Properties

Label 270.2.i.b.199.4
Level $270$
Weight $2$
Character 270.199
Analytic conductor $2.156$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [270,2,Mod(19,270)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(270, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("270.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.4
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 270.199
Dual form 270.2.i.b.19.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.30701 - 1.81431i) q^{5} +(-0.389270 + 0.224745i) q^{7} -1.00000i q^{8} +(0.224745 - 2.22474i) q^{10} +(-1.72474 - 2.98735i) q^{11} +(2.12132 + 1.22474i) q^{13} +(-0.224745 + 0.389270i) q^{14} +(-0.500000 - 0.866025i) q^{16} +5.89898i q^{17} +5.44949 q^{19} +(-0.917738 - 2.03906i) q^{20} +(-2.98735 - 1.72474i) q^{22} +(-5.97469 - 3.44949i) q^{23} +(-1.58346 - 4.74264i) q^{25} +2.44949 q^{26} +0.449490i q^{28} +(3.00000 + 5.19615i) q^{29} +(-0.775255 + 1.34278i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(2.94949 + 5.10867i) q^{34} +(-0.101021 + 1.00000i) q^{35} +8.00000i q^{37} +(4.71940 - 2.72474i) q^{38} +(-1.81431 - 1.30701i) q^{40} +(-0.500000 + 0.866025i) q^{41} +(-2.20881 + 1.27526i) q^{43} -3.44949 q^{44} -6.89898 q^{46} +(3.85337 - 2.22474i) q^{47} +(-3.39898 + 5.88721i) q^{49} +(-3.74264 - 3.31552i) q^{50} +(2.12132 - 1.22474i) q^{52} +3.55051i q^{53} +(-7.67423 - 0.775255i) q^{55} +(0.224745 + 0.389270i) q^{56} +(5.19615 + 3.00000i) q^{58} +(-6.62372 + 11.4726i) q^{59} +(-2.22474 - 3.85337i) q^{61} +1.55051i q^{62} -1.00000 q^{64} +(4.99465 - 2.24799i) q^{65} +(-3.94086 - 2.27526i) q^{67} +(5.10867 + 2.94949i) q^{68} +(0.412514 + 0.916536i) q^{70} +2.44949 q^{71} -14.7980i q^{73} +(4.00000 + 6.92820i) q^{74} +(2.72474 - 4.71940i) q^{76} +(1.34278 + 0.775255i) q^{77} +(3.67423 + 6.36396i) q^{79} +(-2.22474 - 0.224745i) q^{80} +1.00000i q^{82} +(-3.46410 + 2.00000i) q^{83} +(10.7026 + 7.71001i) q^{85} +(-1.27526 + 2.20881i) q^{86} +(-2.98735 + 1.72474i) q^{88} +3.10102 q^{89} -1.10102 q^{91} +(-5.97469 + 3.44949i) q^{92} +(2.22474 - 3.85337i) q^{94} +(7.12252 - 9.88708i) q^{95} +(11.2583 - 6.50000i) q^{97} +6.79796i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 4 q^{5} - 8 q^{10} - 4 q^{11} + 8 q^{14} - 4 q^{16} + 24 q^{19} - 4 q^{20} + 24 q^{29} - 16 q^{31} + 4 q^{34} - 40 q^{35} - 4 q^{40} - 4 q^{41} - 8 q^{44} - 16 q^{46} + 12 q^{49} + 4 q^{50}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.30701 1.81431i 0.584511 0.811386i
\(6\) 0 0
\(7\) −0.389270 + 0.224745i −0.147130 + 0.0849456i −0.571758 0.820422i \(-0.693738\pi\)
0.424628 + 0.905368i \(0.360405\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.224745 2.22474i 0.0710706 0.703526i
\(11\) −1.72474 2.98735i −0.520030 0.900719i −0.999729 0.0232854i \(-0.992587\pi\)
0.479699 0.877433i \(-0.340746\pi\)
\(12\) 0 0
\(13\) 2.12132 + 1.22474i 0.588348 + 0.339683i 0.764444 0.644690i \(-0.223014\pi\)
−0.176096 + 0.984373i \(0.556347\pi\)
\(14\) −0.224745 + 0.389270i −0.0600656 + 0.104037i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 5.89898i 1.43071i 0.698760 + 0.715356i \(0.253736\pi\)
−0.698760 + 0.715356i \(0.746264\pi\)
\(18\) 0 0
\(19\) 5.44949 1.25020 0.625099 0.780545i \(-0.285058\pi\)
0.625099 + 0.780545i \(0.285058\pi\)
\(20\) −0.917738 2.03906i −0.205212 0.455947i
\(21\) 0 0
\(22\) −2.98735 1.72474i −0.636904 0.367717i
\(23\) −5.97469 3.44949i −1.24581 0.719268i −0.275538 0.961290i \(-0.588856\pi\)
−0.970271 + 0.242022i \(0.922189\pi\)
\(24\) 0 0
\(25\) −1.58346 4.74264i −0.316693 0.948528i
\(26\) 2.44949 0.480384
\(27\) 0 0
\(28\) 0.449490i 0.0849456i
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) 0 0
\(31\) −0.775255 + 1.34278i −0.139240 + 0.241171i −0.927209 0.374544i \(-0.877799\pi\)
0.787969 + 0.615715i \(0.211133\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 2.94949 + 5.10867i 0.505833 + 0.876129i
\(35\) −0.101021 + 1.00000i −0.0170756 + 0.169031i
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 4.71940 2.72474i 0.765587 0.442012i
\(39\) 0 0
\(40\) −1.81431 1.30701i −0.286868 0.206656i
\(41\) −0.500000 + 0.866025i −0.0780869 + 0.135250i −0.902424 0.430848i \(-0.858214\pi\)
0.824338 + 0.566099i \(0.191548\pi\)
\(42\) 0 0
\(43\) −2.20881 + 1.27526i −0.336840 + 0.194475i −0.658874 0.752254i \(-0.728967\pi\)
0.322034 + 0.946728i \(0.395634\pi\)
\(44\) −3.44949 −0.520030
\(45\) 0 0
\(46\) −6.89898 −1.01720
\(47\) 3.85337 2.22474i 0.562072 0.324512i −0.191905 0.981414i \(-0.561466\pi\)
0.753977 + 0.656901i \(0.228133\pi\)
\(48\) 0 0
\(49\) −3.39898 + 5.88721i −0.485568 + 0.841029i
\(50\) −3.74264 3.31552i −0.529289 0.468885i
\(51\) 0 0
\(52\) 2.12132 1.22474i 0.294174 0.169842i
\(53\) 3.55051i 0.487700i 0.969813 + 0.243850i \(0.0784105\pi\)
−0.969813 + 0.243850i \(0.921590\pi\)
\(54\) 0 0
\(55\) −7.67423 0.775255i −1.03479 0.104535i
\(56\) 0.224745 + 0.389270i 0.0300328 + 0.0520183i
\(57\) 0 0
\(58\) 5.19615 + 3.00000i 0.682288 + 0.393919i
\(59\) −6.62372 + 11.4726i −0.862335 + 1.49361i 0.00733331 + 0.999973i \(0.497666\pi\)
−0.869669 + 0.493636i \(0.835668\pi\)
\(60\) 0 0
\(61\) −2.22474 3.85337i −0.284849 0.493374i 0.687723 0.725973i \(-0.258610\pi\)
−0.972573 + 0.232599i \(0.925277\pi\)
\(62\) 1.55051i 0.196915i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 4.99465 2.24799i 0.619510 0.278829i
\(66\) 0 0
\(67\) −3.94086 2.27526i −0.481452 0.277967i 0.239569 0.970879i \(-0.422994\pi\)
−0.721022 + 0.692913i \(0.756327\pi\)
\(68\) 5.10867 + 2.94949i 0.619517 + 0.357678i
\(69\) 0 0
\(70\) 0.412514 + 0.916536i 0.0493048 + 0.109547i
\(71\) 2.44949 0.290701 0.145350 0.989380i \(-0.453569\pi\)
0.145350 + 0.989380i \(0.453569\pi\)
\(72\) 0 0
\(73\) 14.7980i 1.73197i −0.500070 0.865985i \(-0.666692\pi\)
0.500070 0.865985i \(-0.333308\pi\)
\(74\) 4.00000 + 6.92820i 0.464991 + 0.805387i
\(75\) 0 0
\(76\) 2.72474 4.71940i 0.312550 0.541352i
\(77\) 1.34278 + 0.775255i 0.153024 + 0.0883485i
\(78\) 0 0
\(79\) 3.67423 + 6.36396i 0.413384 + 0.716002i 0.995257 0.0972777i \(-0.0310135\pi\)
−0.581874 + 0.813279i \(0.697680\pi\)
