1.09770 + 0.101142i
\(598\) 8.44949 + 14.6349i 0.345525 + 0.598467i
\(599\) −16.8990 29.2699i −0.690474 1.19594i −0.971683 0.236289i \(-0.924069\pi\)
0.281209 0.959646i \(-0.409264\pi\)
\(600\) 0 0
\(601\) −19.3990 + 33.6000i −0.791301 + 1.37057i 0.133861 + 0.991000i \(0.457262\pi\)
−0.925162 + 0.379573i \(0.876071\pi\)
\(602\) 1.14643 0.0467249
\(603\) −8.87117 10.3763i −0.361262 0.422554i
\(604\) 2.89898 0.117958
\(605\) 0 0
\(606\) 8.00000 + 11.3137i 0.324978 + 0.459588i
\(607\) 13.7980 + 23.8988i 0.560042 + 0.970021i 0.997492 + 0.0707783i \(0.0225483\pi\)
−0.437450 + 0.899243i \(0.644118\pi\)
\(608\) −2.72474 4.71940i −0.110503 0.191397i
\(609\) 2.69694 + 3.81405i 0.109285 + 0.154553i
\(610\) 0 0
\(611\) −10.8990 −0.440926
\(612\) 11.5000 + 13.4511i 0.464860 + 0.543728i
\(613\) −36.9444 −1.49217 −0.746085 0.665851i \(-0.768069\pi\)
−0.746085 + 0.665851i \(0.768069\pi\)
\(614\) 14.9722 25.9326i 0.604229 1.04655i
\(615\) 0 0
\(616\) 0.775255 + 1.34278i 0.0312359 + 0.0541022i
\(617\) −4.15153 7.19066i −0.167134 0.289485i 0.770277 0.637710i \(-0.220118\pi\)
−0.937411 + 0.348224i \(0.886785\pi\)
\(618\) −24.5732 + 2.26418i −0.988480 + 0.0910789i
\(619\) 14.2753 24.7255i 0.573771 0.993800i −0.422403 0.906408i \(-0.638813\pi\)
0.996174 0.0873923i \(-0.0278534\pi\)
\(620\) 0 0
\(621\) 25.6969 + 24.9951i 1.03118 + 1.00302i
\(622\) −13.1010 −0.525303
\(623\) 0.696938 1.20713i 0.0279222 0.0483628i
\(624\) −4.22474 + 0.389270i −0.169125 + 0.0155833i
\(625\) 0 0
\(626\) −10.8485 18.7901i −0.433592 0.751003i
\(627\) 13.6237 29.5717i 0.544079 1.18098i
\(628\) −8.00000 + 13.8564i −0.319235 + 0.552931i
\(629\) −47.1918 −1.88166
\(630\) 0 0
\(631\) −11.3485 −0.451775 −0.225888 0.974153i \(-0.572528\pi\)
−0.225888 + 0.974153i \(0.572528\pi\)
\(632\) 3.67423 6.36396i 0.146153 0.253145i
\(633\) 3.79796 + 5.37113i 0.150955 + 0.213483i
\(634\) 11.4722 + 19.8704i 0.455619 + 0.789155i
\(635\) 0 0
\(636\) 3.55051 + 5.02118i 0.140787 + 0.199103i
\(637\) 8.32577 14.4206i 0.329879 0.571367i
\(638\) −20.6969 −0.819400
\(639\) −7.22474 + 1.34278i −0.285806 + 0.0531196i
\(640\) 0 0
\(641\) 18.5000 32.0429i 0.730706 1.26562i −0.225876 0.974156i \(-0.572524\pi\)
0.956582 0.291464i \(-0.0941423\pi\)
\(642\) −11.8485 + 25.7183i −0.467622 + 1.01502i
\(643\) −7.62372 13.2047i −0.300650 0.520742i 0.675633 0.737238i \(-0.263870\pi\)
−0.976283 + 0.216496i \(0.930537\pi\)
\(644\) 1.55051 + 2.68556i 0.0610987 + 0.105826i
\(645\) 0 0
\(646\) 16.0732 27.8396i 0.632392 1.09534i
\(647\) 34.8990 1.37202 0.686010 0.727592i \(-0.259361\pi\)
0.686010 + 0.727592i \(0.259361\pi\)
\(648\) −8.39898 + 3.23375i −0.329943 + 0.127034i