\(80\) −2.22474 0.224745i −0.248734 0.0251272i
\(81\) 0 0
\(82\) 1.00000i 0.110432i
\(83\) −3.46410 + 2.00000i −0.380235 + 0.219529i −0.677920 0.735135i \(-0.737119\pi\)
0.297686 + 0.954664i \(0.403785\pi\)
\(84\) 0 0
\(85\) 10.7026 + 7.71001i 1.16086 + 0.836268i
\(86\) −1.27526 + 2.20881i −0.137514 + 0.238182i
\(87\) 0 0
\(88\) −2.98735 + 1.72474i −0.318452 + 0.183858i
\(89\) 3.10102 0.328708 0.164354 0.986401i \(-0.447446\pi\)
0.164354 + 0.986401i \(0.447446\pi\)
\(90\) 0 0
\(91\) −1.10102 −0.115418
\(92\) −5.97469 + 3.44949i −0.622905 + 0.359634i
\(93\) 0 0
\(94\) 2.22474 3.85337i 0.229465 0.397445i
\(95\) 7.12252 9.88708i 0.730755 1.01439i
\(96\) 0 0
\(97\) 11.2583 6.50000i 1.14311 0.659975i 0.195911 0.980622i \(-0.437234\pi\)
0.947199 + 0.320647i \(0.103900\pi\)
\(98\) 6.79796i 0.686698i
\(99\) 0 0
\(100\) −4.89898 1.00000i −0.489898 0.100000i
\(101\) −4.00000 6.92820i −0.398015 0.689382i 0.595466 0.803380i \(-0.296967\pi\)
−0.993481 + 0.113998i \(0.963634\pi\)
\(102\) 0 0
\(103\) −12.3387 7.12372i −1.21576 0.701921i −0.251755 0.967791i \(-0.581008\pi\)
−0.964009 + 0.265870i \(0.914341\pi\)
\(104\) 1.22474 2.12132i 0.120096 0.208013i
\(105\) 0 0
\(106\) 1.77526 + 3.07483i 0.172428 + 0.298654i
\(107\) 16.3485i 1.58047i −0.612806 0.790233i \(-0.709959\pi\)
0.612806 0.790233i \(-0.290041\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) −7.03371 + 3.16573i −0.670638 + 0.301840i
\(111\) 0 0
\(112\) 0.389270 + 0.224745i 0.0367825 + 0.0212364i
\(113\) 4.24264 + 2.44949i 0.399114 + 0.230429i 0.686102 0.727506i \(-0.259321\pi\)
−0.286988 + 0.957934i \(0.592654\pi\)
\(114\) 0 0
\(115\) −14.0674 + 6.33145i −1.31179 + 0.590411i
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 13.2474i 1.21953i
\(119\) −1.32577 2.29629i −0.121533 0.210501i
\(120\) 0 0
\(121\) −0.449490 + 0.778539i −0.0408627 + 0.0707763i
\(122\) −3.85337 2.22474i −0.348868 0.201419i
\(123\) 0 0
\(124\) 0.775255 + 1.34278i 0.0696200 + 0.120585i
\(125\) −10.6742 3.32577i −0.954733 0.297465i
\(126\) 0 0
\(127\) 6.89898i 0.612185i 0.952002 + 0.306093i \(0.0990218\pi\)
−0.952002 + 0.306093i \(0.900978\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 3.20150 4.44414i 0.280790 0.389777i
\(131\) 2.44949 4.24264i 0.214013 0.370681i −0.738954 0.673756i \(-0.764680\pi\)
0.952967 + 0.303075i \(0.0980132\pi\)
\(132\) 0 0
\(133\) −2.12132 + 1.22474i −0.183942 + 0.106199i
\(134\) −4.55051 −0.393104
\(135\) 0 0
\(136\) 5.89898 0.505833
\(137\) −2.59808 + 1.50000i −0.221969 + 0.128154i −0.606861 0.794808i \(-0.707572\pi\)
0.384893 + 0.922961i \(0.374238\pi\)
\(138\) 0 0
\(139\) 6.62372 11.4726i 0.561817 0.973096i −0.435521 0.900179i \(-0.643436\pi\)
0.997338 0.0729170i \(-0.0232308\pi\)
\(140\) 0.815515 + 0.587486i 0.0689236 + 0.0496517i
\(141\) 0 0
\(142\) 2.12132 1.22474i 0.178017 0.102778i
\(143\) 8.44949i 0.706582i
\(144\) 0 0
\(145\) 13.3485 + 1.34847i 1.10853 + 0.111984i
\(146\) −7.39898 12.8154i −0.612344 1.06061i
\(147\) 0 0
\(148\) 6.92820 + 4.00000i 0.569495 + 0.328798i
\(149\) 4.12372 7.14250i 0.337829 0.585136i −0.646195 0.763172i \(-0.723641\pi\)
0.984024 + 0.178036i \(0.0569742\pi\)
\(150\) 0 0
\(151\) −1.44949 2.51059i −0.117958 0.204309i 0.801000 0.598664i \(-0.204301\pi\)
−0.918958 + 0.394355i \(0.870968\pi\)
\(152\) 5.44949i 0.442012i
\(153\) 0 0
\(154\) 1.55051 0.124944
\(155\) 1.42296 + 3.16158i 0.114295 + 0.253944i
\(156\) 0 0
\(157\) −13.8564 8.00000i −1.10586 0.638470i −0.168107 0.985769i \(-0.553765\pi\)
−0.937754 + 0.347299i \(0.887099\pi\)
\(158\) 6.36396 + 3.67423i 0.506290 + 0.292306i
\(159\) 0 0
\(160\) −2.03906 + 0.917738i −0.161202 + 0.0725535i
\(161\) 3.10102 0.244395
\(162\) 0 0
\(163\) 8.89898i 0.697022i −0.937305 0.348511i \(-0.886687\pi\)
0.937305 0.348511i \(-0.113313\pi\)
\(164\) 0.500000 + 0.866025i 0.0390434 + 0.0676252i
\(165\) 0 0
\(166\) −2.00000 + 3.46410i −0.155230 + 0.268866i
\(167\) 0.214297 + 0.123724i 0.0165828 + 0.00957408i 0.508268 0.861199i \(-0.330286\pi\)
−0.491686 + 0.870773i \(0.663619\pi\)
\(168\) 0 0
\(169\) −3.50000 6.06218i −0.269231 0.466321i
\(170\) 13.1237 + 1.32577i 1.00654 + 0.101682i
\(171\) 0 0
\(172\) 2.55051i 0.194475i
\(173\) −10.2173 + 5.89898i −0.776809 + 0.448491i −0.835298 0.549797i \(-0.814705\pi\)
0.0584890 + 0.998288i \(0.481372\pi\)
\(174\) 0 0
\(175\) 1.68228 + 1.49029i 0.127168 + 0.112655i
\(176\) −1.72474 + 2.98735i −0.130008 + 0.225180i
\(177\) 0 0
\(178\) 2.68556 1.55051i 0.201291 0.116216i
\(179\) −0.898979 −0.0671929 −0.0335964 0.999435i \(-0.510696\pi\)
−0.0335964 + 0.999435i \(0.510696\pi\)
\(180\) 0 0
\(181\) 5.55051 0.412566 0.206283 0.978492i \(-0.433863\pi\)
0.206283 + 0.978492i \(0.433863\pi\)
\(182\) −0.953512 + 0.550510i −0.0706790 + 0.0408065i
\(183\) 0 0
\(184\) −3.44949 + 5.97469i −0.254300 + 0.440460i
\(185\) 14.5145 + 10.4561i 1.06713 + 0.768745i
\(186\) 0 0
\(187\) 17.6223 10.1742i 1.28867 0.744014i
\(188\) 4.44949i 0.324512i
\(189\) 0 0
\(190\) 1.22474 12.1237i 0.0888523 0.879547i
\(191\) 9.12372 + 15.8028i 0.660170 + 1.14345i 0.980571 + 0.196165i \(0.0628489\pi\)
−0.320401 + 0.947282i \(0.603818\pi\)
\(192\) 0 0
\(193\) 11.8619 + 6.84847i 0.853838 + 0.492964i 0.861944 0.507004i \(-0.169247\pi\)
−0.00810596 + 0.999967i \(0.502580\pi\)
\(194\) 6.50000 11.2583i 0.466673 0.808301i
\(195\) 0 0
\(196\) 3.39898 + 5.88721i 0.242784 + 0.420515i
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) −15.5505 −1.10235 −0.551173 0.834391i \(-0.685820\pi\)
−0.551173 + 0.834391i \(0.685820\pi\)
\(200\) −4.74264 + 1.58346i −0.335355 + 0.111968i
\(201\) 0 0
\(202\) −6.92820 4.00000i −0.487467 0.281439i
\(203\) −2.33562 1.34847i −0.163928 0.0946440i
\(204\) 0 0
\(205\) 0.917738 + 2.03906i 0.0640976 + 0.142414i
\(206\) −14.2474 −0.992667
\(207\) 0 0
\(208\) 2.44949i 0.169842i
\(209\) −9.39898 16.2795i −0.650141 1.12608i
\(210\) 0 0
\(211\) −1.89898 + 3.28913i −0.130731 + 0.226433i −0.923959 0.382492i \(-0.875066\pi\)
0.793227 + 0.608925i \(0.208399\pi\)
\(212\) 3.07483 + 1.77526i 0.211180 + 0.121925i
\(213\) 0 0
\(214\) −8.17423 14.1582i −0.558779 0.967834i
\(215\) −0.573214 + 5.67423i −0.0390929 + 0.386980i
\(216\) 0 0
\(217\) 0.696938i 0.0473113i
\(218\) 6.92820 4.00000i 0.469237 0.270914i
\(219\) 0 0
\(220\) −4.50851 + 6.25845i −0.303964 + 0.421945i
\(221\) −7.22474 + 12.5136i −0.485989 + 0.841758i
\(222\) 0 0
\(223\) −7.88171 + 4.55051i −0.527799 + 0.304725i −0.740120 0.672475i \(-0.765231\pi\)
0.212321 + 0.977200i \(0.431898\pi\)
\(224\) 0.449490 0.0300328
\(225\) 0 0
\(226\) 4.89898 0.325875
\(227\) 2.98735 1.72474i 0.198277 0.114475i −0.397574 0.917570i \(-0.630148\pi\)
0.595852 + 0.803095i \(0.296815\pi\)
\(228\) 0 0
\(229\) −9.22474 + 15.9777i −0.609588 + 1.05584i 0.381720 + 0.924278i \(0.375332\pi\)
−0.991308 + 0.131560i \(0.958001\pi\)
\(230\) −9.01702 + 12.5169i −0.594564 + 0.825341i
\(231\) 0 0
\(232\) 5.19615 3.00000i 0.341144 0.196960i
\(233\) 13.6969i 0.897316i −0.893703 0.448658i \(-0.851902\pi\)
0.893703 0.448658i \(-0.148098\pi\)
\(234\) 0 0
\(235\) 1.00000 9.89898i 0.0652328 0.645738i
\(236\) 6.62372 + 11.4726i 0.431168 + 0.746804i
\(237\) 0 0
\(238\) −2.29629 1.32577i −0.148847 0.0859366i
\(239\) 0.348469 0.603566i 0.0225406 0.0390415i −0.854535 0.519394i \(-0.826158\pi\)
0.877076 + 0.480352i \(0.159491\pi\)
\(240\) 0 0
\(241\) −0.500000 0.866025i −0.0322078 0.0557856i 0.849472 0.527633i \(-0.176921\pi\)
−0.881680 + 0.471848i \(0.843587\pi\)
\(242\) 0.898979i 0.0577886i
\(243\) 0 0
\(244\) −4.44949 −0.284849
\(245\) 6.23874 + 13.8614i 0.398579 + 0.885574i
\(246\) 0 0
\(247\) 11.5601 + 6.67423i 0.735552 + 0.424671i
\(248\) 1.34278 + 0.775255i 0.0852667 + 0.0492287i
\(249\) 0 0
\(250\) −10.9070 + 2.45692i −0.689822 + 0.155389i
\(251\) −6.55051 −0.413465 −0.206732 0.978398i \(-0.566283\pi\)
−0.206732 + 0.978398i \(0.566283\pi\)
\(252\) 0 0
\(253\) 23.7980i 1.49616i
\(254\) 3.44949 + 5.97469i 0.216440 + 0.374885i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 8.74774 + 5.05051i 0.545669 + 0.315042i 0.747373 0.664404i \(-0.231315\pi\)
−0.201704 + 0.979446i \(0.564648\pi\)
\(258\) 0 0
\(259\) −1.79796 3.11416i −0.111720 0.193504i
\(260\) 0.550510 5.44949i 0.0341412 0.337963i
\(261\) 0 0
\(262\) 4.89898i 0.302660i
\(263\) −10.7816 + 6.22474i −0.664820 + 0.383834i −0.794111 0.607773i \(-0.792063\pi\)
0.129291 + 0.991607i \(0.458730\pi\)
\(264\) 0 0
\(265\) 6.44174 + 4.64054i 0.395713 + 0.285066i
\(266\) −1.22474 + 2.12132i −0.0750939 + 0.130066i
\(267\) 0 0
\(268\) −3.94086 + 2.27526i −0.240726 + 0.138983i
\(269\) 16.0454 0.978306 0.489153 0.872198i \(-0.337306\pi\)
0.489153 + 0.872198i \(0.337306\pi\)
\(270\) 0 0
\(271\) −15.5959 −0.947385 −0.473692 0.880690i \(-0.657079\pi\)
−0.473692 + 0.880690i \(0.657079\pi\)
\(272\) 5.10867 2.94949i 0.309758 0.178839i
\(273\) 0 0
\(274\) −1.50000 + 2.59808i −0.0906183 + 0.156956i
\(275\) −11.4368 + 12.9102i −0.689667 + 0.778514i
\(276\) 0 0
\(277\) −25.6308 + 14.7980i −1.54001 + 0.889123i −0.541169 + 0.840914i \(0.682018\pi\)
−0.998837 + 0.0482095i \(0.984648\pi\)
\(278\) 13.2474i 0.794529i
\(279\) 0 0
\(280\) 1.00000 + 0.101021i 0.0597614 + 0.00603713i
\(281\) 6.00000 + 10.3923i 0.357930 + 0.619953i 0.987615 0.156898i \(-0.0501493\pi\)
−0.629685 + 0.776851i \(0.716816\pi\)
\(282\) 0 0
\(283\) 3.46410 + 2.00000i 0.205919 + 0.118888i 0.599414 0.800439i \(-0.295400\pi\)
−0.393494 + 0.919327i \(0.628734\pi\)
\(284\) 1.22474 2.12132i 0.0726752 0.125877i
\(285\) 0 0
\(286\) −4.22474 7.31747i −0.249814 0.432691i
\(287\) 0.449490i 0.0265325i
\(288\) 0 0
\(289\) −17.7980 −1.04694
\(290\) 12.2343 5.50643i 0.718426 0.323348i
\(291\) 0 0
\(292\) −12.8154 7.39898i −0.749965 0.432993i
\(293\) −15.5885 9.00000i −0.910687 0.525786i −0.0300351 0.999549i \(-0.509562\pi\)
−0.880652 + 0.473763i \(0.842895\pi\)
\(294\) 0 0
\(295\) 12.1577 + 27.0123i 0.707848 + 1.57272i
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 8.24745i 0.477762i
\(299\) −8.44949 14.6349i −0.488647 0.846361i
\(300\) 0 0
\(301\) 0.573214 0.992836i 0.0330395 0.0572261i
\(302\) −2.51059 1.44949i −0.144468 0.0834088i
\(303\) 0 0
\(304\) −2.72474 4.71940i −0.156275 0.270676i
\(305\) −9.89898 1.00000i −0.566814 0.0572598i
\(306\) 0 0
\(307\) 29.9444i 1.70902i 0.519438 + 0.854508i \(0.326141\pi\)
−0.519438 + 0.854508i \(0.673859\pi\)
\(308\) 1.34278 0.775255i 0.0765121 0.0441743i
\(309\) 0 0
\(310\) 2.81311 + 2.02653i 0.159774 + 0.115099i
\(311\) 6.55051 11.3458i 0.371445 0.643362i −0.618343 0.785909i \(-0.712196\pi\)
0.989788 + 0.142546i \(0.0455290\pi\)
\(312\) 0 0
\(313\) 18.7901 10.8485i 1.06208 0.613192i 0.136073 0.990699i \(-0.456552\pi\)
0.926007 + 0.377507i \(0.123219\pi\)
\(314\) −16.0000 −0.902932
\(315\) 0 0
\(316\) 7.34847 0.413384
\(317\) −19.8704 + 11.4722i −1.11603 + 0.644343i −0.940386 0.340110i \(-0.889536\pi\)
−0.175649 + 0.984453i \(0.556202\pi\)
\(318\) 0 0
\(319\) 10.3485 17.9241i 0.579403 1.00356i
\(320\) −1.30701 + 1.81431i −0.0730639 + 0.101423i
\(321\) 0 0
\(322\) 2.68556 1.55051i 0.149661 0.0864066i
\(323\) 32.1464i 1.78868i
\(324\) 0 0
\(325\) 2.44949 12.0000i 0.135873 0.665640i
\(326\) −4.44949 7.70674i −0.246434 0.426837i
\(327\) 0 0
\(328\) 0.866025 + 0.500000i 0.0478183 + 0.0276079i
\(329\) −1.00000 + 1.73205i −0.0551318 + 0.0954911i
\(330\) 0 0
\(331\) 12.6969 + 21.9917i 0.697887 + 1.20878i 0.969198 + 0.246284i \(0.0792095\pi\)
−0.271311 + 0.962492i \(0.587457\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 0 0
\(334\) 0.247449 0.0135398
\(335\) −9.27875 + 4.17617i −0.506953 + 0.228169i
\(336\) 0 0
\(337\) −16.1045 9.29796i −0.877270 0.506492i −0.00751272 0.999972i \(-0.502391\pi\)
−0.869757 + 0.493480i \(0.835725\pi\)
\(338\) −6.06218 3.50000i −0.329739 0.190375i
\(339\) 0 0
\(340\) 12.0284 5.41372i 0.652329 0.293600i
\(341\) 5.34847 0.289636
\(342\) 0 0
\(343\) 6.20204i 0.334879i
\(344\) 1.27526 + 2.20881i 0.0687571 + 0.119091i
\(345\) 0 0
\(346\) −5.89898 + 10.2173i −0.317131 + 0.549287i
\(347\) 8.00853 + 4.62372i 0.429920 + 0.248215i 0.699313 0.714816i \(-0.253490\pi\)
−0.269392 + 0.963030i \(0.586823\pi\)
\(348\) 0 0
\(349\) −13.7980 23.8988i −0.738588 1.27927i −0.953131 0.302557i \(-0.902160\pi\)