\(649\) −45.6969 −1.79376
\(650\) 0 0
\(651\) 1.20204 0.110756i 0.0471117 0.00434089i
\(652\) −4.44949 7.70674i −0.174255 0.301819i
\(653\) 17.0000 + 29.4449i 0.665261 + 1.15227i 0.979214 + 0.202828i \(0.0650132\pi\)
−0.313953 + 0.949439i \(0.601653\pi\)
\(654\) 5.79796 12.5851i 0.226718 0.492115i
\(655\) 0 0
\(656\) −1.00000 −0.0390434
\(657\) 43.6464 8.11207i 1.70281 0.316482i
\(658\) −2.00000 −0.0779681
\(659\) 17.8990 31.0019i 0.697245 1.20766i −0.272173 0.962248i \(-0.587742\pi\)
0.969418 0.245416i \(-0.0789245\pi\)
\(660\) 0 0
\(661\) −2.89898 5.02118i −0.112757 0.195301i 0.804124 0.594462i \(-0.202635\pi\)
−0.916881 + 0.399161i \(0.869302\pi\)
\(662\) −12.6969 21.9917i −0.493481 0.854733i
\(663\) −14.4495 20.4347i −0.561172 0.793617i
\(664\) −2.00000 + 3.46410i −0.0776151 + 0.134433i
\(665\) 0 0
\(666\) 8.00000 22.6274i 0.309994 0.876795i
\(667\) −41.3939 −1.60278
\(668\) −0.123724 + 0.214297i −0.00478704 + 0.00829139i
\(669\) 6.59592 14.3171i 0.255013 0.553531i
\(670\) 0 0
\(671\) 7.67423 + 13.2922i 0.296261 + 0.513138i
\(672\) −0.775255 + 0.0714323i −0.0299061 + 0.00275556i
\(673\) 14.4495 25.0273i 0.556987 0.964730i −0.440759 0.897625i \(-0.645291\pi\)
0.997746 0.0671042i \(-0.0213760\pi\)
\(674\) −18.5959 −0.716288
\(675\) 0 0
\(676\) −7.00000 −0.269231
\(677\) −19.7980 + 34.2911i −0.760897 + 1.31791i 0.181491 + 0.983393i \(0.441908\pi\)
−0.942389 + 0.334520i \(0.891426\pi\)
\(678\) −8.44949 + 0.778539i −0.324501 + 0.0298996i
\(679\) 2.92168 + 5.06050i 0.112124 + 0.194204i
\(680\) 0 0
\(681\) −2.50000 + 5.42650i −0.0958002 + 0.207944i
\(682\) −2.67423 + 4.63191i −0.102402 + 0.177365i
\(683\) −45.4495 −1.73908 −0.869538 0.493866i \(-0.835583\pi\)
−0.869538 + 0.493866i \(0.835583\pi\)
\(684\) 10.6237 + 12.4261i 0.406208 + 0.475125i
\(685\) 0 0
\(686\) 3.10102 5.37113i 0.118398 0.205071i
\(687\) −18.4495 26.0915i −0.703892 0.995454i
\(688\) −1.27526 2.20881i −0.0486186 0.0842100i
\(689\) −4.34847 7.53177i −0.165663 0.286938i
\(690\) 0 0
\(691\) −8.79796 + 15.2385i −0.334690 + 0.579700i −0.983425 0.181314i \(-0.941965\pi\)
0.648735 + 0.761014i \(0.275298\pi\)
\(692\) −11.7980 −0.448491
\(693\) −3.02270 3.53553i −0.114823 0.134304i
\(694\) −9.24745 −0.351028
\(695\) 0 0
\(696\) 4.34847 9.43879i 0.164828 0.357777i
\(697\) −2.94949 5.10867i −0.111720 0.193505i
\(698\) −13.7980 23.8988i −0.522260 0.904582i
\(699\) 23.6237 2.17670i 0.893531 0.0823303i
\(700\) 0 0
\(701\) −39.3939 −1.48789 −0.743943 0.668243i \(-0.767047\pi\)
−0.743943 + 0.668243i \(0.767047\pi\)
\(702\) 12.2474 3.46410i 0.462250 0.130744i
\(703\) −43.5959 −1.64425
\(704\) 1.72474 2.98735i 0.0650038 0.112590i
\(705\) 0 0