0.214543 0.976714i \(-0.431174\pi\)
\(350\) 2.20204 + 0.449490i 0.117704 + 0.0240262i
\(351\) 0 0
\(352\) 3.44949i 0.183858i
\(353\) 28.2289 16.2980i 1.50247 0.867453i 0.502476 0.864591i \(-0.332422\pi\)
0.999996 0.00286194i \(-0.000910986\pi\)
\(354\) 0 0
\(355\) 3.20150 4.44414i 0.169918 0.235871i
\(356\) 1.55051 2.68556i 0.0821769 0.142335i
\(357\) 0 0
\(358\) −0.778539 + 0.449490i −0.0411471 + 0.0237563i
\(359\) 3.55051 0.187389 0.0936944 0.995601i \(-0.470132\pi\)
0.0936944 + 0.995601i \(0.470132\pi\)
\(360\) 0 0
\(361\) 10.6969 0.562997
\(362\) 4.80688 2.77526i 0.252644 0.145864i
\(363\) 0 0
\(364\) −0.550510 + 0.953512i −0.0288546 + 0.0499776i
\(365\) −26.8481 19.3410i −1.40530 1.01236i
\(366\) 0 0
\(367\) 23.8988 13.7980i 1.24751 0.720248i 0.276894 0.960900i \(-0.410695\pi\)
0.970611 + 0.240653i \(0.0773615\pi\)
\(368\) 6.89898i 0.359634i
\(369\) 0 0
\(370\) 17.7980 + 1.79796i 0.925272 + 0.0934714i
\(371\) −0.797959 1.38211i −0.0414280 0.0717553i
\(372\) 0 0
\(373\) −11.7744 6.79796i −0.609656 0.351985i 0.163175 0.986597i \(-0.447827\pi\)
−0.772831 + 0.634612i \(0.781160\pi\)
\(374\) 10.1742 17.6223i 0.526097 0.911227i
\(375\) 0 0
\(376\) −2.22474 3.85337i −0.114732 0.198722i
\(377\) 14.6969i 0.756931i
\(378\) 0 0
\(379\) −4.14643 −0.212988 −0.106494 0.994313i \(-0.533962\pi\)
−0.106494 + 0.994313i \(0.533962\pi\)
\(380\) −5.00120 11.1118i −0.256556 0.570025i
\(381\) 0 0
\(382\) 15.8028 + 9.12372i 0.808539 + 0.466810i
\(383\) 15.4135 + 8.89898i 0.787592 + 0.454717i 0.839114 0.543955i \(-0.183074\pi\)
−0.0515220 + 0.998672i \(0.516407\pi\)
\(384\) 0 0
\(385\) 3.16158 1.42296i 0.161129 0.0725208i
\(386\) 13.6969 0.697156
\(387\) 0 0
\(388\) 13.0000i 0.659975i
\(389\) −8.77526 15.1992i −0.444923 0.770629i 0.553124 0.833099i \(-0.313436\pi\)
−0.998047 + 0.0624697i \(0.980102\pi\)
\(390\) 0 0
\(391\) 20.3485 35.2446i 1.02907 1.78240i
\(392\) 5.88721 + 3.39898i 0.297349 + 0.171674i
\(393\) 0 0
\(394\) 4.00000 + 6.92820i 0.201517 + 0.349038i
\(395\) 16.3485 + 1.65153i 0.822581 + 0.0830975i
\(396\) 0 0
\(397\) 1.79796i 0.0902370i −0.998982 0.0451185i \(-0.985633\pi\)
0.998982 0.0451185i \(-0.0143665\pi\)
\(398\) −13.4671 + 7.77526i −0.675047 + 0.389738i
\(399\) 0 0
\(400\) −3.31552 + 3.74264i −0.165776 + 0.187132i
\(401\) 4.60102 7.96920i 0.229764 0.397963i −0.727974 0.685605i \(-0.759538\pi\)
0.957738 + 0.287642i \(0.0928712\pi\)
\(402\) 0 0
\(403\) −3.28913 + 1.89898i −0.163843 + 0.0945949i
\(404\) −8.00000 −0.398015
\(405\) 0 0
\(406\) −2.69694 −0.133847
\(407\) 23.8988 13.7980i 1.18462 0.683939i
\(408\) 0 0
\(409\) 7.94949 13.7689i 0.393077 0.680829i −0.599777 0.800167i \(-0.704744\pi\)
0.992854 + 0.119338i \(0.0380773\pi\)
\(410\) 1.81431 + 1.30701i 0.0896025 + 0.0645485i
\(411\) 0 0
\(412\) −12.3387 + 7.12372i −0.607882 + 0.350961i
\(413\) 5.95459i 0.293006i
\(414\) 0 0
\(415\) −0.898979 + 8.89898i −0.0441292 + 0.436834i
\(416\) −1.22474 2.12132i −0.0600481 0.104006i
\(417\) 0 0
\(418\) −16.2795 9.39898i −0.796257 0.459719i
\(419\) 4.44949 7.70674i 0.217372 0.376499i −0.736632 0.676294i \(-0.763585\pi\)
0.954004 + 0.299795i \(0.0969183\pi\)
\(420\) 0 0
\(421\) 5.77526 + 10.0030i 0.281469 + 0.487518i 0.971747 0.236026i \(-0.0758451\pi\)
−0.690278 + 0.723544i \(0.742512\pi\)
\(422\) 3.79796i 0.184882i
\(423\) 0 0
\(424\) 3.55051 0.172428
\(425\) 27.9767 9.34082i 1.35707 0.453097i
\(426\) 0 0
\(427\) 1.73205 + 1.00000i 0.0838198 + 0.0483934i
\(428\) −14.1582 8.17423i −0.684362 0.395117i
\(429\) 0 0
\(430\) 2.34070 + 5.20064i 0.112879 + 0.250797i
\(431\) −38.2474 −1.84231 −0.921157 0.389190i \(-0.872755\pi\)
−0.921157 + 0.389190i \(0.872755\pi\)
\(432\) 0 0
\(433\) 23.0000i 1.10531i −0.833410 0.552655i \(-0.813615\pi\)
0.833410 0.552655i \(-0.186385\pi\)
\(434\) −0.348469 0.603566i −0.0167271 0.0289721i
\(435\) 0 0
\(436\) 4.00000 6.92820i 0.191565 0.331801i
\(437\) −32.5590 18.7980i −1.55751 0.899228i
\(438\) 0 0
\(439\) 11.0227 + 19.0919i 0.526085 + 0.911206i 0.999538 + 0.0303869i \(0.00967395\pi\)
−0.473453 + 0.880819i \(0.656993\pi\)
\(440\) −0.775255 + 7.67423i −0.0369588 + 0.365855i
\(441\) 0 0
\(442\) 14.4495i 0.687292i
\(443\) 18.4008 10.6237i 0.874250 0.504748i 0.00549166 0.999985i \(-0.498252\pi\)
0.868758 + 0.495237i \(0.164919\pi\)
\(444\) 0 0
\(445\) 4.05306 5.62622i 0.192133 0.266709i
\(446\) −4.55051 + 7.88171i −0.215473 + 0.373210i
\(447\) 0 0
\(448\) 0.389270 0.224745i 0.0183913 0.0106182i
\(449\) 18.7980 0.887131 0.443565 0.896242i \(-0.353713\pi\)
0.443565 + 0.896242i \(0.353713\pi\)
\(450\) 0 0
\(451\) 3.44949 0.162430
\(452\) 4.24264 2.44949i 0.199557 0.115214i
\(453\) 0 0
\(454\) 1.72474 2.98735i 0.0809463 0.140203i
\(455\) −1.43904 + 1.99760i −0.0674633 + 0.0936487i
\(456\) 0 0
\(457\) −15.5010 + 8.94949i −0.725105 + 0.418639i −0.816629 0.577163i \(-0.804160\pi\)
0.0915238 + 0.995803i \(0.470826\pi\)
\(458\) 18.4495i 0.862088i
\(459\) 0 0
\(460\) −1.55051 + 15.3485i −0.0722929 + 0.715626i
\(461\) −1.22474 2.12132i −0.0570421 0.0987997i 0.836094 0.548586i \(-0.184834\pi\)
−0.893136 + 0.449786i \(0.851500\pi\)
\(462\) 0 0
\(463\) 20.7846 + 12.0000i 0.965943 + 0.557687i 0.897997 0.440002i \(-0.145022\pi\)
0.0679458 + 0.997689i \(0.478356\pi\)
\(464\) 3.00000 5.19615i 0.139272 0.241225i
\(465\) 0 0
\(466\) −6.84847 11.8619i −0.317249 0.549492i
\(467\) 10.3485i 0.478870i 0.970912 + 0.239435i \(0.0769622\pi\)
−0.970912 + 0.239435i \(0.923038\pi\)
\(468\) 0 0
\(469\) 2.04541 0.0944482
\(470\) −4.08346 9.07277i −0.188356 0.418496i
\(471\) 0 0
\(472\) 11.4726 + 6.62372i 0.528070 + 0.304882i
\(473\) 7.61926 + 4.39898i 0.350334 + 0.202265i
\(474\) 0 0
\(475\) −8.62907 25.8450i −0.395929 1.18585i
\(476\) −2.65153 −0.121533
\(477\) 0 0
\(478\) 0.696938i 0.0318772i
\(479\) −8.34847 14.4600i −0.381451 0.660693i 0.609819 0.792541i \(-0.291242\pi\)
−0.991270 + 0.131848i \(0.957909\pi\)
\(480\) 0 0
\(481\) −9.79796 + 16.9706i −0.446748 + 0.773791i
\(482\) −0.866025 0.500000i −0.0394464 0.0227744i
\(483\) 0 0
\(484\) 0.449490 + 0.778539i 0.0204314 + 0.0353881i