\(706\) 16.2980 + 28.2289i 0.613382 + 1.06241i
\(707\) −1.79796 3.11416i −0.0676192 0.117120i
\(708\) 9.60102 20.8400i 0.360828 0.783215i
\(709\) −18.6742 + 32.3447i −0.701326 + 1.21473i 0.266676 + 0.963786i \(0.414075\pi\)
−0.968001 + 0.250945i \(0.919259\pi\)
\(710\) 0 0
\(711\) −7.34847 + 20.7846i −0.275589 + 0.779484i
\(712\) −3.10102 −0.116216
\(713\) −5.34847 + 9.26382i −0.200302 + 0.346933i
\(714\) −2.65153 3.74983i −0.0992310 0.140334i
\(715\) 0 0
\(716\) 0.449490 + 0.778539i 0.0167982 + 0.0290954i
\(717\) −0.696938 0.985620i −0.0260276 0.0368086i
\(718\) 1.77526 3.07483i 0.0662519 0.114752i
\(719\) 41.7980 1.55880 0.779400 0.626526i \(-0.215524\pi\)
0.779400 + 0.626526i \(0.215524\pi\)
\(720\) 0 0
\(721\) 6.40408 0.238500
\(722\) 5.34847 9.26382i 0.199049 0.344764i
\(723\) 0.724745 1.57313i 0.0269536 0.0585054i
\(724\) −2.77526 4.80688i −0.103142 0.178646i
\(725\) 0 0
\(726\) 1.55051 0.142865i 0.0575448 0.00530220i
\(727\) 12.6742 21.9524i 0.470061 0.814170i −0.529353 0.848402i \(-0.677565\pi\)
0.999414 + 0.0342318i \(0.0108985\pi\)
\(728\) 1.10102 0.0408065
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 0 0
\(731\) 7.52270 13.0297i 0.278237 0.481921i
\(732\) −7.67423 + 0.707107i −0.283648 + 0.0261354i
\(733\) −10.5732 18.3133i −0.390531 0.676419i 0.601989 0.798504i \(-0.294375\pi\)
−0.992520 + 0.122086i \(0.961042\pi\)
\(734\) 13.7980 + 23.8988i 0.509292 + 0.882120i
\(735\) 0 0
\(736\) 3.44949 5.97469i 0.127150 0.220230i
\(737\) −15.6969 −0.578204
\(738\) 2.94949 0.548188i 0.108572 0.0201791i
\(739\) −17.2474 −0.634458 −0.317229 0.948349i \(-0.602752\pi\)
−0.317229 + 0.948349i \(0.602752\pi\)
\(740\) 0 0
\(741\) −13.3485 18.8776i −0.490368 0.693485i
\(742\) −0.797959 1.38211i −0.0292940 0.0507387i
\(743\) 11.4495 + 19.8311i 0.420041 + 0.727532i 0.995943 0.0899863i \(-0.0286823\pi\)
−0.575902 + 0.817519i \(0.695349\pi\)
\(744\) −1.55051 2.19275i −0.0568445 0.0803902i
\(745\) 0 0
\(746\) 13.5959 0.497782
\(747\) 4.00000 11.3137i 0.146352 0.413947i
\(748\) 20.3485 0.744014
\(749\) 3.67423 6.36396i 0.134254 0.232534i
\(750\) 0 0
\(751\) 26.4949 + 45.8905i 0.966813 + 1.67457i 0.704664 + 0.709541i \(0.251098\pi\)
0.262148 + 0.965028i \(0.415569\pi\)
\(752\) 2.22474 + 3.85337i 0.0811281 + 0.140518i
\(753\) −11.2980 + 1.04100i −0.411721 + 0.0379361i
\(754\) −7.34847 + 12.7279i −0.267615 + 0.463524i
\(755\) 0 0
\(756\) 2.24745 0.635674i 0.0817389 0.0231193i
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 2.07321 3.59091i 0.0753025 0.130428i
\(759\) 41.0454 3.78194i 1.48985 0.137276i
\(760\) 0 0
\(761\) −0.247449 0.428594i −0.00897001 0.0155365i 0.861506 0.507748i \(-0.169522\pi\)