\(485\) 2.92168 28.9217i 0.132667 1.31327i
\(486\) 0 0
\(487\) 25.1010i 1.13744i −0.822533 0.568718i \(-0.807440\pi\)
0.822533 0.568718i \(-0.192560\pi\)
\(488\) −3.85337 + 2.22474i −0.174434 + 0.100709i
\(489\) 0 0
\(490\) 12.3336 + 8.88498i 0.557176 + 0.401383i
\(491\) 9.27526 16.0652i 0.418586 0.725013i −0.577211 0.816595i \(-0.695859\pi\)
0.995798 + 0.0915820i \(0.0291924\pi\)
\(492\) 0 0
\(493\) −30.6520 + 17.6969i −1.38050 + 0.797030i
\(494\) 13.3485 0.600576
\(495\) 0 0
\(496\) 1.55051 0.0696200
\(497\) −0.953512 + 0.550510i −0.0427708 + 0.0246938i
\(498\) 0 0
\(499\) −10.6237 + 18.4008i −0.475583 + 0.823734i −0.999609 0.0279682i \(-0.991096\pi\)
0.524026 + 0.851703i \(0.324430\pi\)
\(500\) −8.21731 + 7.58128i −0.367489 + 0.339045i
\(501\) 0 0
\(502\) −5.67291 + 3.27526i −0.253194 + 0.146182i
\(503\) 14.4495i 0.644271i 0.946694 + 0.322135i \(0.104401\pi\)
−0.946694 + 0.322135i \(0.895599\pi\)
\(504\) 0 0
\(505\) −17.7980 1.79796i −0.791999 0.0800081i
\(506\) 11.8990 + 20.6096i 0.528974 + 0.916210i
\(507\) 0 0
\(508\) 5.97469 + 3.44949i 0.265084 + 0.153046i
\(509\) −15.7980 + 27.3629i −0.700232 + 1.21284i 0.268153 + 0.963376i \(0.413587\pi\)
−0.968385 + 0.249461i \(0.919746\pi\)
\(510\) 0 0
\(511\) 3.32577 + 5.76039i 0.147123 + 0.254825i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 10.1010 0.445537
\(515\) −29.0514 + 13.0754i −1.28016 + 0.576172i
\(516\) 0 0
\(517\) −13.2922 7.67423i −0.584589 0.337512i
\(518\) −3.11416 1.79796i −0.136828 0.0789978i
\(519\) 0 0
\(520\) −2.24799 4.99465i −0.0985808 0.219030i
\(521\) −21.6969 −0.950560 −0.475280 0.879835i \(-0.657653\pi\)
−0.475280 + 0.879835i \(0.657653\pi\)
\(522\) 0 0
\(523\) 10.2020i 0.446104i 0.974807 + 0.223052i \(0.0716020\pi\)
−0.974807 + 0.223052i \(0.928398\pi\)
\(524\) −2.44949 4.24264i −0.107006 0.185341i
\(525\) 0 0
\(526\) −6.22474 + 10.7816i −0.271412 + 0.470099i
\(527\) −7.92104 4.57321i −0.345046 0.199212i
\(528\) 0 0
\(529\) 12.2980 + 21.3007i 0.534694 + 0.926117i
\(530\) 7.89898 + 0.797959i 0.343110 + 0.0346611i
\(531\) 0 0
\(532\) 2.44949i 0.106199i
\(533\) −2.12132 + 1.22474i −0.0918846 + 0.0530496i
\(534\) 0 0
\(535\) −29.6612 21.3676i −1.28237 0.923800i
\(536\) −2.27526 + 3.94086i −0.0982761 + 0.170219i
\(537\) 0 0
\(538\) 13.8957 8.02270i 0.599087 0.345883i
\(539\) 23.4495 1.01004
\(540\) 0 0
\(541\) −0.404082 −0.0173728 −0.00868642 0.999962i \(-0.502765\pi\)
−0.00868642 + 0.999962i \(0.502765\pi\)
\(542\) −13.5065 + 7.79796i −0.580152 + 0.334951i
\(543\) 0 0
\(544\) 2.94949 5.10867i 0.126458 0.219032i
\(545\) 10.4561 14.5145i 0.447888 0.621733i
\(546\) 0 0
\(547\) 14.9367 8.62372i 0.638648 0.368724i −0.145445 0.989366i \(-0.546461\pi\)
0.784094 + 0.620642i \(0.213128\pi\)
\(548\) 3.00000i 0.128154i
\(549\) 0 0
\(550\) −3.44949 + 16.8990i −0.147087 + 0.720575i
\(551\) 16.3485 + 28.3164i 0.696468 + 1.20632i
\(552\) 0 0
\(553\) −2.86054 1.65153i −0.121642 0.0702302i
\(554\) −14.7980 + 25.6308i −0.628705 + 1.08895i
\(555\) 0 0
\(556\) −6.62372 11.4726i −0.280908 0.486548i
\(557\) 14.9444i 0.633214i −0.948557 0.316607i \(-0.897456\pi\)
0.948557 0.316607i \(-0.102544\pi\)
\(558\) 0 0
\(559\) −6.24745 −0.264239
\(560\) 0.916536 0.412514i 0.0387307 0.0174319i
\(561\) 0 0
\(562\) 10.3923 + 6.00000i 0.438373 + 0.253095i
\(563\) −1.60524 0.926786i −0.0676528 0.0390594i 0.465792 0.884894i \(-0.345769\pi\)
−0.533445 + 0.845835i \(0.679103\pi\)
\(564\) 0 0
\(565\) 9.98930 4.49598i 0.420253 0.189147i
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 2.44949i 0.102778i
\(569\) 15.7474 + 27.2754i 0.660167 + 1.14344i 0.980571 + 0.196162i \(0.0628480\pi\)
−0.320404 + 0.947281i \(0.603819\pi\)
\(570\) 0 0
\(571\) −18.6237 + 32.2572i −0.779379 + 1.34992i 0.152922 + 0.988238i \(0.451132\pi\)
−0.932300 + 0.361685i \(0.882202\pi\)
\(572\) −7.31747 4.22474i −0.305959 0.176645i
\(573\) 0 0
\(574\) −0.224745 0.389270i −0.00938067 0.0162478i
\(575\) −6.89898 + 33.7980i −0.287707 + 1.40947i
\(576\) 0 0
\(577\) 15.6969i 0.653472i −0.945116 0.326736i \(-0.894051\pi\)
0.945116 0.326736i \(-0.105949\pi\)
\(578\) −15.4135 + 8.89898i −0.641116 + 0.370149i
\(579\) 0 0
\(580\) 7.84204 10.8859i 0.325623 0.452012i
\(581\) 0.898979 1.55708i 0.0372960 0.0645985i
\(582\) 0 0
\(583\) 10.6066 6.12372i 0.439281 0.253619i
\(584\) −14.7980 −0.612344
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 20.7364 11.9722i 0.855885 0.494145i −0.00674727 0.999977i \(-0.502148\pi\)
0.862632 + 0.505832i \(0.168814\pi\)
\(588\) 0 0
\(589\) −4.22474 + 7.31747i −0.174078 + 0.301511i
\(590\) 24.0350 + 17.3145i 0.989506 + 0.712827i
\(591\) 0 0
\(592\) 6.92820 4.00000i 0.284747 0.164399i
\(593\) 17.3939i 0.714281i −0.934051 0.357140i \(-0.883752\pi\)
0.934051 0.357140i \(-0.116248\pi\)
\(594\) 0 0
\(595\) −5.89898 0.595918i −0.241835 0.0244303i
\(596\) −4.12372 7.14250i −0.168914 0.292568i
\(597\) 0 0
\(598\) −14.6349 8.44949i −0.598467 0.345525i
\(599\) −16.8990 + 29.2699i −0.690474 + 1.19594i 0.281209 + 0.959646i \(0.409264\pi\)
−0.971683 + 0.236289i \(0.924069\pi\)
\(600\) 0 0
\(601\) −19.3990 33.6000i −0.791301 1.37057i −0.925162 0.379573i \(-0.876071\pi\)
0.133861 0.991000i \(-0.457262\pi\)
\(602\) 1.14643i 0.0467249i
\(603\) 0 0
\(604\) −2.89898 −0.117958
\(605\) 0.825027 + 1.83307i 0.0335421 + 0.0745249i
\(606\) 0 0
\(607\) 23.8988 + 13.7980i 0.970021 + 0.560042i 0.899243 0.437450i \(-0.144118\pi\)
0.0707783 + 0.997492i \(0.477452\pi\)
\(608\) −4.71940 2.72474i −0.191397 0.110503i
\(609\) 0 0
\(610\) −9.07277 + 4.08346i −0.367346 + 0.165335i
\(611\) 10.8990 0.440926
\(612\) 0 0
\(613\) 36.9444i 1.49217i 0.665851 + 0.746085i \(0.268069\pi\)
−0.665851 + 0.746085i \(0.731931\pi\)
\(614\) 14.9722 + 25.9326i 0.604229 + 1.04655i
\(615\) 0 0
\(616\) 0.775255 1.34278i 0.0312359 0.0541022i
\(617\) 7.19066 + 4.15153i 0.289485 + 0.167134i 0.637710 0.770277i \(-0.279882\pi\)
−0.348224 + 0.937411i \(0.613215\pi\)
\(618\) 0 0
\(619\) −14.2753 24.7255i −0.573771 0.993800i −0.996174 0.0873923i \(-0.972147\pi\)
0.422403 0.906408i \(-0.361187\pi\)