−0.870476 + 0.492212i \(0.836189\pi\)
\(762\) −5.00000 + 10.8530i −0.181131 + 0.393163i
\(763\) −1.79796 + 3.11416i −0.0650905 + 0.112740i
\(764\) 18.2474 0.660170
\(765\) 0 0
\(766\) 17.7980 0.643066
\(767\) −16.2247 + 28.1021i −0.585842 + 1.01471i
\(768\) 1.00000 + 1.41421i 0.0360844 + 0.0510310i
\(769\) −12.2474 21.2132i −0.441654 0.764968i 0.556158 0.831076i \(-0.312275\pi\)
−0.997812 + 0.0661088i \(0.978942\pi\)
\(770\) 0 0
\(771\) 10.1010 + 14.2850i 0.363779 + 0.514462i
\(772\) −6.84847 + 11.8619i −0.246482 + 0.426919i
\(773\) 35.3939 1.27303 0.636515 0.771265i \(-0.280375\pi\)
0.636515 + 0.771265i \(0.280375\pi\)
\(774\) 4.97219 + 5.81577i 0.178722 + 0.209044i
\(775\) 0 0
\(776\) 6.50000 11.2583i 0.233336 0.404151i
\(777\) −2.60612 + 5.65685i −0.0934941 + 0.202939i
\(778\) 8.77526 + 15.1992i 0.314608 + 0.544917i
\(779\) −2.72474 4.71940i −0.0976241 0.169090i
\(780\) 0 0
\(781\) −4.22474 + 7.31747i −0.151173 + 0.261840i
\(782\) 40.6969 1.45532
\(783\) −7.65153 + 30.2234i −0.273443 + 1.08010i
\(784\) −6.79796 −0.242784
\(785\) 0 0
\(786\) 8.44949 0.778539i 0.301383 0.0277696i
\(787\) 25.6969 + 44.5084i 0.915997 + 1.58655i 0.805435 + 0.592684i \(0.201932\pi\)
0.110562 + 0.993869i \(0.464735\pi\)
\(788\) 4.00000 + 6.92820i 0.142494 + 0.246807i
\(789\) −9.02270 + 19.5847i −0.321217 + 0.697234i
\(790\) 0 0
\(791\) 2.20204 0.0782956
\(792\) −3.44949 + 9.75663i −0.122572 + 0.346687i
\(793\) 10.8990 0.387034
\(794\) −0.898979 + 1.55708i −0.0319036 + 0.0552586i
\(795\) 0 0
\(796\) −7.77526 13.4671i −0.275587 0.477330i
\(797\) −1.79796 3.11416i −0.0636870 0.110309i 0.832424 0.554139i \(-0.186953\pi\)
−0.896111 + 0.443830i \(0.853619\pi\)
\(798\) −2.44949 3.46410i −0.0867110 0.122628i
\(799\) −13.1237 + 22.7310i −0.464284 + 0.804163i
\(800\) 0 0
\(801\) 9.14643 1.69994i 0.323173 0.0600645i
\(802\) −9.20204 −0.324935
\(803\) 25.5227 44.2066i 0.900677 1.56002i
\(804\) 3.29796 7.15855i 0.116310 0.252463i
\(805\) 0 0
\(806\) 1.89898 + 3.28913i 0.0668887 + 0.115855i
\(807\) −27.6742 + 2.54991i −0.974179 + 0.0897612i
\(808\) −4.00000 + 6.92820i −0.140720 + 0.243733i
\(809\) −41.0908 −1.44468 −0.722338 0.691540i \(-0.756933\pi\)
−0.722338 + 0.691540i \(0.756933\pi\)
\(810\) 0 0
\(811\) 7.24745 0.254492 0.127246 0.991871i \(-0.459386\pi\)
0.127246 + 0.991871i \(0.459386\pi\)
\(812\) −1.34847 + 2.33562i −0.0473220 + 0.0819641i
\(813\) 26.8990 2.47848i 0.943388 0.0869242i
\(814\) −13.7980 23.8988i −0.483618 0.837651i
\(815\) 0 0
\(816\) −4.27526 + 9.27987i −0.149664 + 0.324861i
\(817\) 6.94949 12.0369i 0.243132 0.421117i
\(818\) −15.8990 −0.555895
\(819\) −3.24745 + 0.603566i −0.113475 + 0.0210903i