\(620\) 3.44949 + 0.348469i 0.138535 + 0.0139949i
\(621\) 0 0
\(622\) 13.1010i 0.525303i
\(623\) −1.20713 + 0.696938i −0.0483628 + 0.0279222i
\(624\) 0 0
\(625\) −19.9853 + 15.0196i −0.799411 + 0.600784i
\(626\) 10.8485 18.7901i 0.433592 0.751003i
\(627\) 0 0
\(628\) −13.8564 + 8.00000i −0.552931 + 0.319235i
\(629\) −47.1918 −1.88166
\(630\) 0 0
\(631\) −11.3485 −0.451775 −0.225888 0.974153i \(-0.572528\pi\)
−0.225888 + 0.974153i \(0.572528\pi\)
\(632\) 6.36396 3.67423i 0.253145 0.146153i
\(633\) 0 0
\(634\) −11.4722 + 19.8704i −0.455619 + 0.789155i
\(635\) 12.5169 + 9.01702i 0.496718 + 0.357829i
\(636\) 0 0
\(637\) −14.4206 + 8.32577i −0.571367 + 0.329879i
\(638\) 20.6969i 0.819400i
\(639\) 0 0
\(640\) −0.224745 + 2.22474i −0.00888382 + 0.0879408i
\(641\) −18.5000 32.0429i −0.730706 1.26562i −0.956582 0.291464i \(-0.905858\pi\)
0.225876 0.974156i \(-0.427476\pi\)
\(642\) 0 0
\(643\) 13.2047 + 7.62372i 0.520742 + 0.300650i 0.737238 0.675633i \(-0.236130\pi\)
−0.216496 + 0.976283i \(0.569463\pi\)
\(644\) 1.55051 2.68556i 0.0610987 0.105826i
\(645\) 0 0
\(646\) 16.0732 + 27.8396i 0.632392 + 1.09534i
\(647\) 34.8990i 1.37202i −0.727592 0.686010i \(-0.759361\pi\)
0.727592 0.686010i \(-0.240639\pi\)
\(648\) 0 0
\(649\) 45.6969 1.79376
\(650\) −3.87868 11.6170i −0.152134 0.455658i
\(651\) 0 0
\(652\) −7.70674 4.44949i −0.301819 0.174255i
\(653\) 29.4449 + 17.0000i 1.15227 + 0.665261i 0.949439 0.313953i \(-0.101653\pi\)
0.202828 + 0.979214i \(0.434987\pi\)
\(654\) 0 0
\(655\) −4.49598 9.98930i −0.175672 0.390314i
\(656\) 1.00000 0.0390434
\(657\) 0 0
\(658\) 2.00000i 0.0779681i
\(659\) 17.8990 + 31.0019i 0.697245 + 1.20766i 0.969418 + 0.245416i \(0.0789245\pi\)
−0.272173 + 0.962248i \(0.587742\pi\)
\(660\) 0 0
\(661\) −2.89898 + 5.02118i −0.112757 + 0.195301i −0.916881 0.399161i \(-0.869302\pi\)
0.804124 + 0.594462i \(0.202635\pi\)
\(662\) 21.9917 + 12.6969i 0.854733 + 0.493481i
\(663\) 0 0
\(664\) 2.00000 + 3.46410i 0.0776151 + 0.134433i
\(665\) −0.550510 + 5.44949i −0.0213479 + 0.211322i
\(666\) 0 0
\(667\) 41.3939i 1.60278i
\(668\) 0.214297 0.123724i 0.00829139 0.00478704i
\(669\) 0 0
\(670\) −5.94755 + 8.25605i −0.229774 + 0.318959i
\(671\) −7.67423 + 13.2922i −0.296261 + 0.513138i
\(672\) 0 0
\(673\) 25.0273 14.4495i 0.964730 0.556987i 0.0671042 0.997746i \(-0.478624\pi\)
0.897625 + 0.440759i \(0.145291\pi\)
\(674\) −18.5959 −0.716288
\(675\) 0 0
\(676\) −7.00000 −0.269231
\(677\) −34.2911 + 19.7980i −1.31791 + 0.760897i −0.983393 0.181491i \(-0.941908\pi\)
−0.334520 + 0.942389i \(0.608574\pi\)
\(678\) 0 0
\(679\) −2.92168 + 5.06050i −0.112124 + 0.194204i
\(680\) 7.71001 10.7026i 0.295665 0.410426i
\(681\) 0 0
\(682\) 4.63191 2.67423i 0.177365 0.102402i
\(683\) 45.4495i 1.73908i −0.493866 0.869538i \(-0.664417\pi\)
0.493866 0.869538i \(-0.335583\pi\)
\(684\) 0 0
\(685\) −0.674235 + 6.67423i −0.0257612 + 0.255009i
\(686\) −3.10102 5.37113i −0.118398 0.205071i
\(687\) 0 0
\(688\) 2.20881 + 1.27526i 0.0842100 + 0.0486186i
\(689\) −4.34847 + 7.53177i −0.165663 + 0.286938i
\(690\) 0 0
\(691\) −8.79796 15.2385i −0.334690 0.579700i 0.648735 0.761014i \(-0.275298\pi\)
−0.983425 + 0.181314i \(0.941965\pi\)
\(692\) 11.7980i 0.448491i
\(693\) 0 0
\(694\) 9.24745 0.351028
\(695\) −12.1577 27.0123i −0.461167 1.02464i
\(696\) 0 0
\(697\) −5.10867 2.94949i −0.193505 0.111720i
\(698\) −23.8988 13.7980i −0.904582 0.522260i
\(699\) 0 0
\(700\) 2.13177 0.711751i 0.0805733 0.0269017i
\(701\) 39.3939 1.48789 0.743943 0.668243i \(-0.232953\pi\)
0.743943 + 0.668243i \(0.232953\pi\)
\(702\) 0 0
\(703\) 43.5959i 1.64425i
\(704\) 1.72474 + 2.98735i 0.0650038 + 0.112590i
\(705\) 0 0
\(706\) 16.2980 28.2289i 0.613382 1.06241i
\(707\) 3.11416 + 1.79796i 0.117120 + 0.0676192i
\(708\) 0 0
\(709\) 18.6742 + 32.3447i 0.701326 + 1.21473i 0.968001 + 0.250945i \(0.0807414\pi\)
−0.266676 + 0.963786i \(0.585925\pi\)
\(710\) 0.550510 5.44949i 0.0206603 0.204516i
\(711\) 0 0
\(712\) 3.10102i 0.116216i
\(713\) 9.26382 5.34847i 0.346933 0.200302i
\(714\) 0 0
\(715\) −15.3300 11.0435i −0.573310 0.413005i
\(716\) −0.449490 + 0.778539i −0.0167982 + 0.0290954i
\(717\) 0 0
\(718\) 3.07483 1.77526i 0.114752 0.0662519i
\(719\) 41.7980 1.55880 0.779400 0.626526i \(-0.215524\pi\)
0.779400 + 0.626526i \(0.215524\pi\)
\(720\) 0 0
\(721\) 6.40408 0.238500
\(722\) 9.26382 5.34847i 0.344764 0.199049i
\(723\) 0 0
\(724\) 2.77526 4.80688i 0.103142 0.178646i
\(725\) 19.8931 22.4558i 0.738811 0.833989i
\(726\) 0 0
\(727\) −21.9524 + 12.6742i −0.814170 + 0.470061i −0.848402 0.529353i \(-0.822435\pi\)
0.0342318 + 0.999414i \(0.489102\pi\)
\(728\) 1.10102i 0.0408065i
\(729\) 0 0
\(730\) −32.9217 3.32577i −1.21849 0.123092i
\(731\) −7.52270 13.0297i −0.278237 0.481921i
\(732\) 0 0
\(733\) 18.3133 + 10.5732i 0.676419 + 0.390531i 0.798504 0.601989i \(-0.205625\pi\)
−0.122086 + 0.992520i \(0.538958\pi\)
\(734\) 13.7980 23.8988i 0.509292 0.882120i
\(735\) 0 0
\(736\) 3.44949 + 5.97469i 0.127150 + 0.220230i
\(737\) 15.6969i 0.578204i
\(738\) 0 0
\(739\) 17.2474 0.634458 0.317229 0.948349i \(-0.397248\pi\)
0.317229 + 0.948349i \(0.397248\pi\)
\(740\) 16.3125 7.34190i 0.599658 0.269894i
\(741\) 0 0
\(742\) −1.38211 0.797959i −0.0507387 0.0292940i
\(743\) 19.8311 + 11.4495i 0.727532 + 0.420041i 0.817519 0.575902i \(-0.195349\pi\)
−0.0899863 + 0.995943i \(0.528682\pi\)
\(744\) 0 0
\(745\) −7.56899 16.8170i −0.277306 0.616128i
\(746\) −13.5959 −0.497782
\(747\) 0 0
\(748\) 20.3485i 0.744014i
\(749\) 3.67423 + 6.36396i 0.134254 + 0.232534i
\(750\) 0 0
\(751\) 26.4949 45.8905i 0.966813 1.67457i 0.262148 0.965028i \(-0.415569\pi\)
0.704664 0.709541i \(-0.251098\pi\)
\(752\) −3.85337 2.22474i −0.140518 0.0811281i
\(753\) 0 0
\(754\) 7.34847 + 12.7279i 0.267615 + 0.463524i
\(755\) −6.44949 0.651531i −0.234721 0.0237116i
\(756\) 0 0
\(757\) 10.0000i 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) −3.59091 + 2.07321i −0.130428 + 0.0753025i
\(759\) 0 0
\(760\) −9.88708 7.12252i −0.358642 0.258361i
\(761\) 0.247449 0.428594i 0.00897001 0.0155365i −0.861506 0.507748i \(-0.830478\pi\)