\(820\) 0 0
\(821\) −1.02270 + 1.77138i −0.0356926 + 0.0618214i −0.883320 0.468771i \(-0.844697\pi\)
0.847627 + 0.530592i \(0.178030\pi\)
\(822\) −3.00000 4.24264i −0.104637 0.147979i
\(823\) 15.7980 + 27.3629i 0.550682 + 0.953810i 0.998225 + 0.0595473i \(0.0189657\pi\)
−0.447543 + 0.894262i \(0.647701\pi\)
\(824\) −7.12372 12.3387i −0.248167 0.429837i
\(825\) 0 0
\(826\) −2.97730 + 5.15683i −0.103593 + 0.179429i
\(827\) 5.79796 0.201615 0.100807 0.994906i \(-0.467857\pi\)
0.100807 + 0.994906i \(0.467857\pi\)
\(828\) −6.89898 + 19.5133i −0.239756 + 0.678133i
\(829\) −26.4495 −0.918629 −0.459314 0.888274i \(-0.651905\pi\)
−0.459314 + 0.888274i \(0.651905\pi\)
\(830\) 0 0
\(831\) −21.4495 + 46.5583i −0.744075 + 1.61509i
\(832\) −1.22474 2.12132i −0.0424604 0.0735436i
\(833\) −20.0505 34.7285i −0.694709 1.20327i
\(834\) 22.8485 2.10527i 0.791178 0.0728994i
\(835\) 0 0
\(836\) 18.7980 0.650141
\(837\) 5.77526 + 5.61753i 0.199622 + 0.194170i
\(838\) 8.89898 0.307410
\(839\) −20.1237 + 34.8553i −0.694748 + 1.20334i 0.275517 + 0.961296i \(0.411151\pi\)
−0.970266 + 0.242043i \(0.922183\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) −5.77526 10.0030i −0.199028 0.344727i
\(843\) 8.69694 18.8776i 0.299538 0.650179i
\(844\) −1.89898 + 3.28913i −0.0653656 + 0.113216i
\(845\) 0 0
\(846\) −8.67423 10.1459i −0.298226 0.348823i
\(847\) −0.404082 −0.0138844
\(848\) −1.77526 + 3.07483i −0.0609625 + 0.105590i
\(849\) 4.00000 + 5.65685i 0.137280 + 0.194143i
\(850\) 0 0
\(851\) −27.5959 47.7975i −0.945976 1.63848i
\(852\) −2.44949 3.46410i −0.0839181 0.118678i
\(853\) −4.57321 + 7.92104i −0.156584 + 0.271211i −0.933635 0.358227i \(-0.883381\pi\)
0.777051 + 0.629438i \(0.216715\pi\)
\(854\) 2.00000 0.0684386
\(855\) 0 0
\(856\) −16.3485 −0.558779
\(857\) −2.69694 + 4.67123i −0.0921257 + 0.159566i −0.908405 0.418091i \(-0.862699\pi\)
0.816280 + 0.577657i \(0.196033\pi\)
\(858\) 6.12372 13.2922i 0.209061 0.453787i
\(859\) 18.8712 + 32.6858i 0.643876 + 1.11523i 0.984560 + 0.175048i \(0.0560081\pi\)
−0.340684 + 0.940178i \(0.610659\pi\)
\(860\) 0 0
\(861\) −0.775255 + 0.0714323i −0.0264206 + 0.00243441i
\(862\) 19.1237 33.1233i 0.651357 1.12818i
\(863\) 26.4495 0.900351 0.450176 0.892940i \(-0.351361\pi\)
0.450176 + 0.892940i \(0.351361\pi\)
\(864\) −3.72474 3.62302i −0.126718 0.123258i
\(865\) 0 0
\(866\) 11.5000 19.9186i 0.390786 0.676861i
\(867\) −30.6969 + 2.82843i −1.04252 + 0.0960584i
\(868\) 0.348469 + 0.603566i 0.0118278 + 0.0204864i
\(869\) 12.6742 + 21.9524i 0.429944 + 0.744685i
\(870\) 0 0
\(871\) −5.57321 + 9.65309i −0.188841 + 0.327082i
\(872\) 8.00000 0.270914
\(873\) −13.0000 + 36.7696i −0.439983 + 1.24446i
\(874\) 37.5959 1.27170
\(875\) 0 0
\(876\) 14.7980 + 20.9275i 0.499977 + 0.707074i
\(877\) 10.4268 + 18.0597i 0.352088 + 0.609834i 0.986615 0.163067i \(-0.0521386\pi\)
−0.634527 + 0.772900i \(0.718805\pi\)
\(878\) 11.0227 + 19.0919i 0.371998 + 0.644320i
\(879\) 18.0000 + 25.4558i 0.607125 + 0.858604i
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 20.0505 3.72656i 0.675136 0.125480i
\(883\) −6.55051 −0.220442 −0.110221 0.993907i \(-0.535156\pi\)
−0.110221 + 0.993907i \(0.535156\pi\)
\(884\) 7.22474 12.5136i 0.242994 0.420879i
\(885\) 0 0
\(886\) 10.6237 + 18.4008i 0.356911 + 0.618188i
\(887\) −9.67423 16.7563i −0.324829 0.562620i 0.656649 0.754197i \(-0.271973\pi\)
−0.981478 + 0.191576i \(0.938640\pi\)
\(888\) 13.7980 1.27135i 0.463029 0.0426637i
\(889\) 1.55051 2.68556i 0.0520024 0.0900709i
\(890\) 0 0
\(891\) 4.82577 30.6681i 0.161669 1.02742i
\(892\) 9.10102 0.304725
\(893\) −12.1237 + 20.9989i −0.405705 + 0.702702i
\(894\) −14.2247 + 1.31067i −0.475747 + 0.0438355i
\(895\) 0 0
\(896\) −0.224745 0.389270i −0.00750820 0.0130046i
\(897\) 12.2474 26.5843i 0.408930 0.887625i
\(898\) 9.39898 16.2795i 0.313648 0.543254i
\(899\) −9.30306 −0.310274
\(900\) 0 0
\(901\) −20.9444 −0.697759
\(902\) 1.72474 2.98735i 0.0574277 0.0994677i
\(903\) −1.14643 1.62129i −0.0381507 0.0539533i
\(904\) −2.44949 4.24264i −0.0814688 0.141108i
\(905\) 0 0
\(906\) −2.89898 4.09978i −0.0963121 0.136206i
\(907\) 19.8712 34.4179i 0.659811 1.14283i −0.320853 0.947129i \(-0.603969\pi\)
0.980664 0.195698i \(-0.0626972\pi\)
\(908\) −3.44949 −0.114475
\(909\) 8.00000 22.6274i 0.265343 0.750504i
\(910\) 0 0
\(911\) −12.1237 + 20.9989i −0.401677 + 0.695725i −0.993928 0.110028i \(-0.964906\pi\)
0.592252 + 0.805753i \(0.298239\pi\)
\(912\) −3.94949 + 8.57277i −0.130781 + 0.283873i
\(913\) −6.89898 11.9494i −0.228323 0.395467i
\(914\) −8.94949 15.5010i −0.296023 0.512727i
\(915\) 0 0
\(916\) 9.22474 15.9777i 0.304794 0.527919i
\(917\) −2.20204 −0.0727178
\(918\) 7.52270 29.7145i 0.248286 0.980726i
\(919\) 1.10102 0.0363193 0.0181597 0.999835i \(-0.494219\pi\)
0.0181597 + 0.999835i \(0.494219\pi\)
\(920\) 0 0
\(921\) −51.6464 + 4.75872i −1.70181 + 0.156805i
\(922\) −1.22474 2.12132i −0.0403348 0.0698620i
\(923\) 3.00000 + 5.19615i 0.0987462 + 0.171033i
\(924\) 1.12372 2.43916i 0.0369678 0.0802424i
\(925\) 0 0
\(926\) −24.0000 −0.788689
\(927\) 27.7753 + 32.4876i 0.912259 + 1.06703i
\(928\) 6.00000 0.196960
\(929\) 8.20204 14.2064i 0.269100 0.466095i −0.699529 0.714604i \(-0.746607\pi\)
0.968630 + 0.248508i \(0.0799404\pi\)
\(930\) 0 0
\(931\) −18.5227 32.0823i −0.607057 1.05145i