0.870476 + 0.492212i \(0.163811\pi\)
\(762\) 0 0
\(763\) −3.11416 + 1.79796i −0.112740 + 0.0650905i
\(764\) 18.2474 0.660170
\(765\) 0 0
\(766\) 17.7980 0.643066
\(767\) −28.1021 + 16.2247i −1.01471 + 0.585842i
\(768\) 0 0
\(769\) 12.2474 21.2132i 0.441654 0.764968i −0.556158 0.831076i \(-0.687725\pi\)
0.997812 + 0.0661088i \(0.0210584\pi\)
\(770\) 2.02653 2.81311i 0.0730310 0.101377i
\(771\) 0 0
\(772\) 11.8619 6.84847i 0.426919 0.246482i
\(773\) 35.3939i 1.27303i 0.771265 + 0.636515i \(0.219625\pi\)
−0.771265 + 0.636515i \(0.780375\pi\)
\(774\) 0 0
\(775\) 7.59592 + 1.55051i 0.272853 + 0.0556960i
\(776\) −6.50000 11.2583i −0.233336 0.404151i
\(777\) 0 0
\(778\) −15.1992 8.77526i −0.544917 0.314608i
\(779\) −2.72474 + 4.71940i −0.0976241 + 0.169090i
\(780\) 0 0
\(781\) −4.22474 7.31747i −0.151173 0.261840i
\(782\) 40.6969i 1.45532i
\(783\) 0 0
\(784\) 6.79796 0.242784
\(785\) −32.6249 + 14.6838i −1.16443 + 0.524087i
\(786\) 0 0
\(787\) 44.5084 + 25.6969i 1.58655 + 0.915997i 0.993869 + 0.110562i \(0.0352650\pi\)
0.592684 + 0.805435i \(0.298068\pi\)
\(788\) 6.92820 + 4.00000i 0.246807 + 0.142494i
\(789\) 0 0
\(790\) 14.9840 6.74397i 0.533105 0.239940i
\(791\) −2.20204 −0.0782956
\(792\) 0 0
\(793\) 10.8990i 0.387034i
\(794\) −0.898979 1.55708i −0.0319036 0.0552586i
\(795\) 0 0
\(796\) −7.77526 + 13.4671i −0.275587 + 0.477330i
\(797\) 3.11416 + 1.79796i 0.110309 + 0.0636870i 0.554139 0.832424i \(-0.313047\pi\)
−0.443830 + 0.896111i \(0.646381\pi\)
\(798\) 0 0
\(799\) 13.1237 + 22.7310i 0.464284 + 0.804163i
\(800\) −1.00000 + 4.89898i −0.0353553 + 0.173205i
\(801\) 0 0
\(802\) 9.20204i 0.324935i
\(803\) −44.2066 + 25.5227i −1.56002 + 0.900677i
\(804\) 0 0
\(805\) 4.05306 5.62622i 0.142851 0.198298i
\(806\) −1.89898 + 3.28913i −0.0668887 + 0.115855i
\(807\) 0 0
\(808\) −6.92820 + 4.00000i −0.243733 + 0.140720i
\(809\) −41.0908 −1.44468 −0.722338 0.691540i \(-0.756933\pi\)
−0.722338 + 0.691540i \(0.756933\pi\)
\(810\) 0 0
\(811\) 7.24745 0.254492 0.127246 0.991871i \(-0.459386\pi\)
0.127246 + 0.991871i \(0.459386\pi\)
\(812\) −2.33562 + 1.34847i −0.0819641 + 0.0473220i
\(813\) 0 0
\(814\) 13.7980 23.8988i 0.483618 0.837651i
\(815\) −16.1455 11.6310i −0.565553 0.407417i
\(816\) 0 0
\(817\) −12.0369 + 6.94949i −0.421117 + 0.243132i
\(818\) 15.8990i 0.555895i
\(819\) 0 0
\(820\) 2.22474 + 0.224745i 0.0776915 + 0.00784843i
\(821\) 1.02270 + 1.77138i 0.0356926 + 0.0618214i 0.883320 0.468771i \(-0.155303\pi\)
−0.847627 + 0.530592i \(0.821970\pi\)
\(822\) 0 0
\(823\) −27.3629 15.7980i −0.953810 0.550682i −0.0595473 0.998225i \(-0.518966\pi\)
−0.894262 + 0.447543i \(0.852299\pi\)
\(824\) −7.12372 + 12.3387i −0.248167 + 0.429837i
\(825\) 0 0
\(826\) −2.97730 5.15683i −0.103593 0.179429i
\(827\) 5.79796i 0.201615i −0.994906 0.100807i \(-0.967857\pi\)
0.994906 0.100807i \(-0.0321426\pi\)
\(828\) 0 0
\(829\) 26.4495 0.918629 0.459314 0.888274i \(-0.348095\pi\)
0.459314 + 0.888274i \(0.348095\pi\)
\(830\) 3.67095 + 8.15623i 0.127421 + 0.283107i
\(831\) 0 0
\(832\) −2.12132 1.22474i −0.0735436 0.0424604i
\(833\) −34.7285 20.0505i −1.20327 0.694709i
\(834\) 0 0
\(835\) 0.504562 0.227093i 0.0174611 0.00785888i
\(836\) −18.7980 −0.650141
\(837\) 0 0
\(838\) 8.89898i 0.307410i
\(839\) −20.1237 34.8553i −0.694748 1.20334i −0.970266 0.242043i \(-0.922183\pi\)
0.275517 0.961296i \(-0.411151\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 10.0030 + 5.77526i 0.344727 + 0.199028i
\(843\) 0 0
\(844\) 1.89898 + 3.28913i 0.0653656 + 0.113216i
\(845\) −15.5732 1.57321i −0.535735 0.0541202i
\(846\) 0 0
\(847\) 0.404082i 0.0138844i
\(848\) 3.07483 1.77526i 0.105590 0.0609625i
\(849\) 0 0
\(850\) 19.5582 22.0778i 0.670839 0.757261i
\(851\) 27.5959 47.7975i 0.945976 1.63848i
\(852\) 0 0
\(853\) −7.92104 + 4.57321i −0.271211 + 0.156584i −0.629438 0.777051i \(-0.716715\pi\)
0.358227 + 0.933635i \(0.383381\pi\)
\(854\) 2.00000 0.0684386
\(855\) 0 0
\(856\) −16.3485 −0.558779
\(857\) −4.67123 + 2.69694i −0.159566 + 0.0921257i −0.577657 0.816280i \(-0.696033\pi\)
0.418091 + 0.908405i \(0.362699\pi\)
\(858\) 0 0
\(859\) −18.8712 + 32.6858i −0.643876 + 1.11523i 0.340684 + 0.940178i \(0.389341\pi\)
−0.984560 + 0.175048i \(0.943992\pi\)
\(860\) 4.62742 + 3.33354i 0.157794 + 0.113673i
\(861\) 0 0
\(862\) −33.1233 + 19.1237i −1.12818 + 0.651357i
\(863\) 26.4495i 0.900351i 0.892940 + 0.450176i \(0.148639\pi\)
−0.892940 + 0.450176i \(0.851361\pi\)
\(864\) 0 0
\(865\) −2.65153 + 26.2474i −0.0901548 + 0.892440i
\(866\) −11.5000 19.9186i −0.390786 0.676861i
\(867\) 0 0
\(868\) −0.603566 0.348469i −0.0204864 0.0118278i
\(869\) 12.6742 21.9524i 0.429944 0.744685i
\(870\) 0 0
\(871\) −5.57321 9.65309i −0.188841 0.327082i
\(872\) 8.00000i 0.270914i
\(873\) 0 0
\(874\) −37.5959 −1.27170
\(875\) 4.90260 1.10436i 0.165738 0.0373342i
\(876\) 0 0
\(877\) 18.0597 + 10.4268i 0.609834 + 0.352088i 0.772900 0.634527i \(-0.218805\pi\)
−0.163067 + 0.986615i \(0.552139\pi\)
\(878\) 19.0919 + 11.0227i 0.644320 + 0.371998i
\(879\) 0 0
\(880\) 3.16573 + 7.03371i 0.106717 + 0.237106i
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 6.55051i 0.220442i 0.993907 + 0.110221i \(0.0351559\pi\)
−0.993907 + 0.110221i \(0.964844\pi\)
\(884\) 7.22474 + 12.5136i 0.242994 + 0.420879i
\(885\) 0 0
\(886\) 10.6237 18.4008i 0.356911 0.618188i
\(887\) 16.7563 + 9.67423i 0.562620 + 0.324829i 0.754197 0.656649i \(-0.228027\pi\)
−0.191576 + 0.981478i \(0.561360\pi\)
\(888\) 0 0
\(889\) −1.55051 2.68556i −0.0520024 0.0900709i
\(890\) 0.696938 6.89898i 0.0233614 0.231254i
\(891\) 0 0
\(892\) 9.10102i 0.304725i
\(893\) 20.9989 12.1237i 0.702702 0.405705i
\(894\) 0 0
\(895\) −1.17497 + 1.63103i −0.0392750 + 0.0545193i
\(896\) 0.224745 0.389270i 0.00750820 0.0130046i
\(897\) 0 0
\(898\) 16.2795 9.39898i 0.543254 0.313648i
\(899\) −9.30306 −0.310274
\(900\) 0 0
\(901\) −20.9444 −0.697759
\(902\) 2.98735 1.72474i 0.0994677 0.0574277i
\(903\) 0 0
\(904\) 2.44949 4.24264i 0.0814688 0.141108i
\(905\) 7.25456 10.0704i 0.241150 0.334750i
\(906\) 0 0