\(932\) 6.84847 + 11.8619i 0.224329 + 0.388549i
\(933\) 13.1010 + 18.5276i 0.428908 + 0.606568i
\(934\) −5.17423 + 8.96204i −0.169306 + 0.293247i
\(935\) 0 0
\(936\) 4.77526 + 5.58542i 0.156084 + 0.182565i
\(937\) −0.404082 −0.0132008 −0.00660039 0.999978i \(-0.502101\pi\)
−0.00660039 + 0.999978i \(0.502101\pi\)
\(938\) −1.02270 + 1.77138i −0.0333925 + 0.0578374i
\(939\) −15.7247 + 34.1322i −0.513158 + 1.11386i
\(940\) 0 0
\(941\) 15.1010 + 26.1557i 0.492279 + 0.852653i 0.999960 0.00889239i \(-0.00283057\pi\)
−0.507681 + 0.861545i \(0.669497\pi\)
\(942\) 27.5959 2.54270i 0.899124 0.0828456i
\(943\) 3.44949 5.97469i 0.112331 0.194563i
\(944\) 13.2474 0.431168
\(945\) 0 0
\(946\) 8.79796 0.286046
\(947\) −1.62372 + 2.81237i −0.0527640 + 0.0913898i −0.891201 0.453609i \(-0.850136\pi\)
0.838437 + 0.544998i \(0.183470\pi\)
\(948\) −12.6742 + 1.16781i −0.411640 + 0.0379287i
\(949\) −18.1237 31.3912i −0.588321 1.01900i
\(950\) 0 0
\(951\) 16.6288 36.0946i 0.539227 1.17045i
\(952\) 1.32577 2.29629i 0.0429683 0.0744233i
\(953\) −31.2020 −1.01073 −0.505367 0.862905i \(-0.668643\pi\)
−0.505367 + 0.862905i \(0.668643\pi\)
\(954\) 3.55051 10.0424i 0.114952 0.325133i
\(955\) 0 0
\(956\) 0.348469 0.603566i 0.0112703 0.0195207i
\(957\) 20.6969 + 29.2699i 0.669037 + 0.946161i
\(958\) 8.34847 + 14.4600i 0.269727 + 0.467181i
\(959\) 0.674235 + 1.16781i 0.0217722 + 0.0377105i
\(960\) 0 0
\(961\) 14.2980 24.7648i 0.461224 0.798864i
\(962\) −19.5959 −0.631798
\(963\) 48.2196 8.96204i 1.55386 0.288798i
\(964\) 1.00000 0.0322078
\(965\) 0 0
\(966\) 2.24745 4.87832i 0.0723105 0.156957i
\(967\) −0.348469 0.603566i −0.0112060 0.0194094i 0.860368 0.509673i \(-0.170234\pi\)
−0.871574 + 0.490264i \(0.836900\pi\)
\(968\) 0.449490 + 0.778539i 0.0144471 + 0.0250232i
\(969\) −55.4444 + 5.10867i −1.78113 + 0.164114i
\(970\) 0 0
\(971\) 35.3939 1.13584 0.567922 0.823083i \(-0.307748\pi\)
0.567922 + 0.823083i \(0.307748\pi\)
\(972\) 12.9722 + 8.64420i 0.416083 + 0.277263i
\(973\) −5.95459 −0.190895
\(974\) −12.5505 + 21.7381i −0.402144 + 0.696534i
\(975\) 0 0
\(976\) −2.22474 3.85337i −0.0712123 0.123343i
\(977\) −14.0505 24.3362i −0.449516 0.778584i 0.548839 0.835928i \(-0.315070\pi\)
−0.998354 + 0.0573443i \(0.981737\pi\)
\(978\) −6.44949 + 13.9993i −0.206232 + 0.447647i
\(979\) 5.34847 9.26382i 0.170938 0.296073i
\(980\) 0 0
\(981\) −23.5959 + 4.38551i −0.753360 + 0.140018i
\(982\) −18.5505 −0.591971
\(983\) −10.6969 + 18.5276i −0.341179 + 0.590940i −0.984652 0.174529i \(-0.944160\pi\)
0.643473 + 0.765469i \(0.277493\pi\)
\(984\) 1.00000 + 1.41421i 0.0318788 + 0.0450835i
\(985\) 0 0
\(986\) 17.6969 + 30.6520i 0.563585 + 0.976158i
\(987\) 2.00000 + 2.82843i 0.0636607 + 0.0900298i
\(988\) 6.67423 11.5601i 0.212336 0.367776i
\(989\) 17.5959 0.559518
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 0.775255 1.34278i 0.0246144 0.0426333i
\(993\) −18.4041 + 39.9479i −0.584036 + 1.26771i
\(994\) 0.550510 + 0.953512i 0.0174611 + 0.0302436i
\(995\) 0 0
\(996\) 6.89898 0.635674i 0.218603 0.0201421i
\(997\) −10.4722 + 18.1384i −0.331658 + 0.574448i −0.982837 0.184476i \(-0.940941\pi\)
0.651179 + 0.758924i \(0.274275\pi\)
\(998\) 21.2474 0.672576
\(999\) −40.0000 + 11.3137i −1.26554 + 0.357950i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.e.n.151.1 4
3.2 odd 2 1350.2.e.j.451.2 4
5.2 odd 4 90.2.i.b.79.3 yes 8
5.3 odd 4 90.2.i.b.79.2 yes 8
5.4 even 2 450.2.e.k.151.2 4
9.2 odd 6 4050.2.a.bz.1.1 2
9.4 even 3 inner 450.2.e.n.301.1 4
9.5 odd 6 1350.2.e.j.901.2 4
9.7 even 3 4050.2.a.bq.1.1 2
15.2 even 4 270.2.i.b.19.1 8
15.8 even 4 270.2.i.b.19.4 8
15.14 odd 2 1350.2.e.m.451.1 4
20.3 even 4 720.2.by.c.529.3 8
20.7 even 4 720.2.by.c.529.2 8
45.2 even 12 810.2.c.e.649.3 4
45.4 even 6 450.2.e.k.301.2 4
45.7 odd 12 810.2.c.f.649.2 4
45.13 odd 12 90.2.i.b.49.3 yes 8
45.14 odd 6 1350.2.e.m.901.1 4
45.22 odd 12 90.2.i.b.49.2 8
45.23 even 12 270.2.i.b.199.1 8
45.29 odd 6 4050.2.a.bm.1.2 2
45.32 even 12 270.2.i.b.199.4 8
45.34 even 6 4050.2.a.bs.1.2 2
45.38 even 12 810.2.c.e.649.1 4
45.43 odd 12 810.2.c.f.649.4 4
60.23 odd 4 2160.2.by.d.289.3 8
60.47 odd 4 2160.2.by.d.289.2 8
180.23 odd 12 2160.2.by.d.1009.2 8
180.67 even 12 720.2.by.c.49.3 8
180.103 even 12 720.2.by.c.49.2 8
180.167 odd 12 2160.2.by.d.1009.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.b.49.2 8 45.22 odd 12
90.2.i.b.49.3 yes 8 45.13 odd 12
90.2.i.b.79.2 yes 8 5.3 odd 4
90.2.i.b.79.3 yes 8 5.2 odd 4
270.2.i.b.19.1 8 15.2 even 4
270.2.i.b.19.4 8 15.8 even 4
270.2.i.b.199.1 8 45.23 even 12
270.2.i.b.199.4 8 45.32 even 12
450.2.e.k.151.2 4 5.4 even 2
450.2.e.k.301.2 4 45.4 even 6
450.2.e.n.151.1 4 1.1 even 1 trivial
450.2.e.n.301.1 4 9.4 even 3 inner
720.2.by.c.49.2 8 180.103 even 12
720.2.by.c.49.3 8 180.67 even 12
720.2.by.c.529.2 8 20.7 even 4
720.2.by.c.529.3 8 20.3 even 4
810.2.c.e.649.1 4 45.38 even 12
810.2.c.e.649.3 4 45.2 even 12
810.2.c.f.649.2 4 45.7 odd 12
810.2.c.f.649.4 4 45.43 odd 12
1350.2.e.j.451.2 4 3.2 odd 2
1350.2.e.j.901.2 4 9.5 odd 6
1350.2.e.m.451.1 4 15.14 odd 2
1350.2.e.m.901.1 4 45.14 odd 6
2160.2.by.d.289.2 8 60.47 odd 4
2160.2.by.d.289.3 8 60.23 odd 4
2160.2.by.d.1009.2 8 180.23 odd 12
2160.2.by.d.1009.3 8 180.167 odd 12
4050.2.a.bm.1.2 2 45.29 odd 6
4050.2.a.bq.1.1 2 9.7 even 3
4050.2.a.bs.1.2 2 45.34 even 6
4050.2.a.bz.1.1 2 9.2 odd 6