\(907\) −34.4179 + 19.8712i −1.14283 + 0.659811i −0.947129 0.320853i \(-0.896031\pi\)
−0.195698 + 0.980664i \(0.562697\pi\)
\(908\) 3.44949i 0.114475i
\(909\) 0 0
\(910\) −0.247449 + 2.44949i −0.00820284 + 0.0811998i
\(911\) 12.1237 + 20.9989i 0.401677 + 0.695725i 0.993928 0.110028i \(-0.0350942\pi\)
−0.592252 + 0.805753i \(0.701761\pi\)
\(912\) 0 0
\(913\) 11.9494 + 6.89898i 0.395467 + 0.228323i
\(914\) −8.94949 + 15.5010i −0.296023 + 0.512727i
\(915\) 0 0
\(916\) 9.22474 + 15.9777i 0.304794 + 0.527919i
\(917\) 2.20204i 0.0727178i
\(918\) 0 0
\(919\) −1.10102 −0.0363193 −0.0181597 0.999835i \(-0.505781\pi\)
−0.0181597 + 0.999835i \(0.505781\pi\)
\(920\) 6.33145 + 14.0674i 0.208742 + 0.463789i
\(921\) 0 0
\(922\) −2.12132 1.22474i −0.0698620 0.0403348i
\(923\) 5.19615 + 3.00000i 0.171033 + 0.0987462i
\(924\) 0 0
\(925\) 37.9411 12.6677i 1.24750 0.416512i
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) 6.00000i 0.196960i
\(929\) 8.20204 + 14.2064i 0.269100 + 0.466095i 0.968630 0.248508i \(-0.0799404\pi\)
−0.699529 + 0.714604i \(0.746607\pi\)
\(930\) 0 0
\(931\) −18.5227 + 32.0823i −0.607057 + 1.05145i
\(932\) −11.8619 6.84847i −0.388549 0.224329i
\(933\) 0 0
\(934\) 5.17423 + 8.96204i 0.169306 + 0.293247i
\(935\) 4.57321 45.2702i 0.149560 1.48049i
\(936\) 0 0
\(937\) 0.404082i 0.0132008i −0.999978 0.00660039i \(-0.997899\pi\)
0.999978 0.00660039i \(-0.00210099\pi\)
\(938\) 1.77138 1.02270i 0.0578374 0.0333925i
\(939\) 0 0
\(940\) −8.07277 5.81552i −0.263305 0.189681i
\(941\) −15.1010 + 26.1557i −0.492279 + 0.852653i −0.999960 0.00889239i \(-0.997169\pi\)
0.507681 + 0.861545i \(0.330503\pi\)
\(942\) 0 0
\(943\) 5.97469 3.44949i 0.194563 0.112331i
\(944\) 13.2474 0.431168
\(945\) 0 0
\(946\) 8.79796 0.286046
\(947\) −2.81237 + 1.62372i −0.0913898 + 0.0527640i −0.544998 0.838437i \(-0.683470\pi\)
0.453609 + 0.891201i \(0.350136\pi\)
\(948\) 0 0
\(949\) 18.1237 31.3912i 0.588321 1.01900i
\(950\) −20.3955 18.0679i −0.661717 0.586199i
\(951\) 0 0
\(952\) −2.29629 + 1.32577i −0.0744233 + 0.0429683i
\(953\) 31.2020i 1.01073i −0.862905 0.505367i \(-0.831357\pi\)
0.862905 0.505367i \(-0.168643\pi\)
\(954\) 0 0
\(955\) 40.5959 + 4.10102i 1.31365 + 0.132706i
\(956\) −0.348469 0.603566i −0.0112703 0.0195207i
\(957\) 0 0
\(958\) −14.4600 8.34847i −0.467181 0.269727i
\(959\) 0.674235 1.16781i 0.0217722 0.0377105i
\(960\) 0 0
\(961\) 14.2980 + 24.7648i 0.461224 + 0.798864i
\(962\) 19.5959i 0.631798i
\(963\) 0 0
\(964\) −1.00000 −0.0322078
\(965\) 27.9289 12.5702i 0.899062 0.404649i
\(966\) 0 0
\(967\) −0.603566 0.348469i −0.0194094 0.0112060i 0.490264 0.871574i \(-0.336900\pi\)
−0.509673 + 0.860368i \(0.670234\pi\)
\(968\) 0.778539 + 0.449490i 0.0250232 + 0.0144471i
\(969\) 0 0
\(970\) −11.9306 26.5078i −0.383068 0.851113i
\(971\) −35.3939 −1.13584 −0.567922 0.823083i \(-0.692252\pi\)
−0.567922 + 0.823083i \(0.692252\pi\)
\(972\) 0 0
\(973\) 5.95459i 0.190895i
\(974\) −12.5505 21.7381i −0.402144 0.696534i
\(975\) 0 0
\(976\) −2.22474 + 3.85337i −0.0712123 + 0.123343i
\(977\) 24.3362 + 14.0505i 0.778584 + 0.449516i 0.835928 0.548839i \(-0.184930\pi\)
−0.0573443 + 0.998354i \(0.518263\pi\)
\(978\) 0 0
\(979\) −5.34847 9.26382i −0.170938 0.296073i
\(980\) 15.1237 + 1.52781i 0.483110 + 0.0488040i
\(981\) 0 0
\(982\) 18.5505i 0.591971i
\(983\) 18.5276 10.6969i 0.590940 0.341179i −0.174529 0.984652i \(-0.555840\pi\)
0.765469 + 0.643473i \(0.222507\pi\)
\(984\) 0 0
\(985\) 14.5145 + 10.4561i 0.462471 + 0.333158i
\(986\) −17.6969 + 30.6520i −0.563585 + 0.976158i
\(987\) 0 0
\(988\) 11.5601 6.67423i 0.367776 0.212336i
\(989\) 17.5959 0.559518
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 1.34278 0.775255i 0.0426333 0.0246144i
\(993\) 0 0
\(994\) −0.550510 + 0.953512i −0.0174611 + 0.0302436i
\(995\) −20.3246 + 28.2135i −0.644334 + 0.894428i
\(996\) 0 0
\(997\) 18.1384 10.4722i 0.574448 0.331658i −0.184476 0.982837i \(-0.559059\pi\)
0.758924 + 0.651179i \(0.225725\pi\)
\(998\) 21.2474i 0.672576i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.2.i.b.199.4 8
3.2 odd 2 90.2.i.b.49.2 8
4.3 odd 2 2160.2.by.d.1009.3 8
5.2 odd 4 1350.2.e.m.901.1 4
5.3 odd 4 1350.2.e.j.901.2 4
5.4 even 2 inner 270.2.i.b.199.1 8
9.2 odd 6 90.2.i.b.79.3 yes 8
9.4 even 3 810.2.c.e.649.3 4
9.5 odd 6 810.2.c.f.649.2 4
9.7 even 3 inner 270.2.i.b.19.1 8
12.11 even 2 720.2.by.c.49.3 8
15.2 even 4 450.2.e.k.301.2 4
15.8 even 4 450.2.e.n.301.1 4
15.14 odd 2 90.2.i.b.49.3 yes 8
20.19 odd 2 2160.2.by.d.1009.2 8
36.7 odd 6 2160.2.by.d.289.2 8
36.11 even 6 720.2.by.c.529.2 8
45.2 even 12 450.2.e.k.151.2 4
45.4 even 6 810.2.c.e.649.1 4
45.7 odd 12 1350.2.e.m.451.1 4
45.13 odd 12 4050.2.a.bz.1.1 2
45.14 odd 6 810.2.c.f.649.4 4
45.22 odd 12 4050.2.a.bm.1.2 2
45.23 even 12 4050.2.a.bq.1.1 2
45.29 odd 6 90.2.i.b.79.2 yes 8
45.32 even 12 4050.2.a.bs.1.2 2
45.34 even 6 inner 270.2.i.b.19.4 8
45.38 even 12 450.2.e.n.151.1 4
45.43 odd 12 1350.2.e.j.451.2 4
60.59 even 2 720.2.by.c.49.2 8
180.79 odd 6 2160.2.by.d.289.3 8
180.119 even 6 720.2.by.c.529.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.b.49.2 8 3.2 odd 2
90.2.i.b.49.3 yes 8 15.14 odd 2
90.2.i.b.79.2 yes 8 45.29 odd 6
90.2.i.b.79.3 yes 8 9.2 odd 6
270.2.i.b.19.1 8 9.7 even 3 inner
270.2.i.b.19.4 8 45.34 even 6 inner
270.2.i.b.199.1 8 5.4 even 2 inner
270.2.i.b.199.4 8 1.1 even 1 trivial
450.2.e.k.151.2 4 45.2 even 12
450.2.e.k.301.2 4 15.2 even 4
450.2.e.n.151.1 4 45.38 even 12
450.2.e.n.301.1 4 15.8 even 4
720.2.by.c.49.2 8 60.59 even 2
720.2.by.c.49.3 8 12.11 even 2
720.2.by.c.529.2 8 36.11 even 6
720.2.by.c.529.3 8 180.119 even 6
810.2.c.e.649.1 4 45.4 even 6
810.2.c.e.649.3 4 9.4 even 3
810.2.c.f.649.2 4 9.5 odd 6
810.2.c.f.649.4 4 45.14 odd 6
1350.2.e.j.451.2 4 45.43 odd 12
1350.2.e.j.901.2 4 5.3 odd 4
1350.2.e.m.451.1 4 45.7 odd 12
1350.2.e.m.901.1 4 5.2 odd 4
2160.2.by.d.289.2 8 36.7 odd 6
2160.2.by.d.289.3 8 180.79 odd 6
2160.2.by.d.1009.2 8 20.19 odd 2
2160.2.by.d.1009.3 8 4.3 odd 2
4050.2.a.bm.1.2 2 45.22 odd 12
4050.2.a.bq.1.1 2 45.23 even 12
4050.2.a.bs.1.2 2 45.32 even 12
4050.2.a.bz.1.1 2 45.13 odd 12